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Summary

Aging is associated with cognitive decline, diminished brain

function, regional brain atrophy, and disrupted structural and

functional brain connectivity. Understanding brain networks in

aging is essential, as brain function depends on large-scale

distributed networks. Little is known of structural covariance

networks to study inter-regional gray matter anatomical associ-

ations in aging. Here, we investigate anatomical brain networks

based on structural covariance of gray matter volume among 370

middle-aged to older adults of 45–85 years. For each of 370

subjects, we acquired a T1-weighted anatomical MRI scan. After

segmentation of structural MRI scans, nine anatomical networks

were defined based on structural covariance of gray matter

volume among subjects. We analyzed associations between age

and gray matter volume in anatomical networks using linear

regression analyses. Age was negatively associated with gray

matter volume in four anatomical networks (P < 0.001, cor-

rected): a subcortical network, sensorimotor network, posterior

cingulate network, and an anterior cingulate network. Age was

not significantly associated with gray matter volume in five

networks: temporal network, auditory network, and three cere-

bellar networks. These results were independent of gender and

white matter hyperintensities. Gray matter volume decreases

with age in networks containing subcortical structures, sensori-

motor structures, posterior, and anterior cingulate cortices. Gray

matter volume in temporal, auditory, and cerebellar networks

remains relatively unaffected with advancing age.
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Abbreviations

FLAIR fluid-attenuated inversion recovery

FSL functional magnetic resonance imaging of the brain

software library

ICA independent component analysis

MNI Montreal Neurological Institute

WMHs white matter hyperintensities

Introduction

It is well recognized that the process of aging is associated with

cognitive decline and diminished brain function (Grady, 2012). In

addition, numerous neuroimaging studies have unequivocally shown

that aging is associated with loss of brain tissue, in which process

especially the gray matter seems affected. Volumetric and morphomet-

ric neuroimaging studies have demonstrated a consistent age-depen-

dent decrease in regional gray matter volume, mainly expressed in the

temporal lobe and hippocampus, the cingulate cortex, and prefrontal

regions (Good et al., 2001; Jernigan et al., 2001; Resnick et al., 2003;

Raz et al., 2005).

There is increasing evidence that, in addition to brain atrophy, aging

and loss of cognitive function at high ages are associated with disrupted

structural and functional brain connectivity. It has been shown that

functional connectivity decreases with age, especially connectivity in the

default mode network between the medial prefrontal cortex, anterior

and posterior cingulate cortex, precuneus, parietal cortex, and hippo-

campus (Damoiseaux et al., 2008; Hafkemeijer et al., 2012; Ferreira &

Busatto, 2013). Furthermore, aging is associated with disrupted white

matter anatomical connections, specifically in the frontal white matter,

anterior cingulum, and the genu of the corpus callosum (Salat et al.,

2005; Madden et al., 2012).

In addition to functional brain networks and white matter anatomical

connectivity, population (intersubject) covariance of gray matter volume

can be used to study inter-regional anatomical associations (Alexander-

Bloch et al., 2013). The integrity of these gray matter structural

covariance networks changes throughout lifespan (Wu et al., 2012,

2013). Here, we will investigate the integrity of gray matter anatomical

networks in the aging brain. In this respect, mainly the structural

covariance of the default mode network has been studied, showing a

breakdown with increasing age (Spreng & Turner, 2013). While most

studies focused on the default mode network, there is evidence for age-

dependent decreases in other anatomical networks (Montembeault

et al., 2012; Segall et al., 2012; Li et al., 2013).

Currently, anatomical networks are mostly studied using a model-

driven seed-based approach with a priori hypotheses of manually selected

regions of interest and their connected networks (Montembeault et al.,

2012; Zielinski et al., 2012; Li et al., 2013; Soriano-Mas et al., 2013). The

manual selection of regions of interest might introduce a selection bias

(Damoiseaux & Greicius, 2009). To avoid this, we will use a model-free

method to investigatewhole-brain anatomical networks in an unrestricted

exploratory way. This method has proven to be a powerful tool to

characterize structural networks in schizophrenia (Xu et al., 2009). Here,

we will apply this method to study gray matter anatomical networks in

middle-aged to older adults.

In this study, we explored anatomical networks in a large group of

middle-aged to older adults (45–85 years, n = 370). Our aim was to

investigate whole-brain anatomical networks to explore which networks

are associated with the process of healthy aging and which networks do

not show an age association.
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Results

Demographic characteristics

We analyzed structural MRI scans of in total 370 middle-aged to older

participants aged between 45.5 and 84.3 years (mean age

65.7 � 6.7 years). The cohort was nearly balanced on gender (192

women, 51.9%), with similar age distributions across genders. The study

population has been described in more detail elsewhere (Altmann-

Schneider et al., 2013).

The total study population was divided into four age subgroups: (i)

45–55 years, mean age = 51.4 � 2.3 years, n = 26, 18 women; (ii)

55–65 years, mean age = 61.5 � 2.4 years, n = 145, 83 women; (iii)

65–75 years, mean age = 69.3 � 2.7 years, n = 171, 83 women; and

(iv) 75-85 years, mean age = 78.0 � 2.6 years, n = 28, 8 women. White

matter hyperintensities (WMHs) were defined as areas within the cerebral

white matter with increased signal intensity. Mean volume of WMHs was

1.93 mL for the total study population [0.81 mL (45–55 years), 1.25 mL

(55–65 years), 1.93 mL (65–75 years), 5.99 mL (75–85 years)].

Gray matter anatomical brain networks

After segmentation of structural MRI scans, gray matter images were

used to define nine anatomical brain networks based on the covariation

of gray matter volumes among the middle-aged to older adults (Fig. 1A).

Brain structures of the networks were identified using the Harvard-

Oxford atlas integrated in Functional Magnetic Resonance Imaging of

the Brain Software Library (FSL) (Table 1).

Aging

To analyze the possible association between age and gray matter volume

in anatomical networks, we used a linear regression analysis based on

four age subgroups (45–55, 55–65, 65–75, and 75–85 years). To

statistically account for the possible influences of gender, family

characteristics (i.e., offspring of long-lived parents or nonoffspring),

and volumes of WMHs, these factors were used as independent factors

in the linear regression model. The age association of gray matter

volume in anatomical networks is illustrated in Fig. 1B. (This figure shows

the networks in order of age association, with the first network showing

the strongest association with age.)

Age showed a negative association with gray matter volume in four

networks (Fig. 1A–D). These networks included 1) thalamus, nucleus

accumbens, caudate nucleus, hippocampus, and lingual gyrus (network a

in Fig. 1 and Table 1, P < 0.0001, R2 = 0.291, Beta = �0.510), 2) lateral

occipital cortex and precuneus (network b in Fig. 1 and Table 1,

P < 0.0001, R2 = 0.257, Beta = �0.255), 3) posterior cingulate cortex,

paracingulate gyrus, subcallosal cortex, and operculum cortex (network c

in Fig. 1 and Table 1, P < 0.0001, R2 = 0.158, Beta = �0.347), and 4)

anterior cingulate cortex, middle frontal gyrus, and frontal medial cortex

(network d in Fig. 1 and Table 1, P = 0.0004, R2 = 0.150, Beta =�0.186).

Age was not significantly associated with gray matter volume in five

networks (Fig. 1E–I). These networks included 1) temporal pole and

temporal fusiform cortex (network e in Fig. 1 and Table 1, P = 0.0038,

R2 = 0.085, Beta = �0.157), 2) putamen, caudate nucleus, and superior

parietal lobule (network f in Fig. 1 and Table 1, P = 0.0137, R2 =0.083,

Beta = �0.134), and 3–5) three cerebellar networks (network g in Fig. 1

and Table 1, P = 0.1709, R2 = 0.078, Beta = �0.074; network h in

Fig. 1 and Table 1, P = 0.3496, R2 = 0.020, Beta = �0.052; network i

in Fig. 1 and Table 1, P = 0.1233, R2 = 0.030, Beta = 0.086).

Longevity

All subjects were included from the Leiden Longevity Study, which was

set up to identify genetic and phenotypic markers related to longevity

(Altmann-Schneider et al., 2013). The study cohort consists of offspring

of long-lived siblings and their partners (194 offspring and 176 partners).

The offspring was characterized by having long-lived parents (with male

parents aged ≥ 89 years and female parents aged ≥ 91 years). No

significant differences in association between age and the gray matter

volume in the anatomical networks were found between offspring of

long-lived parents and nonoffspring participants.

Discussion

We identified anatomical brain networks based on structural covariance

of gray matter volume in a large sample of healthy participants aged

between 45 and 85 years. Our aim was to investigate whole-brain

anatomical networks to explore which networks are associated with the

process of healthy aging and which networks do not show an age

association. In summary, by doing a cross-sectional analysis, we found

gray matter volume decreases with age in four networks containing

predominantly subcortical structures, lateral occipital, posterior, and

anterior cingulate cortices. The gray matter in five networks containing

the temporal pole, putamen, and cerebellum remained relatively

unaffected with advancing age.

The greatest associations with age were found in an anatomical

network containing among other structures the thalamus, nucleus

accumbens, caudate nucleus, and hippocampus (network a). It is well

recognized that subcortical structures are vulnerable to atrophy with

advancing age (Jernigan et al., 2001; Raz et al., 2005). Additionally,

network studies have shown age-dependent relationships between

these structures (Brickman et al., 2007; Bergfield et al., 2010; Soriano-

Mas et al., 2013).

We found associations between age and the gray matter volume in

the lateral occipital network (network b). Evidence for age associations

of gray matter volume in this anatomical network is supported by others

(Montembeault et al., 2012; Li et al., 2013). Montembeault et al. found

reduced structural associations between occipital regions and the

temporal pole (Montembeault et al., 2012). That finding is consistent

with disrupted white matter anatomical connections between occipital

and temporal areas in the elderly (Kantarci et al., 2011). It has been

suggested that these age-related reduced structural associations may

explain the decline in language-related semantics in the elderly

(Montembeault et al., 2012).

In general, gray matter anatomical networks and resting state

functional connectivity networks spatially overlap (Seeley et al., 2009;

Segall et al., 2012) and reflect regions that co-degenerate in several

neurodegenerative syndromes (Seeley et al., 2009). Our study also

shows spatial overlap between the structures of anatomical networks

and resting state functional connectivity networks found in other studies

(Beckmann et al., 2005; Damoiseaux et al., 2006; Laird et al., 2011).

Visual inspection shows spatial overlap between network a and the

medial visual cortical functional connectivity network, network b and

sensorimotor functional connectivity network, network c and default

mode network, network d and executive control network, network e

and medial temporal functional connectivity network, and network f and

the auditory functional connectivity network. The cerebellum (network

g, h, and i) is less frequently studied with functional connectivity.

The association with age we found in the posterior cingulate

anatomical network (network c) is consistent with a recent study that
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showed that this anatomical network changes with age in healthy and

pathological aging (Spreng & Turner, 2013). Visual inspection of our

data showed spatial overlap between the structures of this anatomical

network and the default mode functional connectivity network found in

other studies (Beckmann et al., 2005; Damoiseaux et al., 2006; Laird

et al., 2011). The default mode network is affected by age-related

atrophy (Buckner et al., 2008) and age-related decreases in functional

connectivity (Damoiseaux et al., 2008; Hafkemeijer et al., 2012; Ferreira

& Busatto, 2013).

The anatomical network containing predominantly the anterior

cingulate cortex (network d) shows spatial overlap with a functional

connectivity network associated with executive control functions

(Beckmann et al., 2005; Damoiseaux et al., 2006; Laird et al., 2011).

The associations between age and gray matter volume in this network is

supported by other anatomical network studies (Bergfield et al.,

2010; Montembeault et al., 2012). It has been suggested that the

age-dependent breakdown of this network may explain the difficulties in

cognitively demanding tasks generally observed in elderly (Montembeault

et al., 2012).

Prior studies mostly focused on age-related differences in the aging

brain. Relatively few studies have sought to identify anatomical networks

that were not associated with age. Functional connectivity in somato-

sensory and cerebellar networks does not show an association with

advancing age (Tomasi & Volkow, 2012). Here, we showed that gray

(B)(A)

a

b

c

d

e

f

g

h

i

Fig. 1 Gray matter structural networks

and associations with age. (A) Overview of

the nine anatomical networks based on the

covariation of gray matter volumes among

middle-aged to older adults. Networks are

overlaid on the most informative coronal,

sagittal, and transverse slices of the MNI-

152 standard anatomical image. (B) The

association between age and gray matter

volume in the anatomical networks is

illustrated by bar graphs. Error bars indicate

the standard error of the mean. Age was

negatively associated with gray matter

volume in network a–d and was not

significantly associated with gray matter

volume in network e–i.
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matter volume in five anatomical networks, predominantly containing

the temporal pole (network e), putamen (network f), and cerebellum

(networks g, h, and i), was not associated with age. The lack of age

associations in these five networks is in line with an anatomical network

study in healthy elderly (Bergfield et al., 2010). Others have shown that

the temporal areas, putamen, and cerebellum are less susceptible to age-

related differences in both gray matter volume and metabolism

(Kalpouzos et al., 2009). However, age-related differences in the

temporal anatomical network are frequently reported (Alexander et al.,

2006; Brickman et al., 2007; Montembeault et al., 2012), which makes

preservation of this network more unlikely. In this study, we found a

nonsignificant trend toward age-related gray matter volume loss in the

temporal network (network e). Further research is highly recommended

to investigate the association between age and the gray matter volume

in the temporal anatomical network.

Here, we studied whole-brain anatomical networks. The method used

in this study examines the inter-regional anatomical relationship among

spatially distributed brain structures as networks of connected regions.

This approach showed associations between age and gray matter

networks containing brain areas that were found earlier in several other

Table 1 Brain clusters of anatomical brain networks

Brain cluster†

Cluster volume

MNI coordinates

(cm3) x y z

Network a Thalamus 17.90 �2 �2 �8

Cluster also contains nucleus accumbens, caudate nucleus,

hippocampus, lingual gyrus, and cerebellum

(Postcentral gyrus) 1.03 52 �8 32

(Precentral gyrus) 0.89 �20 �18 70

(Heschl’s gyrus) 0.41 �50 �26 10

Network b Lateral occipital cortex 36.76 50 �62 44

Cluster also contains precuneus and supramarginal gyrus

Cerebellum 3.17 �18 �72 �34

Network c Posterior cingulate cortex 56.75 �8 22 �16

Cluster also contains paracingulate gyrus, subcallosal cortex,

operculum cortex, and precuneus

Middle temporal gyrus 6.32 56 �48 8

(Occipital fusiform gyrus) 0.42 26 �74 �14

Lateral occipital cortex 0.28 �40 �72 26

Network d Anterior cingulate cortex 36.81 �2 32 28

Cluster also contains middle frontal gyrus, precentral gyrus,

and frontal medial cortex

(Cerebellum) 3.06 �20 �80 �44

(Lateral occipital cortex) 2.47 50 �74 26

(Temporal pole) 1.56 �58 6 �2

(Cuneus) 0.84 12 �68 24

(Precuneus) 0.68 �14 �62 22

Network e Temporal pole 29.04 �32 22 �38

Cluster also contains temporal fusiform cortex

(Cerebellum) 2.59 �12 �74 �30

(Anterior cingulate cortex) 1.57 10 �12 44

Network f Putamen 18.74 24 14 0

Cluster also contains caudate nucleus (and insular cortex)

Superior parietal lobule 10.40 34 �48 38

Cluster also contains lateral occipital cortex (and precuneus)

(Cerebellum) 5.37 �6 �66 �16

Angular gyrus 5.35 �44 �58 20

Network g Cerebellum 24.35 42 �68 �32

(Frontal pole) 0.41 52 34 �6

Network h Cerebellum 30.43 26 �64 �52

(Middle frontal gyrus) 0.57 �50 28 24

(Precuneus) 0.90 20 �58 20

Network i Cerebellum 25.18 18 �86 �36

Hippocampus 0.49 24 �24 �8

(Postcentral gyrus) 0.49 �40 �30 40

(Frontal pole) 0.28 8 64 12

MNI, Montreal Neurological Institute 152 standard space image.

†Each gray matter anatomical network is divided into brain clusters using the cluster tool integrated in FSL. Cluster size and MNI x-, y-, and z-coordinates of each cluster are

given. Brain structures are anatomically identified using the Harvard-Oxford atlas integrated in FSL. Fig. 1 shows the most informative coronal, sagittal, and transverse slices.

Structures in parentheses in the table are not visible in Fig. 1.
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studies exploring regional (non-network) gray matter differences. This

suggests a high sensitivity of the network approach used in our study.

However, this interpretation should be taken with caution, given the lack

of direct comparisons between non-network and network studies and

given the differences in statistical correction for multiple comparisons

(i.e., network studies should correct for multiple networks, whereas

regional non-network studies are forced to use a more stringent

voxelwise correction for multiple comparisons).

In this study, we used the ICA method to determine anatomical

networks based on the covariation of gray matter volumes among all

370 middle-aged to older adults. The age associations reported in our

study might be influenced by the fact that the anatomical networks are

based on the total study population of middle-aged to older adults.

Although much can be learned from the age associations found in our

study, a limitation of this cross-sectional study is that the participants

were not followed over time. A longitudinal design is required to study

changes in individual brain structure as aging occurs.

Another limitation is that the number of components to estimate (i.e.,

anatomical networks) is arbitrarily chosen. The topic of choosing the

number of components and the effect of the dimensionality on the

statistical results is currently an active area of research. There is no

consensus on the optimal number of components (Cole et al., 2010),

which may vary depending on the data and the research question. In the

current study, we decided to use a dimensionality within the range of the

most often applied dimensionality in studies of brain networks, that is

use eight to ten components (Beckmann et al., 2005; Damoiseaux et al.,

2006; Smith et al., 2009; Segall et al., 2012; Zielinski et al., 2012).

However, it is important to note that varying the dimensionality may

affect the sensitivity to detect regional effects and may impact the

findings of this study.

Overall, we showed that regionally separate gray matter regions are

organized in anatomical networks. We gave an overview of associations

between age and the gray matter volume in these networks. Elderly

show a decline in gray matter volume in networks containing subcortical

structures, lateral occipital, posterior, and anterior cingulate cortices.

Anatomical networks containing the temporal pole, putamen, and

cerebellum remain relatively unaffected with advancing age. The current

work supports the application of gray matter structural network analysis

to evaluate inter-regional anatomical relationships among spatially

distributed brain structures in the aging brain. Additionally, this

approach may also be useful in distinguishing the effects of age-related

neurodegenerative disease from healthy aging.

Experimental procedures

Participants

In total, 370 subjects aged between 45 and 85 years were included from

the Leiden Longevity Study, which was set up to identify genetic and

phenotypic markers related to longevity (Altmann-Schneider et al.,

2013). For the current study, the offspring of long-lived siblings and

their partners were included (194 offspring and 176 partners). The

offspring is characterized by having long-lived parents (with male

parents aged ≥ 89 years and female parents aged ≥ 91 years). The

cohort is nearly balanced on gender (192 females, 51.9%), with similar

age distributions across genders.

All subjects underwent an extensive medical screening. Cognitive

functioning was assessed by a neuropsychological protocol. The partic-

ipants did not demonstrate any abnormalities on neuropsychological

elevation (Mini-Mental State Examination score > 28, Geriatric Depres-

sion Scale-15 score < 6) and did not have a history of psychiatric or

neurodegenerative disorders. In accordance with the Declaration of

Helsinki, written informed consent from all participants was obtained.

The Medical Ethical Committee of the Leiden University Medical Center

approved the study.

Data acquisition

All participants underwent an MRI of the brain in the Leiden University

Medical Center. Imaging was performed on a Philips 3 Tesla Achieva MRI

scanner using a standard whole-head coil for radiofrequency transmis-

sion (Philips Medical Systems, Best, the Netherlands).

Three-dimensional T1-weighted anatomical images were acquired

with the following parameters: TR = 9.7 ms, TE = 4.6 ms, flip angle = 8°,

FOV = 224 9 177 9 168 mm, resulting in a nominal voxel size of

1.17 9 1.17 9 1.40 mm, covering the entire brain with no gap

between slices. To determine WMHs, we acquired fluid-attenuated

inversion recovery (FLAIR) images (TR = 11 000 ms, TE = 125 ms, flip

angle = 90°, FOV = 220 9 176 9 137 mm, matrix size 320 9 240, 25

transverse slices to cover the entire brain with a slice thickness of 5 mm

with no gap between slices).

Gray matter anatomical brain networks

Before analysis, all MRI scans were submitted to a visual quality control

check to ensure that no gross artifacts were present in the data. Data

analysis was performed with FSL (FSL 4.1.9, Oxford, United Kingdom,

www.fmrib.ox.ac.uk/fsl) (Smith et al., 2004).

First, nonbrain tissue (e.g., scalp) was removed from T1-weighted

images using a semi-automated brain extraction tool as implemented in

FSL (Smith, 2002). Next, tissue-type segmentation was performed using

voxel-based morphometric analysis (Ashburner & Friston, 2000). We

performed a control check after each processing step to ensure

appropriate brain extraction and tissue-type segmentation. To correct

for the partial volume effect (i.e., voxels ‘containing’ more than one

tissue type), the tissue-type segmentation was carried out with partial

volume estimation. For each partial volume voxel, the proportion of each

tissue type was estimated, that is, a partial volume vector was formed,

with each element being a ‘fraction’ of a specific tissue type and having a

sum of one (Zhang et al., 2001). The segmented images have values that

indicate the probability of a given tissue type (i.e., they are not binary).

The resulting gray matter partial volume images were aligned to the

gray matter MNI 152 standard space image (Montreal Neurological

Institute, Montreal, QC, Canada) (Jenkinson et al., 2002), followed by

nonlinear registration (Andersson et al., 2007). The resulting images

were averaged to create a study-specific gray matter template, to which

the native gray matter segmented images were nonlinearly re-registered

(Ashburner & Friston, 2000; Good et al., 2001). As a result of nonlinear

spatial registration, the volume of some brain structures may grow,

whereas others may shrink. To correct for these enlargements and

contractions, a further processing step (modulation) is recommended

(Ashburner & Friston, 2000; Good et al., 2001). In this additional step,

each voxel of each registered gray matter image was divided by the

Jacobian of the warp field, which defines the direction (larger or smaller)

and the amount of modulation. The modulated segmented images were

finally spatially smoothed with an isotropic Gaussian kernel with a sigma

of 3 mm.

The modulated gray matter images in MNI space of all 370 subjects

were used as a four-dimensional data set on which an independent

component analysis (ICA) was applied using multivariate exploratory
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linear optimized decomposition into independent components (Beck-

mann et al., 2005). ICA is a statistical technique that decomposes a set

of signals into spatial component maps of maximal statistical indepen-

dence (Beckmann & Smith, 2004). When applied on gray matter images

of different subjects, this method defines fully automatically spatial

components based on the covariation of gray matter volumes among

subjects (i.e., structural covariance networks), without a priori selected

regions of interest. A limitation of this technique is that the number of

components to estimate is arbitrarily chosen and that there is no

consensus on how to choose the optimal number of components (Cole

et al., 2010). There even exists no single ‘best’ dimensionality. Structural

covariance and resting state functional networks are in general

investigated using eight to ten components (Beckmann et al., 2005;

Damoiseaux et al., 2006; Smith et al., 2009; Segall et al., 2012; Zielinski

et al., 2012). Therefore, in this study, the ICA output was restricted to

nine components.

A mixture model was used to assign significance to individual voxels

within a spatial map, using a standard threshold level of 0.5 (Beckmann

& Smith, 2004). This indicates that a voxel ‘survives’ thresholding as soon

as the probability of being in the ‘nonbackground’ class exceeds the

probability of being in the ‘background’ noise class. A threshold of 0.5

indicates that an equal loss is placed on false positives and false

negatives. Anatomical locations were determined using the Harvard-

Oxford atlas integrated in FSL.

White matter hyperintensities

We statistically accounted for the possible influence of WMHs, as the

prevalence of WMHs increases with age (Galluzzi et al., 2008). Further-

more, the degree of white matter damage is associated with a decrease in

gray matter volume in healthy elderly (Wen et al., 2006). The anatomical

locations of the networks were identified based on the covariance of gray

matter; the presence of WMHs does not affect the identification of the

networks. However, WMHs could be associated with the amount of gray

matter within each individual network. Therefore, we added the volumes

of WMHs as independent factor to the linear regression model (see

section ‘Statistical analysis’). WMHs were defined as areas within the

cerebral white matter with increased signal intensity on the FLAIR images.

Volumes of WMHs were automatically determined using a previously

validated method (King et al., 2013). In short, after tissue segmentation

of the T1-weighted images, white matter masks generated by FSL were

spatially transformed to the FLAIR images using FMRIB’s Linear Image

Registration Tool (Jenkinson et al., 2002). WMHs in the mask were

automatically identified using a threshold of three standard deviations

above the mean FLAIR signal intensity (King et al., 2013).

Statistical analysis

To analyze the possible association between age and gray matter volume

in anatomical networks, we used a linear regression analysis (IBM SPSS

Statistics Version 20, IBM Corp., Somers, NY, USA). We divided the total

age span four age subgroups (45–55, 55–65, 65–75, and 75–85 years)

and used these four age subgroups as a categorical variable in the linear

regression model. To statistically account for the possible influences of

gender, family characteristics (i.e., offspring of long-lived parents or

nonoffspring), and volumes of WMHs, these factors were used as

independent factors in the model. The statistical threshold was corrected

for multiple comparisons using the Bonferroni correction based on

2 9 9 = 18 comparisons (two-tailed, nine networks) yielding a corrected

P value threshold of 0.05/18 = 0.003.
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