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Abstract

Recent genetic studies have identified common variation in susceptibility loci that stratify lifetime 

risks of breast cancer and may inform prevention and screening strategies. However, whether 

these loci have similar implications for women treated with tamoxifen or raloxifene (SERMs) is 

unknown. We conducted a matched case–control study of 592 cases who developed breast cancer 

and 1,171 unaffected women from 32,859 participants on SERM therapy enrolled on NSABP P-1 

and P-2 breast cancer prevention trials. We formed a quantitative polygenic risk score (PRS) using 

genotypes of 75 breast cancer-associated single nucleotide polymorphisms and examined the PRS 

as a risk factor for breast cancer among women treated with SERMs. The PRS ranged from 3.98 to 

7.74, with a one-unit change associated with a 42 % increase in breast cancer (OR = 1.42; P = 

0.0002). The PRS had a stronger association with breast cancer among high-risk women with no 

first-degree family history (OR = 1.62) compared to those with a positive family history (OR = 

1.32) (Pintx = 0.04). There was also suggestion that PRS was a stronger risk factor for ER-positive 

(OR = 1.59, P = 0.0002) than ER-negative (OR = 1.05, P = 0.84) breast cancer (Pintx = 0.10). 

Associations did not differ by tamoxifen or raloxifene treatment, age at trial entry, 5-year 

predicted Gail model risk or other clinical variables. The PRS is a strong risk factor for ER-

positive breast cancer in moderate to high-risk individuals treated with either tamoxifen or 

raloxifene for cancer prevention. These data suggest that common genetic variation informs risk of 

breast cancer in women receiving SERMs.
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Introduction

Primary prevention of breast cancer remains a major goal for reducing the burden associated 

with this disease. Two large breast cancer prevention trials of selective estrogen receptor 

modulators (SERMs) including the National Surgical Adjuvant Breast and Bowel Project 

(NSABP) P-1 placebo-controlled trial of tamoxifen [1] and double-blind NSABP P-2 trial 
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comparing raloxifene to tamoxifen, showed that these agents reduce the risk of breast cancer 

among women with a 5-year predicted breast cancer risk of at least 1.66 by 50 % after five 

years of therapy [2]. Follow-up of the P-2 trial at a median exposure of 81 months suggested 

that long-term raloxifene use was 76 % as effective for preventing invasive disease, but had 

less toxicity than tamoxifen [3]. Thus, both tamoxifen and raloxifene are viable prevention 

strategies for women at high risk of breast cancer [4].

Almost 80 confirmed common genetic susceptibility loci for breast cancer have been 

identified to date [5–20]. Taken together, these validated loci are estimated to explain up to 

14 % of familial breast cancer risk [5]. Two recent studies showed that a polygenic risk 

score (PRS) composed of 76–77 of these genetic loci can identify individuals at increased 

breast cancer risk in the general population [21, 22]. Specifically, those at highest risk by the 

PRS had a 1.8-fold increased risk for breast cancer relative to the second quartile of PRS, 

and those in the lowest quartile had a reduced risk (0.6 fold) of breast cancer [21]. The PRS 

association with breast cancer was stronger among those with ER-positive compared to ER-

negative disease and effectively stratified breast cancer risk in women both with and without 

a family history of breast cancer [22].

It is not clear, however, whether these common genetic variants will also be risk factors for 

breast cancer among high-risk women treated with SERMs for breast cancer prevention, 

given the large risk reduction associated with SERMs. We present the first report to evaluate 

a comprehensive set of 75 established breast cancer susceptibility loci, in the context of a 

PRS, as a risk factor for breast cancer among high-risk women from NSABP P-1 and P-2 

trials taking raloxifene and tamoxifen for breast cancer prevention. We also examined 

whether the influence of the PRS on breast cancer differs by type of SERM, extent of family 

history, ER-positive compared to ER-negative breast cancer, and other clinical 

characteristics.

Methods

Study populations

The study population consisted of a nested case–control sample within the NSABP P-1 and 

P-2 trials [23] including 596 breast cancer cases who developed breast cancer while on 

SERM therapy and 1,171 matched controls selected from the 32,859 participants enrolled in 

P-1 and P-2 breast cancer prevention trials. Controls were matched to cases on trial and 

treatment arm (P-1 tamoxifen, P-2 tamoxifen, P-2 raloxifene), age at trial entry, categories 

of 5-year predicted breast cancer risk based on the Gail model [24], history of lobular 

carcinoma in situ, history of atypical hyperplasia, and time on study (controls on study at 

least as long as the matched breast cancer case) (Table 1) [23]. Each study obtained 

informed consent and had ethics and institutional approvals.

Genotyping

The genotypes of 75 published breast cancer single nucleotide polymorphisms (SNPs) 

(Supplementary Table 1) were obtained from a genome-wide association study (GWAS) of 

cases and controls. Genotyping was performed by the RIKEN Center for Integrative Medical 
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Science using the Illumina Human610-Quad BeadChip and genotypes are currently 

available through dbGAP (dbGaP Study Accession number is phs000305.v1.p1) [23, 25]. 

Four cases were ineligible due to low DNA quantity (n = 2) or quality (n = 2) for a total of 

592 cases for GWAS analyses. Imputation was performed using Beagle and all samples 

from the version 2 of the 1000 Genomes data May 2011 [26] as a reference [27]. Of the 77 

SNPs previously shown associated with breast cancer [5–20] (Supplementary Table 1), 75 

were available and used to form the PRS. Of these, genotypes on 36 SNPs were imputed and 

had a quality score r2 > 0.4, with the majority (n = 33 of 36) above r2 > 0.8.

Statistical methods

The PRS was created using per allele odds ratios from the SNP associations with overall 

breast cancer (Supplementary Table 1) [5–20]. The PRS represented the combined effect of 

the 75 SNPs, regardless of departures from a multiplicative model, because there has been 

no evidence seen for SNP by SNP interactions [28]. Specifically, the log OR for each SNP 

was multiplied by the number of risk alleles and summed to generate a unique PRS for each 

person in the dataset [29]. For missing genotypes (0.05 %), the SNP was locally imputed 

within a 20 Mb region around the SNP, using Beagle v3.3.1 and 1000 Genomes, version 2 

[26, 27]. The PRS approximated a normal distribution, and was included as a continuous 

measure (per one unit) in the conditional logistic regression risk model. For ease of 

presentation, the PRS score was also divided into quintiles based on the distribution among 

controls. Associations of PRS with breast cancer were examined with conditional logistic 

regression, accounting for the matched design.

Tests for differential associations of PRS by prevention agent (raloxifene vs. tamoxifen), 

family history (1 or more 1st degree relatives vs. 0 relatives), age at trial entry (<55 vs. ≥55), 

predicted 5-year risk based on the Gail model (<3.01 vs. ≥3.01 %), hysterectomy (no/yes), 

atypical hyperplasia (no/yes), and lobular carcinoma in situ (LCIS) (no/yes), with breast 

cancer were tested by creation of an interaction term between each covariate and the main 

effect of PRS. For ER-receptor status, age at onset (<55, 55–64, 65+) and type of breast 

cancer (ductal carcinoma in situ (DCIS) vs. invasive), we stratified cases (and their matched 

controls), fit conditional logistic regression models within each strata, and compared the 

odds ratios across strata by taking the difference in log OR, and dividing by the square root 

of the sum of the variances.

Results

Table 1 shows the characteristics of the cases and controls. There were 139 women with 

DCIS and 453 women with invasive breast cancer; 69 % of the invasive cases were ER-

positive, 26 % were ER-negative, and 5 % had unknown ER status. A quarter of sample was 

less than age 55 at trial entry and over two-thirds had a five-year predicted risk score of 

greater than 3 % by the Gail model, indicative of a population at greater than average risk. 

Matching was successful on all variables (Table 1).

The PRS based on 75 variants ranged from 3.98 to 7.74, with a median of 5.61. A one-unit 

change in PRS was associated with 42 % increase in breast cancer risk (OR = 1.42; 95 % CI 

1.18–1.70). The PRS association with breast cancer risk was also evident when examining 
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quintiles of the PRS (Table 2; Supplementary Fig. 1) (Ptrend = 0.0005). Relative to the 

middle quintile (5.52–5.78), women in the lowest quintile (3.98–5.17) were at a reduced risk 

of breast cancer (OR = 0.81; 95 % CI 0.59–1.12) while those in the highest PRS quintile 

(6.10–7.74) were at an increased risk (OR = 1.45; 95 % CI 1.06–1.98). This translates to a 

risk of 1.8 comparing highest to lowest quintiles.

The association of PRS with breast cancer was similar across age at trial entry, treatment 

type, 5-year predicted risk, hysterectomy status, body mass index (BMI), presence of 

atypical hyperplasia, and LCIS (all P values for heterogeneity >0.15) (Fig. 1; Supplementary 

Table 2). However, there was evidence of a stronger association of PRS with breast cancer 

among women without a first-degree family history of breast cancer (OR = 1.62 per unit 

change in PRS, 95 % CI 1.18–2.21) compared to those with a positive family history (OR = 

1.32, 95 % CI 1.06–1.66) (Pintx = 0.04) (Fig. 1). Further, the PRS appeared to be a stronger 

risk factor for ER-positive than ER-negative breast cancer, although the test for 

heterogeneity did not reach statistical significance (Pintx = 0.10) likely due to the limited 

number of ER-negative cases (n = 119). There was a 59 % increased risk with ER-positive 

breast cancer per unit change in PRS (OR = 1.59, 95 % CI 1.25–2.02, P = 0.0002), but only 

a 5 % increase in risk associated with ER-negative breast cancer (OR = 1.05, 95 % CI 0.68–

1.62, P = 0.84) (Fig. 2; Supplementary Table 3). No differences were evident for age at 

onset or type of breast cancer (Fig. 2; Supplementary Table 3), although sample size was 

also limited for these comparisons.

Additional analyses examining the PRS and breast cancer association after adjustment for 

the two loci identified as breast cancer risk factors through a prior GWAS in this sample 

(rs10030044 at CTSO and rs8060157 at ZNF423) [23] showed no difference for the PRS and 

breast cancer association compared to the unadjusted results (data not shown).

Discussion

We present the first report to examine the influence of 75 common breast cancer 

susceptibility loci on breast cancer risk among women taking SERMs for primary 

prevention. Using genotyping data from women receiving tamoxifen and raloxifene in the 

NSABP P-1 and P-2 studies, we have shown that a PRS of the 75 loci is a risk factor for 

breast cancer in the presence of SERMs, with the risk of breast cancer ranging from OR = 

0.59 to 1.98 for those with the lowest and highest PRS, respectively (compared to the 

average PRS). This finding suggests that the intrinsic risk of breast cancer associated with 

the common variants is maintained in the presence of the strong risk reducing effects of 

SERM treatment.

Although the PRS was a risk factor for women with and without a family history of breast 

cancer, we found that the association was stronger among women without a family history 

with 30 % increased risk per unit PRS in those with a family history, and 62 % increased 

risk in those without. This difference may reflect the fact that these SNPs explain a portion 

of familial breast cancer risk (estimated at 14 %) [5], thereby attenuating their influence on 

risk in this subgroup. One possible explanation is that a strong family history may reflect the 
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presence of other more highly penetrant mutations that have a larger influence on breast 

cancer risk than these common genetic loci.

Our data suggested a stronger association of the PRS with ER-positive than with ER-

negative breast cancer, although the differences did not reach statistical significance, likely 

due to the limited number of ER-negative breast cancers. The strong association with ER-

positive breast cancer was expected, given that the majority of the 75 variants were 

originally identified in studies primarily comprised of ER-positive breast cancer [5–20]. In 

fact, only a small number of loci (LGR6, MDM4, 2p24.1, TERT, FTO, 19p13.31) have 

shown genome-wide significant (P < 5 × 10−8) associations with ER-negative breast cancer 

and risk estimates approximating 1.0 for ER-positive breast cancer (Supplementary Table 1) 

[7, 11, 30, 31]. Since SERMs are beneficial for prevention of ER-positive breast cancer, risk 

models incorporating a PRS that is strongly predictive of ER-positive cancer may allow 

better selection of women at high risk of ER-positive breast cancer who may benefit from 

SERM intervention. Furthermore, as the associations with breast cancer were similar in 

those taking either tamoxifen or raloxifene, it appears that the type of SERM may have little 

influence on the variant-associated risk. Thus, the PRS should also be evaluated as a risk 

factor for breast cancer in prevention trials or prospective patient populations treated with 

aromatase inhibitors, which are effective for prevention of ER-positive breast cancer [32, 

33].

The absence of women on placebo or usual care in this study did not allow for examination 

of the interaction of the PRS and SERMs on risk. However, comparison with the few studies 

to date on the PRS and breast cancer association [21, 22] suggests that there is some 

attenuation of the association in the SERM-treated population. Although the PRS 

distributions are not directly comparable across these studies, a one-unit increase in PRS 

was associated with a 1.4-fold increased risk of breast cancer in this NSABP population, but 

associated with a 1.8-fold increase (95 % CI 1.6–2.1) in a general population [21]. Because 

of the known risk reduction associated with these SERMs, the SNPs (PRS) may not be as 

strong a risk factor in moderate to high-risk women on tamoxifen and raloxifene. In 

addition, the attenuation may be due in part to the large proportion of women with family 

history of breast cancer in the NSABP trials (70 %), for whom the PRS and breast cancer 

association was attenuated relative to those without a family history.

While the matched nature of the cases and controls precluded calculation of absolute risk 

and realistic area under the curve (AUC) estimates, the close matching in the two well-

characterized clinical trials on a large number of clinical variables did allow evaluation of 

the PRS without potential confounding influences.

In conclusion, this is the first study to examine a comprehensive PRS among a moderate to 

high-risk population receiving SERMs and to demonstrate a contribution of common genetic 

variation to the development of future breast cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Polygenic risk score (PRS) and breast cancer association (Odds ratios (OR) and 95 % 

confidence intervals) by clinical covariates
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Fig. 2. 
Polygenic risk score (PRS) and breast cancer association (Odds ratios (OR) and 95 % 

confidence intervals) by age at onset and tumor characteristics
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Table 1

Characteristics of cases and matched controls within National Surgical Adjuvant Breast and Bowel Project P-1 

and P-2 Trials

Controls (N = 1,171) Cases (N = 592)

NSABP Trial

  P-1 153 (13.1 %) 79 (13.3 %)

  P-2 1,018 (86.9 %) 513 (86.7 %)

Type of breast event

  Invasive breast cancer 0 (0 %) 453 (76.5 %)

  DCIS 0 (0 %) 139 (23.5 %)

Estrogen receptor status (Invasive breast cancer only)

  Unknown 21 (4.6 %)

  Negative 119 (26.3 %)

  Positive 313 (69.1 %)

Treatment

  Tamoxifen 628 (53.6 %) 318 (53.7 %)

  Raloxifene 543 (46.4 %) 274 (46.3 %)

Age (years) at entry

  Mean (SD) 59.9 (7.34) 59.9 (7.27)

  Median 59.0 59.0

  <55 287 (24.5 %) 146 (24.7 %)

  55–59 339 (28.9 %) 170 (28.7 %)

  60–64 261 (22.3 %) 137 (23.1 %)

  65+ 284 (24.3 %) 139 (23.5 %)

Five-year predicted breast cancer risk by the Gail model

  Mean (SD) 4.8 (2.41) 4.9 (2.50)

  Median 4.2 4.5

  <=2.00 % 67 (5.7 %) 33 (5.6 %)

  2.01–3.00 % 247 (21.1 %) 121 (20.4 %)

  3.01–5.00 % 365 (31.2 %) 183 (30.9 %)

  >5.00 % 492 (42.0 %) 255 (43.1 %)

History of LCIS at entry

  No 957 (81.7 %) 480 (81.1 %)

  Yes 214 (18.3 %) 112 (18.9 %)

History of atypical hyperplasia at entry

  No 897 (76.6 %) 436 (73.6 %)

  Yes 274 (23.4 %) 156 (26.4 %)

History of hysterectomy at entry

  No 602 (51.4 %) 316 (53.4 %)

  Yes 569 (48.6 %) 276 (46.6 %)

Number of first-degree relatives with breast cancer

  0 351 (30.0 %) 198 (33.4 %)
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Controls (N = 1,171) Cases (N = 592)

  1 569 (48.6 %) 268 (45.3 %)

≥2 251 (21.4 %) 126 (21.3 %)

Body mass index

  Mean (SD) 28.4 (5.86) 28.6 (6.08)

  Q1 24.2 24.2

  Median 27.5 27.5

  Q3 31.9 31.9

  Range 15.4–68.2 16.5–57.2

SD Standard deviation, DCIS Ductal carcinoma in situ, LCIS Lobular carcinoma in situ
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Table 2

Association of polygenic risk score (PRS) and breast cancer (n = 592 cases, 1,171 controls) within the 

National Surgical Adjuvant Breast and Bowel Project P-1 and P-2 trials

Cases Controls Odds ratio (95 % CI) P value*

PRS quintiles

  Q1 (<5.17) 95 (16.0 %) 258 (22.0 %) 0.81 (0.59–1.12)

  Q2 (5.18–5.51) 116 (19.6 %) 236 (20.2 %) 1.07 (0.78–1.47)

  Q3 (5.52–5.78) 114 (19.3 %) 239 (20.4 %) 1.00 (ref)

  Q4 (5.79–6.10) 125 (21.1 %) 227 (19.4 %) 1.17 (0.85, 1.61)

  Q5 (>6.10) 142 (24.0 %) 211 (18.0 %) 1.45 (1.06, 1.98) 0.0005

*
P value for trend
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