Skip to main content
. 2015 Jan 7;15(1):932–964. doi: 10.3390/s150100932

Table 2.

The information of the gait information introduction approach.

Name Expression O Dynamic Static Time Image
MIEI Ei = α × Bi−1 + (1 − α) × Ei−1, α ∈ (0,1) O(η·m·n) graphic file with name sensors-15-00932t12.jpg
FDEI
EFDEI(x,y)=F(x,y,n)+EDEIc(x,y)EcDEI(x,y)={1NcnNCB(x,y,n)if1NcnNCB(x,y,n)T0otherwiseF(x,y,n)={0ifB(x,y,n)B(x,y,n1)B(x,y,n1)B(x,y,n)otherwise
O(η·m·n) × graphic file with name sensors-15-00932t13.jpg
EGEI
EEGEI(x,y)=G(x,y)×(TDWN(x,y))γσGEI(x,y)=1Ai=1A[1Nm=1NGmi(x,y)1Ai=1A1Nm=1NGmi(x,y)]2
O(A2·η·m·n) × graphic file with name sensors-15-00932t14.jpg
CGI
ECGI(x,y)=1pi=1pt=1niCt(x,y)
O(p·ηi·(m·n)2) graphic file with name sensors-15-00932t15.jpg
GFI
EGFI(x,y)=n=1N1Fn(x,y)NFi(x,y)={0ifMagFi(x,y)11otherwiseMagFi(x,y)=(μFi(x,y))2+(νFi(x,y))2
O(η·(m·n)2) × graphic file with name sensors-15-00932t16.jpg
GEnI
EGEnI(x,y)=EGEI(x,y)log2EGEI(x,y)(1EGEI(x,y))log2(1EGEI(x,y))
O(η·m·n) × graphic file with name sensors-15-00932t17.jpg

Note: We make √ and × represent whether the Class Energy Image with or without the type of the motion information, respectively. O denotes computational complexity. Suppose the size of the silhouette is m×n, η is the numbers of silhouettes in a gait cycle.