Skip to main content
. 2015 Jan 13;15(1):1365–1388. doi: 10.3390/s150101365

Algorithm 1: Defenders' system for the cooperative surveillance and pursuit problem.

Data: G(N, E), r,d,m,v,F,c,tmission,tsearch,tstale
1 k ← 0; t ← 0
2 (y(k), f(t), x(t)) ← (Equation (1))
3 tD ← ∅; nD ← ∅; TU ← ∅; NU ← ∅
4 while τ(k) < tmission do
5  (Sk, P(Sk)) ← paths(nD, 1, tD, tD, TU, NU, τ(k) + tsearch, ∅, ∅)
6 u(k) ← uavsAction(y(k), f(·), x(·), tsearch, Sk, P(Sk))
7   (y(k + 1), f(·),x(·))← (Equations (2), (3), (4), (5) and (6)), y(k), u(k)
8 kk + 1; tτ(k + 1)
9 for (detection)queries(k) do
10   if (detection).t > tD then
11     (tD, nD) ← (detection)
12 if tD + tstale < τ(k) then
13   tD ← ∅; nD ← ∅; TU ← ∅; NU ← ∅
14   for (tU, nU) ∈ (TU, NU) do
15    if tU ≤ (τ(k) –tstale) then
16     (TU, NU) ← (TU, NU) \ (tU, nU)
17 for (¬detection)queries(k) do
18   (TU, NU) ← (TU, NU) ← (¬detection)
Result: uj(·)