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Multi-localization transport behaviour in bulk
thermoelectric materials
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Simultaneously optimizing electrical and thermal transport properties of bulk thermoelectric

materials remains a key challenge due to the conflicting combination of material traits. Here,

we have explored the electrical and thermal transport features of In-filled CoSb3 through

X-ray absorption fine structure, X-ray photoemission spectra, transport measurement

and theoretical calculation. The results provide evidence of three types of coexisting multi-

localization transport behaviours in the material; these are heat-carrying phonon-localized

resonant scattering, accelerated electron movement and increase in density of states near the

Fermi level. The 5p-orbital hybridization between In and Sb is discovered in the In-filled CoSb3

compound, which results in a charge transfer from Sb to In and the enhancement of p–d

orbital hybridization between Co and Sb. Our work demonstrates that the electrical and

thermal properties of filled skutterudite bulk thermoelectric materials can be simultaneously

optimized through the three types of coexisting multi-localization transport behaviours in an

independent way.
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T
hermoelectric (TE) devices, which can directly convert heat
into electricity and vice versa, have attracted considerable
attention due to a variety of applications in heating,

cooling, power generation and waste heat recovery1. Their
conversion efficiency depends on the dimensionless figure of
merit of TE materials defined as ZT¼ a2sT/k, where T is the
absolute temperature, s is the electrical conductivity, a is the
Seebeck coefficient and k is the total thermal conductivity
(k¼ kEþkL, where kE is the electronic contribution and kL the
lattice contribution). Numerous efforts have been attempted to
improve ZT in the past two decades despite a compromise of k
and a with s in TE materials2. To decrease kL, various approaches
used to enhance phonon scattering have taken advantage of
nanoinclusion3–6, alloying7, rattling filler8, quasi-ballistic
transport nanoscale interfaces or nanopores9,10, liquid-like
behaviour copper ions11 and anharmonic phonon coupling12.
Meanwhile, a series of band structure engineering approaches
such as high valley degeneracy13,14, peierls distortion15, electron
energy filtering near the Fermi level16–18 and optimal
bandwidth19, have been employed to improve the electrical
properties. Some important single-localization transport
behaviours have been discovered in different TE materials. For
example, interface scattering in AgPbmSbTe2þm (ref. 4) and
BiSbTe (ref. 6), and localized resonant scattering in filled CoSb3

(ref. 8) have remarkably enhanced phonon scattering and reduced
kL; band convergence in PbTe1� xSex (ref. 13) and Mg2Si1� xSnx

(ref. 14), charge density wave in In4Se3 (ref. 15) and electron
resonant state in PbTe (ref. 16) have all led to an effective increase
in a. These single-localization transport behaviour, however, can
only optimize a single physical parameter of electrical or thermal
properties. So far, it remains a major challenge to simultaneously
increase a and s while reducing k, because no material has been
found that shows multiple-localization transport behaviour.

Filled CoSb3 have been intensely pursued as an important TE
material for intermediate-temperature power generation. The
major progress in improving ZT has made through decreasing kL

by filling the icosahedron voids in CoSb3 with foreign atoms (for
example, rare earths, alkali earths or alkali metals) to enhance
heat-carrying phonon-localized resonant scattering via filler
rattling8,20–29. Shi et al.28 suggested that the electrical properties
of multiple-filled CoSb3 could be optimized by adjusting the total
filling fraction of fillers with different charge states. However,
the tuning space of electrical properties is limited due to the
conflicting relationship among a, n and s, as expressed in the
following formulae:

s ¼ nemH ð1Þ

a ¼ 8p2k2
Bm�T

3eh2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffi
p

3n

� �23

r
ð2Þ

where m* is the carrier effective mass; n, the carrier concentration
and mH, the carrier mobility. Recently, more and more
experiments indicate that group III elements (Ga, In and Tl)
can remarkably improve ZT of CoSb3 materials because of an
almost perfect combination of low kL, high s and large a30–38.
However, it still remains unsettled how the group III elements
synergistically adjust the electrical and thermal properties of
CoSb3. The Tl filler rattling only explains the low kL of Tl-filled
CoSb3 (refs 30,31). The dual-site occupancy at both the voids and
Sb sites for Ga in CoSb3 is only responsible for low kL and n32. Up
to now, the doping behaviour of the In impurity in CoSb3

remains an ongoing debate33–42.
In the following, we have explored the electrical and thermal

transport features of In-filled CoSb3 through X-ray absorption
fine structure (XAFS), X-ray photoemission spectra (XPS),
transport measurement and theoretical calculation. Our data

suggest that there are three types of coexisting multi-localization
transport behaviours including heat-carrying phonon-localized
resonant scattering, accelerated electron movement and increase
in density of states (DOSs) near the Fermi level. Our work
demonstrates that the electrical and thermal properties can be
independently optimized through the three types of coexisting
multi-localization transport behaviours.

Results
Filling behaviour of In impurity in CoSb3. We compare In K-
edge X-ray absorption near-edge structure (XANES) experi-
mental spectra of quenched In0.2Co4Sb12 (Q0.2) and annealed
InxCo4Sb12 (x¼ 0.1, 0.2 and 0.25) (Ax) with those of InSb and In
metal (Fig. 1). The In K-edge XANES spectrum of the In metal
has five absorption peaks A1, B1, C1, D1 and E1 centred at about 9,
28, 52, 84 and 128 eV, respectively, whereas that of InSb has four
absorption peaks A2, B2, C2 and D2 at about 11, 35, 64 and
107 eV, respectively. The In K-edge XANES spectrum of Q0.2 has
four absorption peaks with almost the same positions as those of
InSb, indicating the existence of InSb in Q0.2.

All the In K-edge XANES spectra of the Ax samples encompass
five absorption peaks A3, B3, C3, D3 and E3 with energy near 9, 23,
42, 70 and 113 eV, respectively. The main peak A3 has the same
energy as that of A1 for the In metal, but is 2 eV lower than that of
A2 for InSb. For the In K-edge XANES spectra, the main peaks
A1, A2 and A3 can be attributed to the 1s-5p transition. The
energy discrepancy of A2 and A3 indicates that the chemical states
of the In impurity are different between the Ax samples and InSb.
It is worth noting that the absorption peaks B3, C3, D3 and E3 of
all the Ax samples are distinctly different in energy from B1, C1,
D1 and E1 for the In metal, and from B2, C2 and D2 of InSb. Such
significant differences undoubtedly show that the In impurities in
the Ax samples are neither InSb nor the In metal. Accordingly, it
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Figure 1 | The In K-edge XANES experimental spectra. The quenched

In0.2Co4Sb12 is symbolized with ‘Q0.2’. The annealed InxCo4Sb12 (x¼0.1, 0.2

and 0.25) is symbolized with ‘Ax’. The In K-edge XANES experimental

spectra of InSb and In metals are plotted for comparison. Zero eV

corresponds to the threshold of In K-edge (27,940 eV).
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is highly plausible that the In impurities have been incoporated in
the lattice of CoSb3 in all annealed samples, well consistent with
the X-ray diffraction results (see Supplementary Fig. 1).

Because of the close electronegativity values among In (1.78),
Sb (2.05) and Co (1.88), there exist four possible occupational
sites for the In impurities in CoSb3, filling the icosahedron voids
at the 2a sites to form In-filled CoSb3, substituting for Sb at the

24g sites in the disordered Sb2Co2 tetrahedron to form In-doped
CoSb3� sIns, substituting for Co at the 8c sites in the irregular Sb6

octahedron to form In-doped Co1� rInrSb3 or simultaneously
filling the icosahedron voids at the 2a sites and substituting for Sb
at the 24g sites to form (InVF)x2/3Co4Sb12� x/3(InSb)x/3 with
charge-compensated compound defects33. The In K-edge XANES
theoretical spectra of the In impurities at the 2a, 24g, 8c and 2a–
24g sites in CoSb3 were calculated to identify which sites the In
impurities occupy. The In K-edge XANES theoretical spectra (red
solid lines symbolize ‘cal.’) of In-filled CoSb3 for the In impurities
(a) filling icosahedron voids at the 2a sites, (b) substituting for Sb
at the 24g sites, (c) substituting for Co at 8c sites and (d)
simultaneously filling the icosahedron voids at the 2a sites and
substituting for Sb at the 24g sites are compared with the
experimental spectrum (circle lines symbolize ‘exp.’) of the A0.25

sample (Fig. 2). It is clear that only the In K-edge XANES
theoretical spectrum for filling icosahedron voids is in good
agreement with the experimental data; the other three cases have
large discrepencies between the theoretical spectra and the
experimental ones (Fig. 2b–d). Therefore, the In K-edge
XANES spectra unequivocally suggest that the In impurities
stably fill the Sb12 icosahedron voids in CoSb3.

5p-orbital hybridization between In and Sb and its effects. The
total DOSs of CoSb3 and In0.125Co4Sb12, and partial DOS for Co,
Sb and In atoms indicate that the total DOS of In-filled
In0.125Co4Sb12 near valence band maximum (VBM) and con-
duction band minimum (CBM) mainly stem from Co 3d elec-
trons and Sb 5p electrons (Fig. 3). It can be seen that there is an
extra peak of the partial DOS of Co 3d and Sb 5p electrons near
0.31 eV for In0.125Co4Sb12, which exactly corresponds to the
highest peak of the partial DOS of In 5p electrons. Particularly,
the DOSSb5p/DOSCo3d ratio is decreased near VBM from 2.96 for
CoSb3 to 2.08 for In0.125Co4Sb12 and increased near CBM from
0.20 for CoSb3 to 0.22 for In0.125Co4Sb12. This evolution suggests
that the energy of Sb 5p electrons and Co 3d electrons becomes
closer, and the p–d orbital hybridization between Co and Sb has
thus been enhanced in In0.125Co4Sb12. Experimentally, the XPS
spectra of Co 2p3/2 and 2p1/2 core levels of In-filled CoSb3 are
gradually shifted to higher binding energies (maximum up to
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Figure 2 | The In K-edge XANES spectra of In impurity in CoSb3.

(a) Filling Sb12 icosahedron voids at the 2a sites, (b) substituting for Sb at

the 24g sites, (c) substituting for Co at the 8c sites and (d) simultaneously

filling the icosahedron voids at the 2a sites and substituting for Sb

at the 24g sites. The In K-edge XANES experimental spectra of A0.25 are

plotted for comparison. The XANES theoretical spectra are shown with red

solid lines and symbolized as ‘cal.’. The XANES experimental ones are

shown with black circle lines and symbolized as ‘exp.’.
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Figure 3 | Total DOS and partial DOS near VBM and CBM of CoSb3 and In0.125Co4Sb12. The 2� 2� 2 supercells were calculated using projector-

augmented wave method implemented in CASTEP package based on the density functional theory.
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0.20 eV) as the filling fraction of the In filler increased (Fig. 4).
The chemical shift is less than the energy resolution of XPS
(about 0.47 eV) due to too low filling fraction of the In filler;
however, the chemical shift can be repeated (see Supplementary
Fig. 2) and thus may provide a plausible evidence of enhanced
p–d orbital hybridization between Co and Sb.

To clarify the origin of enhanced p–d orbital hybridization
between Co and Sb in In-filled CoSb3, the partial DOS of In
atoms in the range of � 12B2 eV have been analysed. We
discover that the partial DOS of In 5s electrons are distributed
about 1.0 eV below the Fermi level (see Supplementary Fig. 3).
Therefore, all In 5s electrons are confined at the deep locations of
the valence band and have no contribution to n. Although there
are a few In 5p electrons below the Fermi level, the partial DOS of
In 5p electrons are mainly distributed above and near the Fermi
level, suggesting that the In 5p electrons are almost lost in In-
filled CoSb3. The electronic states of the In impurity clearly show
that the effective charge of the In filler is smaller than, but very
close to, þ 1. Therefore, the electronic configuration of the In
filler is 5s24d105p0, suggesting that the In filler may provide three
unoccupied 5p orbitals for a 5p-orbital hybridization between In

and Sb. This is corroborated by the differential charge density of
In0.125Co4Sb12 projected on the (111) plane (Fig. 5) clearly
showing the 5p-orbital hybridization between In and Sb in In-
filled CoSb3. Therefore, the enhancement in p–d orbital
hybridization between Co and Sb in In-filled CoSb3 must
originate from the 5p-orbital hybridization between In and Sb.
Note that the charge density decreases between Sb and Sb atoms
while it increases between In and Sb atoms for In-filled
icosahedron voids, indicating that the partial charges are
transferred from Sb to In, which are in good agreement with
our previous XPS results27. Namely, the 5p-orbital hybridization
between In and Sb in In-filled CoSb3 can still cause a charge
transfer from Sb to In and produce two types of atomic-scale
electric fields near the In-filled Sb12 icosahedron, which are the
atomic-scale electric fields with positive charge at the framework
of In-filled Sb12 icosahedron and the atomic-scale electric fields
with negative charge in the Sb12 icosahedron. Since the
framework of Sb12 icosahedron acts as the passage of majority
carriers (electrons) in In-filled CoSb3, the atomic-scale electric
fields with positive charge at the framework of In-filled Sb12

icosahedron may accelerate electron movement.

In–Sb weak covalent bond and its effects. The extended XAFS
(EXAFS) analysis reveals that the In–Sb bond length is about
3.35 Å for the A0.2 sample (see Supplementary Fig. 4) and very
close to the value (3.36 Å) reported for In0.2Co4Sb12 (ref. 34),
while it is only about 2.81 Å for InSb43. The longer In–Sb bond
indicates less orbital overlapping and weakened repulsion
interaction between bonding and antibonding states of In–Sb
bond in In-filled CoSb3. Therefore, the In–Sb bond between In
filler and host framework of Sb12 icosahedron must be a weak
covalent bond in In-filled CoSb3, further corroborating the lower
energy of the main peak A3 than that of A2 (Fig. 1). Obviously,
the In fillers can rattle inside the voids and cause heat-carrying
phonon-localized resonant scattering, thereby remarkably
reducing kL.

The temperature dependences of kL values for CoSb3 and In-,
Ba- and Ga-filled CoSb3 (Fig. 6) show that kL value at 300 K is
only about 5.16 W m� 1 K� 1 for In0.08Co4Sb12 and 3.75 W m� 1

K� 1 for In0.18Co4Sb12 while more than 10 W m� 1 K� 1 for
CoSb3. The kL values of In0.08Co4Sb12 are smaller than those of
Ba0.09Co4Sb12 in the range of 300–650 K, suggesting that the In
filler is more effective in reducing kL than Ba at a comparable
filling fraction. The kL values of In0.08Co4Sb12, however, are
significantly greater than those of Ga0.09Co4Sb12 in the range of
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300–800 K, suggesting different doping behaviour in CoSb3

between In and Ga. The lower kL values of Ga0.09Co4Sb12 are
due to the additional defect scattering induced by the Sb-
substitutional Ga, because Ga impurties in CoSb3 were thought to
simultaneously occupy both the icosahedron voids and the Sb
sites32.

Discussion
The n values of In0.18Co4Sb12 are almost the same as those of
Ba0.09Co4Sb12 in the range of 100–300 K (Fig. 7), clearly
indicating that the In filler provides one electron and is univalent
(Inþ ) in In-filled CoSb3 because the Ba filler provides two
electrons in Ba-filled CoSb3. The electronic structure of the In
filler described above not only is the physical mechanism of low n
for In-filled CoSb3, but also may reasonably explain why the n
values of In0.18Co4Sb12 and Ba0.09Co4Sb12 are very close in the
range of 100–300 K. At the same time, the charge transfer from Sb
to In in In-filled CoSb3 must produce the same amount of
atomic-scale electric fields with positive charge at the framework
of In-filled Sb12 icosahedron; therefore, the major carriers
(electrons) nearby the In-filled Sb12 icosahedron are not only
partially annihilated but also accelerated because of the attraction
by the atomic-scale electric fields with positive charge. These
multi-functional local transport effects may explain that the In-
filled CoSb3 has higher mH than those of Ba-filled and Ga-filled
CoSb3 in the range of 100–300 K under comparable n values
(Fig. 8). As a result, the In-filled CoSb3 have higher s than Ba-
and Ga-filled CoSb3 in the range of 150–800 K, although their n
values are very close (Fig. 9), which can be attributed to an
increase in mH induced by accelerated electron movement nearby
the In-filled Sb12 icosahedron. Compared with Ba- and In-filled
CoSb3, the lower mH of Ga-filled CoSb3 in the range of 10–100 K
may be reasonably explained by the dual-site occupancy of Ga
impurity in CoSb3 (ref. 32). In addition, the mH values of Ba- and
In-filled CoSb3 share similar temperature dependence in the
range of 10–300 K (Fig. 8), implying that the electron scattering
mechanisms are the same for both cases and there is thus no case
of In occupying at the Sb sites. This is well consistent with the
XANES results as shown in Fig. 2.

The enhancement of the p–d orbital hybridization between Co
and Sb induced by the In filler still provides a more reasonable

explanation for the band structure of In0.125Co4Sb12. Compared
with CoSb3 (see Supplementary Fig. 5), the Fermi level of
In0.125Co4Sb12 is migrated into conduction bands and the energy
gap between the Fermi level and CBM at H, N and P points with
high symmetry is significantly decreased from 0.45B0.35 eV for
CoSb3 to 0.12B0.03 eV for In0.125Co4Sb12. As a result, the DOS of
VBM is significantly decreased while the DOS of CBM is
remarkably increased. Namely, there is an asymmetric distribu-
tion of DOS near the Fermi level of In-filled CoSb3 beneficial to
obtaining a large a. Such a DOS asymmetric distribution may
very well explain why the absolute a values of In-filled CoSb3
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are higher than those of n-type Ba-, Sr-, Yb- and Nd-filled
CoSb3, with similar n on the order of 1019 cm� 3 at room
temperature25,44–49, as shown in Fig. 10. The a values at 300 K
reached 259 mV K� 1 for In0.08Co4Sb12 with 3.5� 1019 cm� 3 and
198mV K� 1 for In0.18Co4Sb12 with 9.4� 1019 cm� 3. Obviously,
the large a values of In-filled CoSb3 originate from the increase in
DOS of CBM near the Fermi level due to enhanced p–d orbital
hybridization between Co and Sb induced by the In filler.

Therefore, the perfect combination of low kL, high s and large
a for In-filled CoSb3 originates from the following physical and
chemical mechanisms. First, the low kL is due to the heat-carrying
phonon-localized resonant scattering induced by In-filler rattling.
Second, the high s is attributed to the accelerated electron
movement induced by the charge transfer from Sb to In. Third,
the large a benefits from the increase in DOS of CBM near the
Fermi level induced by the enhanced p–d orbital hybridization
between Co and Sb. The 5p-orbital hybridization between In and
Sb in In-filled CoSb3 can cause a charge transfer from Sb to In
and the enhancement of p–d orbital hybridization between Co
and Sb. The fundamental origin of low n of In-filled CoSb3 is that
all 5s electrons of the In filler are confined at the deep locations of
the valence band. The low n and asymmetric distribution of DOS
near the Fermi level provide a favourable condition for adjusting
s and a of In-filled CoSb3 in an independent way.

Methods
Synthesis and characterization. In-filled InxCo4Sb12 (x¼ 0.1, 0.2 and 0.25) bulk
materials were prepared by a combination of melting, annealing and spark plasma
sintering reported elsewhere25. Another three bulk materials (CoSb3, Ba0.1Co4Sb12

and Ga0.1Co4Sb12) were prepared with the same method for comparsion. X-ray
diffraction (PANalytical X’ Pert PRO) and scanning electron microscope analysis
confirmed that all the annealed samples InxCo4Sb12 (x¼ 0.1, 0.2 and 0.25) were
composed of single-phase skutterudite, while all the quenched samples consisted of
Sb, CoSb, CoSb2 and InSb. Chemical compositions of all the bulk materials were
determined by electron probe microanalysis (EPMA, JXA-8230). XANES and
EXAFS of quenched In0.2Co4Sb12 and annealed InxCo4Sb12 samples were measured
under a working voltage of 3.5 GeV and a working current of 300 mA at BL14W1
beamline in the Shanghai Synchrotron Radiation Facility (SSRF). A Si (311)
double-crystal monochromater with energy resolution of 0.5� 10� 4 eV@10 keV
was employed to measure In K-edge spectra. All XANES and EXAFS spectra were
measured three times to ensure reproducibility. The In K-edge XANES spectra of
InSb and the In metal were also recorded for comparison. XPS of Co 2p3/2 and 2p1/

2 core levels were recorded at pass energy of of 25 eV, step size of 0.05 eV and 128
scans with Thermo VG Multilab 2000 spectrometer.

Transport measurement. The s and a values were measured with the standard
four-probe method (UlvacRiko: ZEM-3) in Ar atmosphere. The k was calculated
using the equation k¼DrCp, where Cp is the specific heat capacity, r the bulk
density and D the thermal diffusion coefficient. D was measured by a laser flash

technique (Netzsch LFA 427) in a flowing Ar atmosphere, Cp with a TA Q20
differential scanning calorimeter and r by Archimedes method. kL was obtained by
subtracting the electrical contribution from k using the equation kL¼ k�kE. kE is
expressed by the Wiedemann–Franz kE¼ sLT, where L is the Lorenz number.
Uncertainties are ±5–7% for s and kL, and ±5% for a. The n and mH were
measured under 10–300 K with Quantum Design PPMS.

Theoretical calculation. The K-edge XANES theoretical spectra of In impurity at
four kinds of crystallographic sites (2a, 24g, 8c and 2a–24g) in CoSb3 were cal-
culated with the self-consistent multiple-scattering theory based on real-space
clusters implemented in FEFF9 package50. The In K-edge EXAFS experimental
spectra were first normalized and background subtracted to obtain the k-weighted
spectra, and then Fourier transformed to obtain the length of the In–Sb bond. The
DOSs, band structure and differential charge densities projected on the (111) plane
of CoSb3 and In0.125Co4Sb12 using a 2� 2� 2 supercell were calculated using a
projector-augmented wave method implemented in CASTEP package based on the
density functional theory51. Lattice relaxation and structural optimization were
carried out through total energy calculations.
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