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Abstract

The ability to consistently detect cell-free tumor-specific DNA in peripheral blood of patients with 

metastatic breast cancer provides the opportunity to detect changes in tumor burden and to 

monitor response to treatment. We developed cMethDNA, a quantitative multiplexed methylation-

specific PCR assay for a panel of ten genes, consisting of novel and known breast cancer 

hypermethylated markers identified by mining our previously reported study of DNA methylation 

patterns in breast tissue (103 cancer, 21 normal on the Illumina HumanMethylation27 Beadchip) 

and then validating the 10-gene panel in a TCGA breast cancer methylome database. For 

cMethDNA, a fixed physiological level (50 copies) of artificially constructed, standard non-human 

reference DNA specific for each gene is introduced into in a constant volume of serum (300 μl) 

prior to purification of the DNA, facilitating a sensitive, specific, robust and quantitative assay of 
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tumor DNA, with broad dynamic range. Cancer-specific methylated DNA was detected in 

Training (28 normal, 24 cancer) and Test (27 normal, 33 cancer) sets of recurrent Stage 4 patient 

sera with a sensitivity of 91% and a specificity of 96% in the test set. In a pilot study, cMethDNA 

assay faithfully reflected patient response to chemotherapy (N = 29). A core methylation signature 

present in the primary breast cancer was retained in serum and metastatic tissues collected at 

autopsy 2–11 years after diagnosis of the disease. Together, our data suggest that the cMethDNA 

assay can detect advanced breast cancer, and monitor tumor burden and treatment response in 

women with metastatic breast cancer.
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INTRODUCTION

Recent developments have shown that circulating cell-free DNA in blood offers a very 

convenient, noninvasive, and repeatable “liquid biopsy”, thus providing a reliable template 

for assessing molecular markers that reflect tumor burden. Several DNA methylation studies 

have suggested clinical prognostic and/or predictive utility of methylated biomarkers for 

predicting outcome and monitoring treatment of breast cancer. DNA methylation is one of 

the earliest, most robust, and frequent alteration in cancer, leading to silencing of expression 

of tumor suppressor genes (1). Methylation of a tumor suppressor gene allele can act as an 

inactivating ‘hit’, having a similar function as a genetic mutation or deletion. As examples, 

BRCA1 (breast, ovarian), PTEN (ovarian), HRK (prostate), APC (colorectal), and RASSF1A 

(multiple cancer cell types) have been found both methylated and mutated in cancer. 

Methylated RASSF1A and APC, identified in serum DNA from breast cancer patients, were 

associated with a worse outcome (2). RASSF1A and NEUROD1 were shown to be useful for 

monitoring the efficacy of adjuvant therapy in breast cancer patients (3, 4). Other 

biomarkers such as p16INK4A, CDH1, DAPK11, HIC1, RARB, CDH13, ESR1, GSTP1, have 

been evaluated alone or in combination in serum [reviewed in (5)]. However, a reproducible 

blood-based test for hypermethylated genes for diagnosis and follow-up of breast cancer has 

yet to be incorporated into a clinical laboratory assay. Discovery of new markers, as well as 

improvements in existing technologies are needed in order to provide more robust, 

reproducible, quantitative, sensitive and specific assays.

Here we report the identification of novel methylated breast cancer genes as well as a robust 

serum/plasma-specific modified QM-MSP assay called cMethDNA, which enhances the 

methylation signal, while maintaining the high sensitivity, specificity, reproducibility, 

dynamic range and quantitative advantages of the standard QM-MSP assay (6–10). We 

balanced several criteria to select ten biomarkers that were simultaneously, 1) highly and 

frequently methylated in breast tumor tissues (11), and in serum from metastatic breast 

cancer patients and, 2) methylated at low levels in cell-free circulating serum DNA in 

normal individuals. Following validation of the 10 gene panel in the TCGA (The Cancer 

Genome Atlas project) breast cancer methylome database, we developed and tested serum-

specific prediction models, in test and training sets of sera from Stage 4 metastatic breast 
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cancer. cMethDNA identified 91% of sera in patients with recurrent metastatic breast 

cancers with a specificity of 96% (AUC = 0.994, p < 0.0001) in the test set. Methylation 

levels reflected response to treatment, and circulating tumor DNA revealed a similar pattern 

of methylation as the solid tumor. We conclude that the cMethDNA assay performed on the 

10 gene panel shows great potential for development as a clinical laboratory test for 

monitoring therapy and disease progression/recurrence.

MATERIALS AND METHODS

Patients and Sample Collections

Whole blood and tissue were collected prospectively from women with Stage 4 metastatic 

breast carcinoma following disease recurrence after prior therapy [Training set: J0214, 

NCT00080665 (12)], and J0425, NCT00274768 collected at JH 2004–2008; Test set: J0524, 

TBCRC 005 collected 2004–2012], as well as from healthy controls (randomly divided into 

training and test sets: TBCRC 005). To evaluate concordance between sera and tissue, tissue 

were obtained from a subset of cancer patients in the training set, along with additional 

samples collected at diagnosis of de novo metastatic disease (TBCRC 013 collected at 

participating institutions from 11/2009–4/2012). All the samples were collected with 

appropriate approval from the various institutional review boards. Supplementary Methods 

has additional details. Patient characteristics are summarized in Table 1 and Supplementary 

Table 1.

Purification of Cell-free Circulating DNA

DNA extraction from serum was tested using three different serum DNA purification kits: 

QiaAmp MinElute Virus Spin Kit (ME; Qiagen), QiaAmp UltraSens Virus Kit (US; 

Qiagen), and Quick-gDNA MiniPrep (ZR; Zymo Research, Orange, CA). The MinElute 

method was then selected for use in the study because of superior performance. External 

recombinant gene-specific standards (STDgene; 50 copies per gene for up to 12 genes) and 

carrier DNA/RNA [250 ng salmon sperm (Life Technologies, Grand Island, NY), 250 ng 

tRNA (Roche Applied Science, Indianapolis, IN), and 5.6 μg “Carrier RNA” (Qiagen, 

Valencia, CA)] were added to each serum sample (300 μl), and cell-free DNA was extracted 

per manufacturer’s instructions. Extracted DNA was then modified with sodium bisulfite, 

cleaned and eluted in 15 μl of water according to the EZ DNA Methylation Kit protocol 

(Zymo Research). Supplementary Methods has detailed protocols.

Extraction of tissue DNA

Tissue DNA was extracted overnight at 56°C in buffer containing TNES (10 mM Tris, 150 

mM NaCl, 2 mM EDTA, 0.5% SDS) and proteinase K (30 μg), heat inactivated 10 min at 

90°C, then treated with sodium bisulfite as described previously (11, 13).

DNA Methylation Array

Details are presented in Supplementary Methods.
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The cMethDNA assay

cMethDNA was performed in two sequential PCR reactions (Fig. 1A). PCR reaction #1 

(Multiplex Reaction): DNA was isolated from 300 μl serum containing 50 copies of each 

STDgene DNA, bisulfite treated, and amplified with a cocktail of external DNA-specific 

primer pairs specific for each of the 10 genes. Reaction #1 was then diluted 1:500–1:50,000. 

PCR reaction #2 (Real-time qMSP): Diluted amplicons (4 μl) from Reaction #1 were 

amplified by real-time PCR, with the TARGETgene and reference STDgene in the same 

well. Patient samples were purified, assayed in duplicate, and results averaged. Detailed 

information is available in Supplemental Methods.

Calculation of Methylation

For an individual serum sample, cMethDNA calculations were as follows: Methylation 

Index (MI) = [Methylated TARGETgene copies/(Methylated TARGETgene + STDgene) 

copies](100); and cumulative methylation index (CMI) = the sum of all MI values within the 

gene panel. Serum samples were assayed in duplicate and then results were averaged. For an 

individual sample, QM-MSP calculations: % Methylation (%M) = [Methylated 

TARGETgene copies/(Methylated TARGETgene + Unmethylated TARGETgene) copies]

(100); CMI = the sum of all %M values within the panel.

Statistical Analysis

cMethDNA data analyses were performed using GraphPad Prism version 5.0 (GraphPad 

Software, San Diego, CA), SAS software (v 9.2, SAS Institute Inc., Cary, NC), or with R 

version 2.15.2 (2012-10-26). Statistical tests were two-sided and considered statistically 

significant at p < 0.05 unless otherwise stated. Distributions of cMethDNA data between 

independent groups were described using box plots and difference was tested using 

nonparametric Mann-Whitney test. The Wilcoxon signed-rank test was performed when 

comparing two related samples (e.g., measurements on the same subjects). Receiver 

Operating Characteristic (ROC) analyses were used to characterize performance and define 

laboratory thresholds. The performance of the 10-gene panel was characterized through 

estimating the area under the ROC curve (AUC), sensitivity, specificity, classification 

accuracy and likelihood ratio along with the 95% confidence intervals. Details of statistical 

analyses can be found in Supplementary Methods.

RESULTS

Whole genome methylation array

For the selection of the 10 gene panel used in the cMethDNA assay, we relied heavily on 

our previously published whole genome analysis of breast tissue DNA (N = 103 tumors, N = 

21 normal breast samples, Infinium Human Methylation27K Beadchip) (11), along with data 

generated in a new array analysis of DNA methylation in serum [N = 6 recurrent metastatic 

breast cancer sera, N = 5 normal sera, N = 4 leukocyte pools (5 normal individuals per 

pool)]. For identifying candidate markers in primary breast tissue, we serially selected: 1) 

8376/27,578 probes with SD > 0.100 between tumor tissues and probe detection p-values < 

0.0001, 2) 2674/8376 probes having at least 1.5-fold higher mean methylation in tumors 
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than in normal breast organoids, and, 3) 1752/2674 probes with β-methylation < 0.15 in 

normal breast tissue adjacent to tumor (N = 6, laser microdissected). We further filtered this 

pool of candidate markers on the basis of data generated in sera, choosing, 4) 212/1752 

probes ≥ 2.0-fold more methylated in cancer serum than in normal serum, and 198/212 

probes with β-methylation < 0.15 in individual serum samples.

The final 10-gene marker panel was chosen by careful inspection of the 198 probes, 

prioritizing probes that combined very low methylation in normal samples with frequent and 

high levels of methylation in both ER+ and ER-negative cancers. Eighteen of these probes 

were present among a set of 100-candidate recurrence markers identified previously in the 

tissue DNA methylation array (11). Among these were seven novel markers (AKR1B1, 

COL6A2, GPX7, HIST1H3C, HOXB4, RASGRF2, and TM6SF1) and two known ones, 

ARHGEF7, and TMEFF2. RASSF1 was selected to complete the 10-gene marker panel 

(Supplementary Table 2; Supplementary Figures 1A and 2).

The 10-gene methylation panel was verified in silico for sensitivity and specificity in The 

Cancer Genome Atlas Project databases (TCGA, N = 316 breast cancer, N = 27 normal 

breast samples, BRCA; Supplementary Figure 1B), and subsequently verified in sera using 

the cMethDNA assay. The 10-probe test panel outperformed 97.9% of 100,000 iterations of 

randomly created 10-probe panels drawn from the TCGA database (Supplementary Figure 

1C).

cMethDNA assay

The cMethDNA assay is a refinement of the QM-MSP method used extensively by our 

laboratory and others (6, 7, 9, 10, 14). Here, a low fixed physiological level of recombinant 

gene-specific standard reference DNA is introduced into a constant volume of serum (50 

copies of gene-specific standard in 300 μl serum) prior to purification of the DNA. This 

fixes a relatively high constant ratio of methylated DNA to reference DNA, quantified after 

multiplex and quantitative real-time PCR. Primer/probe sequences are in Supplementary 

Table 3.

Technical validation of the cMethDNA assay

Intra-Assay Testing—To directly compare the QM-MSP and cMethDNA assays, DNA 

from recurrent metastatic breast cancer patient sera was tested by both methods for the 

RASSF1A gene (Fig. 1B). The robustness of methylation values and frequency of detection 

of hypermethylated RASSF1A was higher with cMethDNA compared to the QM-MSP assay 

(p = 0.008, Wilcoxon signed-rank test). In a second experiment, 6 aliquots of serum from a 

single normal donor (300 μl serum per assay point) were spiked with a physiological range 

(0, 50, 200, 800 or 3200 copies) of fully methylated DNA from the breast cancer cell line, 

MDA-MB-453. DNA was purified, multiplexed and tested by both cMethDNA and QM-

MSP methods for the 10-gene panel (excluding HIST1H3C, which is not methylated in this 

cell line) (Fig. 1C). Again, the cMethDNA assay reported significantly higher methylation 

than the QM-MSP method at all levels (50 copies, p = 0.008; 200 copies, p = 0.006; 800 

copies, p = 0.006; 3200 copies, p = 0.004, one-sided t test, permuted) (Fig. 1C).
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Reproducibility of replicates, comparison of extraction methods—We performed 

a series of tests to establish linearity and sensitivity of the cMethDNA assay. Three different 

serum DNA extraction methods were evaluated (MinElute Virus Kit, Qiagen, UltraSens 

Virus Kit, Qiagen and Quick-gDNA Prep, Zymo Research). Methylated DNA was spiked as 

described above (Fig. 1C); six replicates per point per extraction method were tested by 

cMethDNA (Fig. 2A–C). The MinElute Virus Spin Kit method showed the highest 

reproducibility and the smallest inter-assay coefficients of variation (CV = 29%, 12%, 4.6%, 

2.5%, for 50, 200, 800 or 3200 methylated DNA copies, respectively, Supplementary Table 

4).

Inter-User Reproducibility—The ability for two individuals to perform the cMethDNA 

assay and to arrive at similar results is important. For the 10-gene panel cumulative 

methylation levels obtained by two users were compared after independently extracting 

DNA and performing the cMethDNA assay on duplicate aliquots of patient cancer sera (N = 

13). The inter-user reproducibility, tested for intra-class correlation coefficient showed 

strong agreement between users (ICC = 0.99; 95% CI = 0.96–1.00; Fig. 2D).

In summary, the cMethDNA approach results in an enhanced methylation signal, minimizes 

the effects of technical variability in purification of DNA, and since it uses spiked DNA as a 

standard, is not affected by potential day-to-day fluctuations in total serum DNA content 

that may be independent of changes in the tumor burden.

Detection of methylated DNA in serum of metastatic breast cancer patients

Assay specificity—To verify the performance of the 10-gene marker panel in the 

cMethDNA assay for detection of circulating cell-free tumor DNA, we evaluated 

independent Training and Test sets of sera collected in prospective clinical trials of patients 

with recurrent stage IV breast cancer conducted at Johns Hopkins and through the TBCRC. 

The Training set consisted of 52 serum samples (28 normal and 24 cancer). Sera from 

cancer patients had significantly higher levels of methylated genes than women without 

cancer (median CMI = 117.3 and 0.04, respectively; p < 0.0001, Mann-Whitney test; Fig. 

3A–B, Table 2A). Receiver Operating Characteristic (ROC) analyses identified a threshold 

of 6.9 units that maximized the sum of sensitivity and specificity in the Training set (Table 

2B). The assay specificity was 96.4% (27/28, 95% CI = 81.7–99.9%) when sensitivity was 

91.7% (22/24, 95% CI = 73.0–99.0%) for a likelihood ratio = 25.7 and an overall 

classification rate of 94% (49/52, 95% CI = 84–99%). The ROC analysis AUC = 0.95 (95% 

CI = 0.87–1.02; p < 0.0001). These findings were further verified in a Test set of patient 

samples (27 normal, 33 cancer) (Table 1, Supplementary Table 1A). Consistent with 

findings in the Training set, cumulative methylation levels were significantly higher in 

patients with metastatic breast cancer, compared to women without cancer (p< 0.0001, 

Mann-Whitney test; Fig. 3A–B); Table 2A. Using the classification rule derived on the 

training data, the observed assay specificity was 100% (27/27, 95% CI = 87.2–100%) at a 

sensitivity was 90.9% (30/33; 95% CI = 75.7–98.1%) for an overall classification accuracy 

of 95% (57/60, 95% CI = 86–99%) and a likelihood ratio = 24.6 (Table 2B). As in the 

training set, the median frequency of methylation of most genes was high (median = 38%, 

range = 18–67%; Fig. 3C, Table 2C). RASSF1A had the highest incidence of methylation 
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among all genes in both Training and Test sets (75% and 67%, respectively). Individually 

RASSF1A, HIST1H3C, RASGRF2, COL6A2, HOXB4 and AKR1B1 genes had the strongest 

performance in the cMethDNA assay (p = 0.0003 to p < 0.0001, Mann-Whitney Test of 

Training set) (Fig. 3C, Table 2C). A 6-gene panel of the six most robust biomarkers 

performed nearly as well as the 10-gene panel (Supplementary Figure 3). In normal samples, 

no significant age-dependent changes in cumulative methylation were observed (N = 55; 

One-way ANOVA, p = 0.8988 for quartiles; Table 1, Supplementary Table 1, 

Supplementary Fig. 4).

Utility of cMethDNA to monitor response to treatment

To determine if the cMethDNA assay might be used effectively to monitor response to 

chemotherapy, we evaluated sera collected from metastatic breast cancer patients who 

participated in two prospective clinical trials J0214, and J0425 (15). Serum samples (N = 

58) were collected from 29 patients at baseline prior to initiation of treatment, and 18–49 

days (median 21 days) after initiation of a new chemotherapy regimen (Supplementary 

Table 1B). The results showed a statistically significant decrease in median serum DNA 

methylation levels in patients having stable disease (SD) or with a therapeutic response (e.g. 

PR, partial response) according to RECIST criteria (p = 0.010)(Fig. 4A). This decrease in 

methylation was not observed in patients with progressive disease (PD; p = 0.659; Wilcoxon 

signed rank test) (Fig. 4A).

Since a single time point post therapy may have limited potential to predict outcome as 

assessed by imaging several weeks to months later, we evaluated a subset of patients (13 of 

29) with sera collected at three or more time points (total of 54 sera) during different cycles 

of the same therapy (Fig. 4B–G, Supplementary Fig 5, Supplementary Table 1B). Ten of 

thirteen patient sera showed methylation levels reflective of decreases in tumor burden 

during stable disease or partial response, and increasing levels of methylation during 

progressive disease as defined by RECIST criteria. These data show the potential of 

cMethDNA to reveal therapeutic response at an early time point during treatment and 

provide important information for clinicians that could aid decision making regarding 

further therapy.

Patterns of methylation are retained between primary tumor and metastasis

Previously, we observed similarity in the biomarker expression and methylation profiles of 

primary breast cancer and distant metastases collected from individuals within 4 hours of 

death (N = 10; 2–11 years after first diagnosis of breast cancer; age 33 to 79 years) (16). 

With the 10-gene marker panel, a striking concordance was observed between the 

methylated gene patterns in the samples from primary, metastases and serum of the same 

patient (Fig. 5). In this analysis serum was quantified with the cMethDNA assay, and tissues 

were quantified with the QM-MSP assay; Results are plotted on the same Y-axis, although 

cMethDNA is more robust. Comparative analyses indicated >50% of individual patient 

serum/tissue pairs or tissue/tissue pairs were concordant for ≥ 9 markers, and all had ≥ 6 

matches (Supplementary Fig. 6). Since by chance alone, the median number of matches 

predicted is 7 (range = 3–9), based on the overall frequency of the genes evaluated, results 

indicate that methylation profiles were more patient-specific than random. Concordance 
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between serum and primary and/or metastases was also observed in two other independent 

series of samples collected in clinical trials: 1) a subset of patients in the study Training set 

(10 of 24 patients; Table 1, Supplementary Table 1C, Supplementary Fig. 7A), and 2) from 

untreated patients diagnosed with de novo metastatic breast cancer (18 patients; Table 1, 

Supplementary Table 1C, in TBCRC 013, Supplementary Fig. 7B). As in the autopsy study, 

consistent profiles of hypermethylation were observed between the primary tumor, serum 

and distant metastasis samples, even though sera were tested with the cMethDNA method 

and tissues by the QM-MSP method.

Collectively, these studies provide proof of principle that a core pattern of methylation is 

retained in the distant metastasis and serum of a given patient over time, perhaps decades.

Utility of the 10-gene panel to detect other tumor types

Careful analysis and selection of breast cancer markers determined in tissues allowed us to 

build the 10-gene panel, which was later confirmed in serum DNA from patients with 

metastatic breast cancer and validated in the independent TCGA breast cancer methylation 

tissue DNA array database. To determine if an in silico analysis of other cancer tissue 

databases will indicate the potential use of the 10-gene panel for detecting circulating 

methylated markers in other types of cancer, we examined several Infinium 

HumanMethylation27 array databases from TCGA, Supplementary Figure 8A–F). Based on 

ROC analyses, compared to breast (BRCA, AUC = 0.950), the panel performed with a high 

level of efficiency in three other tumor types, including lung (LUNG, AUC = 0.969), colon 

(COAD, AUC = 0.995), and rectum (READ, AUC = 0.997). However, the panel displayed 

poor performance with other tumor types, such as ovarian (OV, AUC = 0.668), kidney 

(KIRC, AUC = 0.725) and stomach (STAD, AUC = 0.792). Thus, the panel, similar to 

breast carcinomas, shows specificity for the highly prevalent lung and colorectal 

adenocarcinomas and may not be useful for others such as ovarian, kidney and stomach 

cancers.

DISCUSSION

We have derived an informative panel of novel gene markers for detecting tumor specific 

circulating, cell-free, methylated DNA in the sera of patients with metastatic breast cancer. 

Using this panel, we have demonstrated broad dynamic range, reproducibility, sensitivity, 

specificity, and accuracy of the cMethDNA assay for detecting methylated DNA in the vast 

majority of patients with newly diagnosed and recurrent Stage 4 breast cancer. We have also 

provided preliminary evidence for the potential of the cMethDNA assay to aid in monitoring 

disease during chemotherapy, and shown that a core methylation pattern typical of each 

primary tumor is retained in the metastatic lesions and serum over a long period of time (2–

11 years). TCGA tumor tissue methylation arrays revealed that this panel of ten markers is 

methylated and likely to perform well to detect a variety of tumor types (i.e. lung, colon, 

rectal, and possibly uterine carcinomas and glioblastomas) and would have less utility for 

other tumors (i.e. ovarian, kidney, stomach). Shortly, planned studies will test the prognostic 

and predictive utility of this assay in an external sample set from larger prospective clinical 

trials.
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The challenge to developing a reliable blood test for cancer has been finding the virtual 

“needle in the haystack” or desired methylated marker in the vast excess of unmethylated 

normal DNA. Our new cMethDNA assay overcomes this barrier by incorporating two 

innovations: First spiking of serum with physiological levels of recombinant standards 

matched to the gene of interest by size and homology at 5′ and 3′ ends that provide an 

internal reference for recovery and quantification of target DNA. Second, the inclusion of a 

multiplexed, pre-amplification step increases the dynamic range of detectability of the target 

gene and enables quantitation of a panel of markers in the amount of DNA normally used to 

evaluate one gene. The use of external standards has a further advantage in that it avoids the 

pitfalls inherent to endogenous reference DNAs, where total DNA may fluctuate up to 15-

fold under healthy conditions independent of tumor burden, such as occurs in exercise 

overtraining (17, 18), trauma (19), surgery (20), sepsis (21), chronic inflammatory diseases 

(22–24), and pregnancy (25, 26).

Features critical to the high sensitivity and specificity of the cMethDNA assay are the 

identification of biomarkers through whole genome analysis of solid tumor and metastatic 

cancer sera, a careful filtration process, and the final selection of a panel of hypermethylated 

genes that were specifically and frequently methylated in breast cancer. Among the cancer-

specific markers in our panel used for detecting cell-free DNA in serum by the cMethDNA 

assay and tissue DNA by QM-MSP, the HOXB4, RASGRF2, AKR1B1, TM6SF1, COL6A2, 

GPX7, HIST1H3C genes are being reported here for the first time in breast cancer. 

Interestingly, HOXB4 also hosts the regulatory region for miR-10a near its genome and is 

hypermethylated in 90% of hepatocellular carcinomas (27). In breast cancer, the cMethDNA 

assay had a classification accuracy of up to 95% that distinguished cancer versus normal 

sera with a sensitivity of over 90% and specificity of nearly 100%, which suggest a potential 

for greater clinical utility compared to CA27.29 (28), CEA (29), CTC (30) and other 

circulating tumor DNA tests (31, 32).

The application of cMethDNA as a non-invasive indicator of tumor burden and therapeutic 

response was tested using samples collected as secondary endpoints from three prospective 

clinical trials of women with metastatic breast cancer that was newly diagnosed or 

progressing after initial palliative chemotherapy. In a pilot study the cMethDNA assay was 

able to detect serum methylation levels that reflected tumor burden based on RECIST 

criteria. In the majority of cases changes in methylation tracked with disease progression. 

Investigations of sera during subclinical stages of breast cancer recurrence (adjuvant 

surveillance) are also needed. While imaging studies (in addition to clinical assessment) are 

the current standard to evaluate response after 8–12 weeks of initiating a new systemic, tests 

to monitor disease prognosis and predict therapy benefit earlier remain an unmet need. An 

ongoing trial, SWOG 0500, (NCT00382018) is evaluating the role of enumerating 

circulating tumor cells (CTC) in this setting, but may be hampered by the low sensitivity of 

that commercial assay. The cMethDNA assay appears to be promising in this setting, and we 

are embarking on a comparative analysis of the prognostic and predictive utility of 

cMethDNA, CA27.29, CEA and CTC, using prospectively collected serum to predict 

response to therapy in metastatic breast cancer. Investigations of sera obtained during the 

subclinical stages of breast cancer recurrence (adjuvant surveillance) are also needed.
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In summary, the cMethDNA assay is a promising new liquid biopsy tool for detecting tumor 

specific cell free circulating DNA in a noninvasive manner. With further refinement, it could 

serve to monitor response to therapy, potentially prognosticate disease outcome, and serve 

as an early indicator of tumor recurrence.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. The cMethDNA Assay
A) Reference DNA (50 copies of each gene-specific standard; STD) was spiked into 300 μl 

serum and total DNA was purified. Nested PCR was performed where the first PCR reaction 

(STEP 1) contained one pair of external primers per gene (forward and reverse) that co-

amplifies DNA from the gene of interest (TARGETgene) and the gene-specific standard 

(STDgene). In the second PCR reaction (STEP 2), amplicons of Step 1 are assayed by 

absolute quantitative real-time PCR with specific sets of primers (forward and reverse) and 

hydrolysis probes (in two colors) recognizing methylated TARGETgene or reference 
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STDgene. B) RASSF1A methylation in QM-MSP and cMethDNA methods was compared 

by testing the same aliquot of multiplexed DNA from twelve metastatic breast cancer patient 

sera. Significantly higher methylation values are seen by the cMethDNA assay compared to 

the QM-MSP method (p = 0.008; Wilcoxon signed-rank test). C) Cumulative methylation as 

assessed by QM-MSP and cMethDNA methods was compared by testing 6 replicate sets of 

normal serum spiked with increasing number of copies of MDA-MB-453 cell line DNA (X-

axis; permuted one-sided t test p-values).
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Figure 2. cMethDNA Assay Validation
A–C) Three serum purification methods (Qiagen MinElute, Qiagen Ultra Sens, and Zymo 

Research Quick g-DNA) were tested in conjunction with the cMethDNA method in normal 

serum aliquots spiked with 0–3200 methylated copies, prepared from one master stock. 

Replicates were purified and multiplexed separately. Box-Whisker plots show the median 

and full range of CMI (Y-axis) for replicates of each sample (X-axis). Statistical 

significance (Mann-Whitney test) is indicated by p-values. The % coefficient of variation 

(CV, a normalized measure of frequency distribution) is shown for each test in 

Supplementary Table 4. D) Inter-user reproducibility was evaluated for a set of thirteen 

patient serum samples processed independently by two investigators. User performance was 

evaluated for the 10-gene panel (Intra-class correlation coefficient = 0.99, 95% CI = 0.96–

1.00).
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Figure 3. Evaluation of the 10-gene panel by cMethDNA assay
Serum from patients with recurrent metastatic stage IV disease were assigned to Training 

and Test sets. A) Box plot shows that cancer sera display significantly higher median 

cumulative methylation than normal sera (p< 0.0001. Mann-Whitney). B) Cumulative 

cMethDNA assay values (CMI; Y-axis) were calculated for individual samples, each 

colored segment representing the methylation index for an individual gene. ROC analysis 

was performed on data collected from the Training set to define a normal laboratory 

methylation threshold (CMI = 7 units; Y-axis). C) Frequency of methylation for individual 

biomarkers in the 10-gene panel.

Scatter plot depicts gene methylation intensity (Y-axis, methylation index) for individual 

genes (X-axis) in the Test set for normal and cancer sera, indicated in the legend. The Mann-

Whitney p-values are shown below each plot. Statistical analysis of Training and Test sets 

for the 10-gene panel and the methylation frequency of individual genes is shown in Table 

2.
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Figure 4. Monitoring response to treatment
A) cMethDNA was performed on serum samples obtained from metastatic breast cancer 

patients at baseline (Pre) and after 18–49 days of therapy (Post). Data are plotted according 

to CMI in individual patients judged by RECIST criteria to have stable/responsive disease or 

progressive disease after 8–12 weeks. Pre- and post- difference in CMI was evaluated using 

Wilcoxon signed-rank test. B–G): Representative plots of CMI of patient (ST#) sera 

assessed by cMethDNA during the course of treatment. Patients received either 28 day 

cycles of docetaxel or 21 day cycles of capecitabine, indicated by shading. C: cycles of 

treatment; Imaging- and RECIST criteria- assessed progressive disease: PD; stable disease: 

SD; and partial response: PR.
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Figure 5. Preservation of methylation patterns in primary tumor, serum, and distant metastases 
of individuals
Specific gene methylation pattern (Y-axis) of the 10-gene panel was evaluated in primary 

tumor, multiple metastatic lesions and serum (X-axis) collected from 10 women at autopsy. 

The interval between surgery when primary tumor tissue was collected, and death when 

serum and metastases were collected, is indicated below the patient ID (2–11 years).
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Table 1

Patient characteristics

Patient characteristics - Metastatic Breast Cancer Recurrent De Novo

A. Stage IV serum Training set Test set TBCRC 013

Patient characteristics n = 24 n = n = 18

Race

 Caucasian 17 23 13*

 Black 6 10 2

 Other 1 0 3

ECOG performance status

 0 17 22 7

 1 7 9 11

 2 0 2 0

Location of disease:

 Visceral 4 5 4

 Non-visceral 11 8 7

 Both 19 20 7

Receptor status:

 ER/PR-positive, HER2-negative 12 17 9

 HER2-positive 6 10 8

 Triple-negative (ER,PR,HER2 negative) 6 6 1

No. treated with prior chemotherapy for metastatic 11 10 0

No. prior chemotherapy regimens for metastatic disease:

 0 13 23 18

 1 3 1 0

 2 6 4 0

 3 1 3 0

 ≥ 4 1 2 0

Age:

 Median 53.5 57.0 54

 Range 28–73 29–78 21–73

B. Normal serum Training set Test set

Patient Characteristics n = 28 n =

Race:

 Caucasian 16 12

 Black 11 15

 Other 1 0

Age:

 Median 42.5 40.0

 Range 21–59 20–63

*
Includes 1 Hispanic, 12 non-Hispanic
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