
Empirical Bayes MCMC Estimation for Modeling Treatment 
Processes, Mechanisms of Change, and Clinical Outcomes in 
Small Samples

Timothy J. Ozechowski
Center for Family and Adolescent Research, Oregon Research Institute

Abstract

Objective—The current analysis demonstrates of the use of empirical Bayes estimation methods 

with data-derived prior parameters for studying clinically intricate process-mechanism-outcome 

linkages using structural equation modeling (SEM) with small samples.

Method—The data were obtained from a small subsample of 23 families receiving Functional 

Family Therapy (FFT) for adolescent substance abuse during a completed randomized clinical 

trial. Two or three video recorded FFT sessions were randomly selected for each family. The 

middle 20-minute portion of each session was observed and coded. A SEM was specified 

examining the influence of a select set of observed therapist behaviors on pre- to post-treatment 

change in mother-reports of family functioning and, in turn, pre- to post-treatment change in 

adolescent reports of adolescent marijuana use and delinquent behavior. The SEM was 

implemented using empirical Bayes estimation with data-derived maximum likelihood (ML) prior 

parameters and Markov Chain Monte Carlo (MCMC) estimation of the joint posterior distribution.

Results—The EB SEM results indicated that a relatively high proportion of individually focused 

general interventions (i.e., seek information, acknowledge) as well as relationally focused meaning 

change interventions by therapists during sessions of FFT were predictive of pre- to post-treatment 

increases in levels of family functioning as reported by mothers in families of substance abusing 

adolescents. In turn, increases in mother-reported family functioning were predictive of reductions 

in levels of adolescent-reported delinquent behavior.

Conclusions—EB MCMC methods produced more stable results than ML, especially regarding 

the variances on the change factors in the SEM. EB MCMC estimation is a viable alternative to 

ML estimation of SEMs in clinical research with prohibitively small samples.
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Modern day researchers in clinical psychology and related areas of social and behavioral 

science find themselves in a bind when proposing new research as well as planning and 

executing corresponding statistical analyses. On one hand, fundable clinical research 
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proposals are required to include investigations of relatively sophisticated research questions 

and hypotheses which may address (a) mediators, moderators, and mechanisms of 

intervention effects, (b) comparisons between subgroups, clusters, or latent classes of 

treatment responders, (c) linkages between clinical processes and treatment outcomes, etc. 

On the other hand, the types of multivariate statistical models required for investigating such 

nuanced research questions impose sample size requirements that are typically well in 

excess of what is feasible within the budgets of federally funded clinical trials. Faced with 

these conflicting requirements and constraints, clinical researchers have had little recourse 

but to proceed as best they can with whatever sample size is feasible and “simply hope for 

the best” (Maxwell, 2004, p. 160).

Small sample sizes in clinical research impose severe restrictions on the scope and 

complexity of the statistical models that may be implemented, and hence the nature of the 

research questions that may be investigated. Multivariate structural equation modeling 

(SEM), which is arguably the most widely utilized analytic approach for testing hypotheses 

regarding mechanisms of clinical change, is particularly infeasible with small samples 

(Bollen, 1989, Hoyle, 2012; Kline, 2011). This is the case because the most commonly 

implemented estimation algorithm in SEM research, the method of maximum likelihood 

(ML), yields results which are asymptotically valid -- meaning that a large sample is 

required for trustworthy inference (Lee & Song, 2004; Lei & Wu, 2012; Nevitt & Hancock, 

2004; Song & Lee, 2012). More precisely, the desirable statistical properties of ML 

estimators (i.e., consistency, efficiency, normality, unbiasedness) are predicated on the 

sample data following a multivariate normal distribution – a condition that is satisfied only 

in large samples even if the observed data values are univariate normally distributed (Lee, 

2007, p. 68). In small samples, departures from multivariate normality render ML estimates 

unstable and biased to a potentially substantial degree. Other problems associated with ML 

estimation of SEMs in small samples include nonconvergence, improper solutions (e.g., 

negative variance estimates), and biased model fit indices (Boomsma, 1985; Boomsma & 

Hoogland, 2001; Chen, Bollen, Paxton, Curran, & Kirby, 2001; Gagné & Hancock, 2006; 

Marsh, Balla, & McDonald, 1988; Robert, 2007, p. 21).

Emergence of Bayesian Statistical Methods for Analyses Based on Small 

Samples

The problems associated with small sample sizes in clinical research have been recognized 

for many years with relatively few solutions emerging (Maxwell, 2004). Recently, however, 

researchers in clinical psychology and related areas have become more attuned to the 

benefits of Bayesian statistical methods for studies with small samples. Methodological 

books and papers touting the benefits of Bayesian methods compared to more conventional 

ML methods are appearing more regularly in the social and behavioral science research 

literature (e.g., Baldwin & Fellingham, 2013; Christensen, Johnson, Branscum, & Hanson, 

2011; Congdon, 2006; Gill, 2008; Hoff, 2009; Kaplan & DePaoli, 2012; Muthén & 

Aspahouhov, 2012; Robert, 2007; Rupp, Dey, & Zumbo, 2004; Skrondal & Rabe-Hesketh, 

2004, pp. 204–214). In contrast to ML estimation, Bayesian statistical methods do not rely 

on asymptotic properties of estimators for valid inference (Baldwin & Fellingham, 2013; 
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Lee & Song, 2004; Muthén & Aspahouhov, 2012; Rupp et al., 2004). Rather, Bayesian 

statistical parameter estimates are stabilized by the influence of prior distributions, which 

are probability density functions expressing a-priori information about how model 

parameters are distributed in the population (Carlin & Louis, 2009; Gelman, Carlin, Stern, & 

Rubin, 2004; Gill, 2008; Robert, 2007). In Bayesian statistics, parameter estimates are 

obtained as precision-weighted averages of the observed data likelihood function and the 

prior distribution. Given a large sample containing relatively abundant information about the 

population parameters, the influence of the prior distribution may be substantially down-

weighted relative to the observed data to the point where Bayesian and ML estimates 

converge. Given a small sample, however, containing relatively scant information about the 

population parameters, Bayesian estimates are more heavily weighted toward the prior. It is 

the influence of the prior distribution that helps stabilize and anchor Bayesian parameter 

estimates in the presence of small samples (Song & Lee, 2012, p. 36).

Bayesian parameter estimation and inference are based on and proceed from the joint 

posterior distribution of the model parameters which, as noted above, is computed 

according to Bayes’ theorem as a weighted average of the likelihood function and the prior. 

Bayesian point estimates typically are taken to be the mean, median, or mode of the 

posterior distribution. Inferences in Bayesian statistical analyses typically are based on 

credible intervals, akin to confidence intervals in the conventional frequentist statistical 

framework, which are constructed from posterior percentiles (e.g., the 2.5th and 97.5th 

posterior percentiles).

Bayesian methods for SEM analyses with small samples

Recently, Bayesian methods have been formulated and specified for SEM spearheaded by 

the work of Lee (2007) and colleagues (Lee & Song, 2004; Song & Lee, 2012; Song, Lu, 

Hser, & Lee, 2011. See also Congdon, 2006; Kaplan & Depaoli, 2012; Muthén & 

Asparouhov, 2012; Stern & Jeon, 2004; Van de Schoot, Hoijtink, Hallquist, & Boelen, 2012; 

Zhang, Hamagami, Nesselroade, & Grimm, 2007). In particular, Lee (2007) and Song and 

Lee (2012) explicated how a variety of SEMs can be implemented using the WinBUGS 

software program for Bayesian statistics (see Ntzoufras, 2009). The basic approach entails 

specifying the entire system of mathematical (linear or nonlinear) equations for the observed 

and latent variables (i.e., the measurement and structural models) in a given SEM. A prior 

distribution is specified for each unknown parameter in each equation. As discussed further 

on, the joint posterior distribution of the SEM parameters is then approximated using a 

Markov-Chain Monte Carlo (MCMC) sampling algorithm (Carlin & Louis, 2009; Gelman et 

al., 2004; Gilks, Richardson, & Spiegelhalter, 1996; Robert & Casella, 2004). Bayesian 

SEM can be implemented in any of several popular software packages specialized for 

Bayesian statistics including WinBUGS, R, MATLAB, and SAS PROC MCMC. In 

addition, the SEM software packages Mplus and Amos have incorporated Bayesian 

estimation capabilities (Lei & Wu, 2012).

Regarding the use of Bayesian methods for SEMs with small samples, a critical caveat is 

that the stabilizing influence of the prior distribution is a function of the amount of 

information contained in the prior (which, in turn, is a direct function of the prior precision). 

Ozechowski Page 3

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



In order for the small-sample benefits of Bayesian methods to take effect, prior distributions 

must be informative, that is, they must contain substantive information about the population 

parameter values in a given statistical model (see Baldwin & Fellingham, 2013; Zhang et al., 

2007). Typically, informative priors for model parameters are specified or elicited based on 

previous research and/or expert judgment (Carlin & Louis, 2009; Christensen et al., 2011). 

In most cases, however, prior information about the parameters of SEMs is not available or 

does not exist, in which case non-informative or diffuse priors may be utilized (Lee, 2007; 

Song & Lee, 2012). Non-informative priors carry minimal substantive information about 

how statistical parameter values are distributed in the population and therefore have little to 

no influence in Bayesian estimation when the sample size is moderate to large. As such, 

Bayesian estimation with non-informative priors typically yields results that are equivalent 

to those obtained using ML given at least a moderate sample size (Gelman et al, 2004, p. 61; 

Song & Lee, 2012, p. 37). In small samples, however, non-informative priors may have an 

appreciable impact on model parameter estimates despite being devoid of information about 

such parameters which, when coupled with a small sample data set similarly devoid of 

substantive information, may yield results that are quite unstable and implausible (Baldwin 

& Fellingham, 2013).

Data-derived prior parameters—In the absence of available prior information about 

SEM parameters, an alternative to specifying non-informative priors is to estimate prior 

parameters from the sample data (see Gelman et al., 2004, p. 121; Lee, 2007, p. 76; Song & 

Lee, 2012, pp. 39–40). Although estimating prior parameters from sample data is a distinct 

departure from a purely Bayesian orientation, many regard such a practice as permissible 

when no other source of prior information exists other than the sample data (see Gelman et 

al., 2004, pp. 120–121; Robert, 2007, pp. 478–479; Song & Lee, 2012, pp. 39–40). In cases 

where the prior parameters are estimated from the same data to be used in the analysis, the 

analysis is not regarded as fully Bayesian but rather as empirical Bayes (EB; Carlin & Louis, 

2009). Lee and Song (2004) utilized data-derived prior estimates in a simulation study 

comparing EB and ML estimation of SEMs with small sample sizes (see also Lee, 2007, pp. 

89–95). Their results indicated that EB methods incorporating data-derived prior parameter 

values produced more accurate and unbiased estimates than ML for SEMs with small 

samples.

Computational advantages of Bayesian Over ML estimation for SEM analyses with small 
samples

Although EB estimation does not incorporate information about model parameters apart 

from that contained in the data, there are significant computational advantages nonetheless 

of Bayesian statistical methods (either empirical Bayes or purely Bayesian) over ML for 

estimating and fitting SEMs in small samples (see Kaplan & DePaoli, 2012, p. 668; Muthén 

& Asparouhov, 2012; Skrondal & Rabe-Hesketh, 2004, p. 206). Foremost among these 

computational practicalities is the elimination of improper solutions or “Heywood cases” in 

SEM (Chen et al., 2001; Kline, 2011, p. 158). In particular, when sample sizes are small it is 

not unusual for ML estimation to produce negative estimates for variance parameters, which 

are impermissible values leading to improper solutions in SEM (Kolenikov & Bollen, 2012). 

A typical but unsatisfying remedy in the ML setting is to fix negative variance estimates to 
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zero (Anderson & Gerbing, 1988, p. 417). Alternatively, one may impose interval 

restrictions on offending variance parameters such that the corresponding estimates are 

constrained to be greater than zero. Another possibility is to rescale variance parameters 

using some functional transformation [i.e., σ2 = exp(θ)] and perform ML estimation based 

on the rescaled parameters. Although restriction and rescaling of SEM parameters 

effectively disallow impermissible estimates, such manipulations are known to give rise to 

convergence problems especially for relatively complex multivariate statistical models (see 

Chung, Rabe-Hesketh, Gelman, Liu, & Dorie, 2011, p. 3). Moreover, certain types of 

parameter restrictions and constraints, especially those on the boundary of the valid 

parameter space, may adversely impact tests of overall model fit in SEM (Savalei & 

Kolenikov, 2006).

The problem of negative variance estimates in SEM may be more directly addressed within 

a Bayesian statistical framework by specifying prior distributions for variance parameters 

that cover the valid parameter space (i.e., zero to infinity). Draws from the posterior 

distribution, simulated using MCMC sampling methods, are thereby restricted to the same 

space (Chung et al., 2011; Gelman, 2006; Muthén & Asparouhov, 2012; Skrondal & Rabe-

Hesketh, 2004, p. 206). An associated advantage of MCMC simulation methods within a 

Bayesian statistical framework is the capacity to obtain parameter estimates for complex 

multivariate models which may be analytically intractable or difficult to optimize 

numerically using ML methods, especially given a small sample (Christensen et al., 2011; 

Gelman et al., 2004; Hoff, 2009; Lee, 2007; Song & Lee, 2012). Further details on these 

computational advantages of Bayesian over ML methods for small-sample SEM analyses 

are provided in section S1 of the online supplementary materials.

Overview of the Demonstration Analysis

The computationally facilitative features of Bayesian over ML estimation for SEMs with 

small samples, as opposed to the fundamental philosophical distinctions between Bayesian 

and more traditional frequentist methodologies, are the principal motivation for the 

proposals, recommendations, and prescriptions for the use of such methods in this paper. 

The remainder of this paper illustrates the use of EB statistical methods for analyses of 

clinical processes and mechanisms of change in clinical research, in which restrictive sample 

sizes are the norm rather than the exception. Specifically, EB methods are used to analyze 

clinical data from a small-sample pilot study of the link between observed therapist 

behaviors, pre- to post-treatment change in a targeted area of functioning (i.e., mechanism of 

change), and behavioral outcomes. The data for this pilot analysis were obtained from a 

completed randomized clinical trial of the effects of various forms of adolescent substance 

abuse treatment. Therapist behaviors during 2 or 3 therapy sessions were observed and 

coded for a small subsample of cases from the clinical trial. A SEM was specified linking 

the extensiveness of therapists’ use of a specific set of clinical interventions with pre- to 

post-treatment change in a targeted change mechanism, and, in turn, change in behavioral 

outcomes. This pilot analysis demonstrates how a complex SEM for studying therapy 

process-mechanism-outcome linkages may be implemented with a small sample using EB 

statistical methods which produce more stable results than conventional ML estimation.
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Although Bayesian methods have been developed for SEMs (Kaplan & DePaoli, 2012; Lee, 

2007; Muthén & Asparouhov, 2012; Song & Lee, 2012; Van de Schoot et al., 2012) as well 

as for studying mediational processes in non-clinical research (Enders, Fairchild, & 

MacKinnon, 2013; MacKinnon, 2008; Yuan & MacKinnon, 2009), no study in the clinical 

psychology literature has used Bayesian SEM methods to study clinical process-mechanism-

outcome linkages in treatment research. This demonstration analysis is intended to provide 

clinical methodologists with a feasible approach for implementing SEMs to study process-

mechanism-outcome linkages when only a small sample is available.

Method

Description of the sample and selection of video recorded therapy sessions

The data for the pilot analysis were obtained from a small subsample of cases receiving 

Functional Family Therapy (FFT) for adolescent substance abuse (Alexander & Parsons, 

1982; Alexander, Waldron, Robbins, & Neeb, 2013; Waldron & Brody, 2010) during a 

completed NIH-funded randomized clinical trial conducted by Waldron and colleagues 

(Waldron, Slesnick, Brody, Turner, & Petersen, 2001). Briefly, the parent clinical trial was a 

study of the efficacy of FFT compared to individual and group cognitive-behavioral 

treatment for adolescent substance abuse. A full description of the study participants is 

provided in Waldron et al. (2001). Additional details on the clinical sample are provided in 

section S2 in the online supplemental materials.

For the current pilot study, video recorded FFT sessions were randomly selected from an 

archived collection of videotaped FFT sessions conducted during the course of the clinical 

trial. Two or three FFT sessions were randomly selected for each of 23 families randomly 

assigned to the FFT condition. The middle 20-minute portion of each session was observed 

and coded. A total of 63 FFT sessions was included in the pilot analysis. Ten recorded FFT 

sessions (15.9%) were cross-coded for purposes of assessing and monitoring interrater 

agreement.

Protocols and procedures for the protection of human subjects during the parent clinical trial 

were reviewed and approved by the institutional review board (IRB) at the University of 

New Mexico. The subsequent pilot study, which is the focus of this demonstration analysis, 

was reviewed and approved by the IRB at the Oregon Research Institute.

Self-Report Measures

As documented in Waldron et al. (2001), a battery of assessment instruments was 

administered at several time points before and after treatment during the parent clinical trial. 

The current pilot analysis incorporated only the pretreatment assessment and the post-

treatment assessment which occurred approximately 4 months after the initiation of FFT.

Adolescent substance abuse—The percent days of adolescent marijuana use was 

measured on the Timeline Follow-Back interview (TLFB; Sobell & Sobell, 1992) -- Form 

90D version (Miller & DelBoca, 1994). Briefly, the TLFB is a semi-structured interview 

pertaining to substance use behavior over a specific time interval (e.g., past 90 days). On 

each day of the assessment period, the type and amount of substance use is recorded based 
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on retrospective self-reports. The interviewer utilizes a daily calendar and other types of 

memory aides to facilitate recall. In the current study, adolescent substance use frequency 

was assessed over the past 90 days prior to the pretreatment assessment. At the 4-month 

assessment the measurement window was extended to the date of the pretreatment 

assessment.

Although the TLFB was originally developed as a measure of alcohol use in adults, it has 

been used successfully as a measure of marijuana and other substance use among 

adolescents (Winters, 2003, 2006). In particular, the TLFB has been shown to exhibit sound 

psychometric properties in adolescent samples, and strong concordance with other self-

report, parent-report, and biological measures of adolescent substance use (Dillon, Turner, 

Robbins, & Szapocznik, 2005; Donohue et al., 2004; Waldron et al., 2001).

Adolescent delinquent behavior—The second adolescent outcome variable examined 

in this pilot analysis was the severity of delinquent behavior problems based on adolescent 

reports on the delinquent behavior subscale of the 1991 version of the Youth Self-Report 

(YSR) (Achenbach, 1991). Briefly, the YSR assesses the degree to which each of 118 

distinct behavior problems is characteristic of the adolescent. Each item has a 3-point 

response scale in which 0 = “not true”, 1 = “somewhat true”, and 2 = “very often true.” Item 

responses are summed to form eight behavior problem subscales, which in turn may be 

summed to form two overarching constructs known as internalizing and externalizing 

problem behavior. Achenbach (1991) specifies clinical cut-off scores for each behavior 

problem subscale as well as the two overarching construct scales. As a component of the 

CBCL family of instruments, the YSR has been used in thousands of studies and is one of 

the most well validated self-report measures of emotional and behavioral problems among 

youth (Achenbach, Dumenci, & Rescorla, 2002; Achenbach & Rescorla, 2001).

Family functioning—The quality of family functioning was assessed according to 

mothers’ reports on the Family Environment Scale (FES, Moos & Moos, 1994). The FES is 

a 90-item self-report scale assessing various dimensions of family functioning. Each item 

has a dichotomous true/false response scale. The items of the FES are summed to form 10 

subscales composed of 9 items each. Subscale scores range from 0 to 9. Extensive validity 

and reliability data are reported in Moos and Moos (1994; see also Kronenberger, 

Thompson, & Morrow, 1997).

The FES has been shown to be a reliable and valid measure of family characteristics in 

research on adolescents (Foster & Robin, 1997). Moreover, the FES has been used 

successfully in studies of the efficacy of family-based interventions for substance abuse and 

conduct problems among youth (Kazdin, Siegel, & Bass, 1992; Kazdin & Whitley, 2006; 

Liddle, Rowe, Dakof, Ungaro, & Henderson, 2004; Santisteban et al., 2003).

Observational Measurement

Functional Family Therapy Coding and Rating Scale—In recognition of the need 

for a process research instrument for studying the effects of manual-based interventions in 

FFT, the author of this manuscript organized a two-day expert panel meeting of the primary 

developers and researchers of FFT.1 The objective of the meeting was to begin designing a 
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comprehensive instrument for coding and rating the presence of prescribed clinical 

interventions and processes during sessions of FFT. The discussions during this meeting 

(and over many subsequent months) culminated in the Functional Family Therapy Coding 

and Rating Scale (FFT CARS). As the name suggests, the FFT CARS contains both a micro-

coding and a rating scale component. This demonstration analysis incorporates only the 

coding portion of the FFT CARS. The coding portion of the FFT CARS contains 24 

intervention codes for classifying discrete therapist statements (see Table S1 in the online 

supplemental materials).2 In addition, the FFT CARS contains four numerical codes for 

classifying the “frame of reference” of each therapist statement. Frame-of-reference codes 

on the FFT CARS describe the broad focus or subject matter of therapist statements which 

may include (a) individual – focused on thoughts, feelings, or behaviors of individual family 

members, (b) relational – focused on aspects of the behavioral interaction or quality of the 

relational bond between two or more family members or among the family as a whole, (c) 

therapist – focused on the thoughts, feelings, or behaviors of the therapist, or (d) neutral -- 

unrelated to any particular family member(s) or the family as a whole or the therapist. 

Altogether, each discrete therapist statement receives a 5-digit code on the FFT CARS 

where digit-1 corresponds to the identity of the speaker (which is always the therapist), 

digits-2 and -3 correspond to the intervention code, digit-4 is the frame of reference of the 

coded statement, and the digit-5 identifies the intended recipient of the coded statement. The 

FFT CARS is designed to assess a range of therapist interventions which are prescribed in 

the FFT model, as well as those that are proscribed in FFT and those which are common to 

most forms of behavioral treatment.

Coder selection and training—Two graduate level coders were recruited through local 

newspaper advertisements. Both coders were Caucasian females in their 20’s. One was a 

graduate student in clinical psychology and the other a pre-graduate student in the field of 

neuropsychology. Neither coder had any significant clinical experience nor any prior 

knowledge of the FFT model. The coders were thoroughly trained to use the FFT CARS to 

observe and code therapist behavior during sessions of FFT. A description of the coder 

training process is provided in section S3 of the online supplemental materials.

Data Analysis Plan

Creating therapist behavior variables based on the FFT CARS—The total amount 

of therapist talk-time, or the amount of time during which therapist was speaking, was 

totaled across the observed 20-minute segments of FFT for each family. Next, the proportion 

of therapist talk-time within each “intervention × frame-of-reference” category on the FFT 

CARS was computed. These proportions were used as observed variables in an SEM 

1Participants on the panel included James Alexander, the developer of FFT of the University of Utah, and FFT researchers from three 
independent FFT research programs: Holly Waldron, Janet Brody, and Charles Turner at the Oregon Research Institute, Michael 
Robbins who was then at the University of Miami School of Medicine and is currently with the Oregon Research Institute, and 
Thomas Sexton at the Center for Adolescent and Family Studies at Indiana University.
2In the current study, therapist behaviors were unitized as “timed-event sequences” as defined by Bakeman and Gottman (1997, pp. 
84–85). Briefly, timed-event sequences are streams of behavior that are parsed into discrete segments by codable transitions between 
behavioral states or events where the start time and stop time of each event is recorded. Under this unitizing scheme, coded behavioral 
events are not restricted to any certain length of time, and multiple codes may be applied within a single “speech act” or duration of 
speech (or other type of behavior) from a given individual bounded on both sides by speech from a different individual.
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analysis of the link between therapist behavior in FFT and improvements in family 

functioning and adolescent behavior (see below).

Structural equation modeling analysis—The complete SEM is displayed in Figures 1 

through 4. In each figure, LISREL syntax and terminology is used to label all variables and 

parameters. Figure 1 contains a latent growth curve model (LGCM) estimating change in 

adolescent marijuana use and delinquency between the pre-treatment and 4-month 

assessments (see Bollen & Curran, 2006; Duncan, Duncan, & Stryker, 2006). The LGCM in 

Figure 1 models change in both marijuana use and delinquent behavior by regressing a set of 

longitudinal measurements for each behavioral outcome on two latent growth factors, 

respectively. The first latent growth factor for each behavioral outcome is called the 

intercept which estimates the level of the behavioral outcome at the pre-treatment 

assessment. The second growth factor for each outcome is called the slope which captures 

the amount of linear change between the pre-treatment and 4-month measurements. Each 

growth factor is summarized by a mean (the AL parameter) and a variance (the PS 

parameter). The mean intercept and slope are the average pre-treatment level and the rate of 

change, respectively, across all individuals in the sample. The corresponding growth factor 

variances capture individual heterogeneity around the growth factor means. The latent 

growth factors for adolescent marijuana use are measured by adolescent reports of the 

percentage of days of marijuana use over the past 90 days (or since the previous assessment) 

on the TLFB at the pre-treatment and 4-month assessments. The latent growth factors for 

adolescent delinquency are indicated by adolescent reports on the YSR delinquency subscale 

at these same time points.

Figure 2 contains a latent change score model (LCSM) that estimates change in family 

functioning between the pre-treatment and 4-month assessments (see McArdle, 2009, pp. 

587–589). Specifically, the LCSM contains a family functioning latent construct at both the 

pre-treatment and 4-month assessments which was operationalized by mothers’ reports on 

the FES cohesion and organization subscales at these respective assessment points. The 

construct labeled family functioning change captures the difference or the amount of change 

in the family functioning latent construct between the pre-treatment and 4-month 

assessments. The unit constraints on the regression paths leading to the family functioning at 

4-months construct force the family functioning change construct to act as a latent difference 

score between the pre-treatment and 4-month family functioning constructs. The advantage 

of modeling latent rather than observed difference scores is that measurement error in the 

observed variables is removed from latent difference scores whereas observed difference 

scores contain measurement errors on the observed variables.

Figure 3 contains a measurement model for a select set of therapist intervention variables 

from the FFT CARS. Specifically, the measurement model for therapist interventions is 

comprised of four latent constructs including (a) relationally focused meaning change 

interventions which encompasses the proportion of therapist talk-time devoted to relabeling 

and reframing interventions,3 (b) individually focused general interventions which 

encompasses the proportion of therapist talk-time devoted to seeking information about or 

acknowledging the thoughts, feelings, or behavior of individual family members, (c) 

relationally focused general interventions which encompasses the proportion of therapist 
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talk-time devoted to seeking information about or acknowledging aspects of the behavioral 

interactions or relational bonds between family members, and (d) relationally focused 

behavior change interventions which encompasses the proportion of therapist talk-time 

devoted to teaching new behavioral skills to enhance family functioning (e.g., 

communication, problem-solving, etc.). Constructs (b) and (c) listed above represent general 

types of interventions and therapist behaviors (i.e., seeking information and acknowledging) 

which are common to most any form of psychosocial or behavioral treatment. Constructs (a) 

and (d) represent therapist behaviors and interventions which are prescribed as core 

components of the FFT model (see Alexander et al., 2013).

The measurement models in Figures 1–3 are linked together by regression parameters within 

the structural model displayed in Figure 4. Specifically, regression parameters between the 

therapist intervention latent constructs and the LCSM estimate the degree to which change 

in family functioning is predicted by each of the general and FFT-prescribed intervention 

constructs. In turn, regression parameters between the LCSM and the LGCM estimate the 

degree to which change in family functioning predicts change in adolescent marijuana use 

and delinquency between the pre-treatment and 4-month assessments. Collectively, the 

regression parameters within the structural model constitute an empirical investigation (as 

opposed to a formal experimental test) of a fundamental clinical hypothesis in FFT which is 

that higher proportions of relationally focused interventions, including both general (seek 

information and acknowledge) and FFT-prescribed (meaning change, behavior change) 

therapist behaviors lead to greater improvements in levels of family functioning from pre-to-

post treatment. In turn, change in family functioning operates as a mechanism of change in 

adolescent behavioral problems including marijuana use and delinquency (see Alexander et 

al., 2013; Waldron & Brody, 2010).

Empirical Bayes SEM parameter estimation—The SEM shown in Figures 1–4 was 

fit to the data for the 23 adolescents and parents in the pilot sample using the EB statistical 

approach outlined previously. First, an initial fitting of the SEM employing robust ML 

estimation was implemented in the LISREL 8 software (Jöreskog & Sörbom, 1996–2001; 

Jöreskog, Sörbom, du Toit, & du Toit, 1999). Next, the resulting ML parameter estimates 

and robust standard errors were utilized as prior parameters in a subsequent fitting of the 

SEM using Bayesian statistical methods in the PROC MCMC package of the SAS/STAT 

12.1 software (SAS Institute, Inc., 2012). As the name of the procedure suggests, PROC 

MCMC implements MCMC sampling methods to simulate observations from the posterior 

distribution using the Metropolis-Hastings algorithm (see section S1 in the online 

supplemental materials). The PROC MCMC programming code to execute the SEM is 

provided Figure S1 in the online supplemental materials (see also Baldwin & Fellingham, 

2013). One hundred thousand simulated draws from the posterior were obtained for each 

parameter. The simulated draws were preceded by 2000 “burn-in” draws which were 

discarded from the analysis. To reduce temporal autocorrelation among the draws, the 

3Relationally focused meaning change interventions in FFT entail the therapist relabeling or reframing events, behaviors, and 
circumstances in the family in ways that divert blame and culpability from individual family members, emphasizing instead 
underlying benevolent or noble intentions for problematic behavior, emotional bonds and connectedness between family members, 
and the potential for change within the family.
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MCMC chain was thinned by including only every 20th draw, yielding 5000 simulated 

posterior observations.

Specification of data-derived prior parameters: The SEM shown in Figures 1–4 contains 

a total of 46 free parameters (see lines 2–8 of the PROC MCMC program presented in 

Figure S1 in the online supplemental materials). In terms of LISREL parameter matrices, the 

SEM parameters include three factor loadings contained in the lambda-y (LY) matrix, 12 

measurement errors on the observed variables contained along the diagonal of the theta-

epsilon (TE) matrix, 10 latent variable means contained in the alpha (AL) matrix, 10 error 

variances on the latent variables contained along the diagonal of the psy (PS) matrix, six 

regression parameters estimating direct effects between latent variables contained in the beta 

(BE) matrix, three covariances between latent variables contained in the off-diagonal portion 

of the PS matrix, and two covariances between measured variables contained in the off-

diagonal portion of the TE matrix. The entire model is expressed in terms of the y-model in 

LISREL, which is the set of parameter matrices associated with the endogenous or 

dependent variables (see Jöreskog & Sörbom, 1996–2001, p. 202; Rindskopf, 2012, p. 337). 

The x-model parameter matrices in LISREL associated with the exogenous or independent 

variables were not utilized in the SEM specification in order to simplify the presentation of 

the model. Moreover, expressing the SEM entirely within the LISREL y-model simplifies 

the matrix algebra involved in ML estimation because fewer distinct parameter matrices 

must be inverted during the computations.

To implement the SEM using EB estimation, all paths shown in Figures 1–4 were expressed 

as a system of linear equations in PROC MCMC, using LISREL syntax for parameter names 

(although any parameter naming syntax other than LISREL may be used. See lines 65–88 of 

the PROC MCMC program in Figure S1 in the online supplemental materials). Each 

estimated parameter in the model was assigned a prior distribution, the parameters of which 

were obtained from the robust ML solution of the preliminary model fitting in LISREL (see 

lines 10–64 of the PROC MCMC program in Figure S1 in the online supplemental 

materials). Prior distributions for all parameters in the LY, AL, and BE matrices were 

specified as normal with mean equal to the corresponding ML point estimate and standard 

deviation equal to the corresponding ML standard error estimate.

Regarding the variance and covariance parameters in the PS and TE matrices, the 

predominant practice is to specify an inverse-Wishart prior distribution which is the 

multivariate generalization of the inverse-gamma distribution and the conjugate prior for a 

multivariate normal covariance matrix (Gelman et al., 2004, p.87; Lee, 2007, p. 75, Lee & 

Song, 2004; Muthén & Asparouhov, 2012; Song et al., 2011; Zhang et al., 2007).4 Although 

the conjugacy of the inverse-Wishart renders it a computationally convenient prior for an 

SEM covariance matrix, it is a highly restrictive and inflexible prior specification (see 

Barnard, McCulloch, & Meng, 2000; Gelman et al., 2004, p. 483; Hsu, Sinay, & Hsu, 2012). 

In particular, an oft-cited limitation of the inverse-Wishart prior is that, because the 

4Conjugacy is a mathematical property whereby the prior distribution, when combined with the observed data likelihood, yields a 
posterior distribution of the same functional form as the prior. A conjugate association between the prior distribution and the 
likelihood ensures that the posterior has a closed form expression which may dramatically simplify analytic calculations involved in 
deriving the posterior.
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precision of the entire matrix is determined by a single degrees-of-freedom parameter, it is 

not possible to specify varying levels of prior knowledge across variance-covariance 

elements. For this reason, numerous Bayesian methodologists have proposed more flexible 

approaches to specifying prior distributions for covariance matrices in multivariate statistical 

models (e.g., Barnard et al., 2000).

In the current demonstration analysis, an approach described by Muthén and Asparouhov 

(2012) was utilized to assign element-specific priors to each variance and covariance 

parameter in the PS and TE matrices. Specifically, Muthén and Asparouhov (2012, p. 317) 

discussed a prior specification approach for Gaussian (i.e., normal) covariance matrices (to 

which they referred simply as “Method 3”) in which each variance element along the 

diagonal of a given covariance matrix is assigned its own inverse-gamma prior and each off-

diagonal covariance element is assigned its own normal prior. In the current analysis, 

however, rather than using inverse-gamma priors for the variance parameters, independent 

gamma (α, λ) priors were specified based on the recommendations of Chung et al. (2011), 

where α is the shape parameter and λ is the scale parameter of the gamma distribution. 

Chung et al. (2011) prefer the gamma over the inverse-gamma prior because the latter 

density function is flat (i.e., has a first derivative equal to zero) at the lower bound of zero, 

thereby eliminating very low posterior variance estimates even when such values are 

supported by the data (as often is the case when implementing multivariate SEMs with small 

samples). Chung et al. (2011) recommended using a gamma prior with α = 2 which ensures 

that (a) all posterior values are within the valid parameter space ranging from 0 to ∞, and 

(b) that the prior density function has a positive slope (i.e., is increasing) rather than a flat 

slope at the lower bound of zero. Additionally, given that α·λ equals the mean of the gamma 

distribution, λ for each prior variance parameter in the current analysis was set equal to the 

corresponding ML estimate divided by 2 to ensure the prior mean would equal the ML point 

estimate (see lines 13–24 and 34–43 of the PROC MCMC program in Figure S1 in the 

online supplemental materials). In cases where the ML point estimate for a given variance 

component is either negative or fixed to zero, then the least-squares estimate of the 

covariance between the measured indicator variables serves as a suitable value for λ for 

latent variables with two measured indicators.5 For latent variables with more than two 

measured indicators, λ may be set equal to the average of the pairwise least-squares 

covariance estimates among the observed indicators.

As noted above, Muthén and Asparouhov’s (2012) approach of specifying a distinct normal 

prior for each free covariance parameter in the off-diagonal portions of the PS and TE 

matrices was followed. The free covariance parameters in the PS and TE matrices were 

estimated in PROC MCMC by including those parameters as common terms in the 

measurement or structural equations for the corresponding observed or latent variables, 

respectively. Dagne, Howe, Brown, and Muthén (2002) demonstrated this “common term” 

approach to estimating covariance parameters in SEM (see p. 272). Dagne et al. (2002) 

showed that common parameters across model equations capture the shared variance 

between the corresponding dependent variables in the linked equations, with the variance of 

5If the least-squares covariance estimate between a given pair of measured variables is negative, the directionality of the data values 
for one of the variables can be reversed which will result in a positive covariance.
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the common parameter representing the covariance between the dependent variables. In the 

current analysis, free covariance parameters between select pairs of observed or latent 

variables were included as common terms in the respective SEM equations (see lines 65, 69, 

71, 72, 74, 79–82 of the PROC MCMC program in Figure S1 in the online supplemental 

materials). These covariance parameters were specified to have normal prior distributions 

with mean equal to the ML covariance point estimate and standard deviation equal to the 

corresponding ML standard error estimate. In order to preclude these covariance parameters 

from impacting the value and interpretation of the remaining terms in each model equation, 

the covariance terms were both added and subtracted within each equation so that their net 

impact on the remaining terms in each equation was zero.

Ensuring that estimated posterior covariance matrices are positive definite: An 

important consideration with regard to the element-specific approach to estimating SEM 

variances and covariances described above is verifying that the estimated posterior matrices 

(PS and TE in the current application) are positive definite (see Wothke, 1993). Although the 

prior inputs for the variance and covariance parameters in the EB estimation approach are 

obtained from the ML estimates of the corresponding matrices, which are by definition 

positive definite, the element-specific prior specification approach described above does not 

guarantee that positive definiteness is preserved in the posterior matrices. As such, the 

positive definiteness of the posterior estimates of the SEM covariance matrices should be 

explicitly verified. In general, a fairly straightforward way of verifying the positive 

definiteness of any covariance matrix is to obtain its Cholesky factorization (see Leon, 

2009). In the current analysis, the Cholesky factorization of the PS and TE matrices was 

computed using the FCMP procedure of the BASE SAS software package (see Figure S2 in 

the online supplemental materials). Further details on positive definite covariance matrices 

and the Cholesky factorization may be found in section S4 in the online supplementary 

materials.

Results

Frequencies of FFT CARS Codes

Across the 63 coded FFT therapy sessions, 3733 discrete segments of therapist behavior 

were coded on the FFT CARS. Table S1 presents the frequency and percentage of each FFT 

CARS intervention code across the 63 pilot sessions (see online supplemental materials). It 

is evident from Table S1 that the overwhelming majority of coded therapist behaviors 

(63.6%) fell into the categories of seek information or acknowledge/clarify. The percentage 

of all other codes was no greater than 4.7% and many of the codes occurred at a rate of less 

than 2% of the total number of coded statements.

The frequencies in Table S1 made apparent the necessity to collapse across certain codes 

and to eliminate others from the analysis altogether. It was decided to condense the original 

FFT CARS intervention codes into nine aggregate codes including (a) provide expert 

information (treatment focus, give information), (b) meaning change (relabel, reframe), (c) 

seek information, (d) support, (e) acknowledge, (f) challenge, (g) direct session (in-session 

focus, structure/direct), (h) behavior change (teach skills, behavioral rehearsal, assign/
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review homework, reinforce skills, relapse prevention), and (i) talk/humor. Segments of 

therapist behavior assigned to any intervention code not included in this condensed list were 

trimmed from the analysis. Regarding the frame-of-reference codes assigned to each 

segment of therapist behavior, the overwhelming majority of coded segments were classified 

as either individual (53.1%) or relational (38.4%). Therapist behaviors receiving any other 

frame-of-reference code were trimmed from the analysis as well. The collapsing and 

elimination of certain FFT CARS codes reduced the number of coded segments of therapist 

behavior in the final analysis to 3333.

Coder Agreement

Agreement between coders was examined for the aggregate FFT CARS intervention codes 

as well as the individual/relational frame-of-reference codes. For the FFT CARS 

intervention codes we obtained κ = .60 (95% CI: .55 to .67). For the FFT CARS frame-of-

reference codes we obtained κ = .41 (95% CI: .35 to .52). The level of agreement on the 

collapsed FFT CARS intervention codes was within the “substantial” range whereas 

agreement on the FFT CARS frame-of-reference codes was within the “moderate” range as 

specified by Landis and Koch (1977). Both these levels of agreement were deemed 

acceptable for purposes of these pilot analyses.

SEM Analysis

Model convergence—For both ML and MCMC, a necessary condition for valid and 

trustworthy inference is that the algorithms converge upon a stable set of estimates that do 

not fluctuate with further iterations. In the ML setting, convergence is a requirement for 

parameter estimates to be produced by SEM software programs. In the Bayesian setting, 

however, ascertaining whether MCMC algorithms have converged is far less straightforward 

given that output and estimates are produced regardless of whether convergence is achieved. 

Consequently, checking for convergence is an essential first-step in Bayesian analyses using 

MCMC estimation.

The most basic way of assessing MCMC convergence is to visually inspect trace plots of the 

posterior draws for each parameter in order to establish that the chain has fully traversed and 

sampled from the parameter space. A somewhat more systematic approach is to inspect 

numerical indices of convergence such as the lag-50 posterior autocorrelation (rL50) and the 

Monte Carlo standard error (MCSE) for each parameter. Briefly, rL50 is the correlation 

between the posterior draws at steps s and s + 50 in the MCMC chain. Values of rL50 near 0 

indicate that the chain has traversed and sampled from the entire parameter space, rather 

than getting stuck in a restricted region of that space, thereby increasing the likelihood of 

stable convergence. Along similar lines, the MCSE is defined as the standard error of the 

posterior mean for a given model parameter (see Ntzoufras, 2009, pp. 40–41). The MCSE is 

a measure of the magnitude of error or imprecision in the posterior mean associated with 

instability in the MCMC sampling algorithm (see Gelman et al., 2004, p. 277). MCMC 

convergence can be gauged by comparing MCSE to the posterior standard deviation (PSD). 

Small values of the MCSE/PSD ratio indicate that only a small portion of the variability in 

the draws from the posterior are attributable to sampling instability, with values of 
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MCSE/PSD less than 0.10 being generally acceptable levels of imprecision in the posterior 

mean (see Schiller & Dendukuri, 2012).

Perhaps the most rigorous way to establish MCMC convergence is to run the chain 

numerous times from widely dispersed starting values. If the separate chains arrive at the 

same posterior distribution, then one may safely conclude that the MCMC algorithm 

converges to the true posterior. In the current analysis, the MCMC procedure was executed 

seven times from different starting values dispersed from −3 to +3 standard deviations from 

the mean of the prior distribution for parameters with normal priors. For parameters with 

gamma priors, the starting values were dispersed as a multiplicative function of the scale 

parameter λ. The convergence of the MCMC algorithm across the seven chains was assessed 

for each parameter using Gelman and Rubin’s (1992) R-hat (R̂) index (see also Gelman, 

1996, pp. 136–137; Gelman et al., 2004, pp. 296–297). Briefly, R̂ is a function of the 

between-chain (B) and within-chain (W) variances, and is computed as the ratio of the upper 

and lower bound of the posterior standard deviation for a given parameter, where the upper 

bound is a weighted average of B and W and the lower bound is simply W (Gelman, 1996, 

p. 137). If MCMC algorithm has converged across all chains then these two bounds will be 

very close to one another, and the value of R̂ will be close to 1.0. Values of R̂ in excess of 

1.1 suggest that convergence could be improved by further iterations of the MCMC chain.

PROC MCMC does not compute the R̂ index. However, R̂ may be obtained using the 

NLMIXED procedure of the SAS/STAT software. See section S5 as well as Figure S3 in the 

online supplementary materials for further details on obtaining R̂.

Table S2 in the online supplementary materials presents rL50, the MCSE/PSD ratio, W, B, 

and R̂ for each parameter in the SEM. To summarize, across all 46 parameters rL50 ranged in 

absolute value from 0.00 to 0.05 indicating minimal autocorrelation between posterior draws 

and good mixing of the chains and traversing of the parameter space for all parameters. 

Likewise, values of MCSE/PSD ranged from .01 to .09 indicating satisfactory levels of 

stability in the MCMC chain for all parameters. Finally, values of R̂ equaled 1.0 for all 

parameters, indicating convergence across the seven chains initiated from disparate starting 

values (i.e., the separate chains arrived at the same destination from different starting 

points). By all indications, it appeared that the MCMC algorithm achieved convergence for 

all SEM parameters, meaning that the simulated posterior values were drawn from the true 

posterior for each parameter.

Model fit—The parameters of the SEM shown in Figures 1 through 4 were estimated using 

the EB methods described above. The LISREL fit indices and statistics indicated that the 

SEM fit the data well from a frequentist perspective [Satorra-Bentler scaled χ2 = 48.76, df = 

76, p = .9936; RMSEA = 0.00; CFI = 1.00. See Yuan (2005) for a discussion of these 

measures of fit]. That is, the covariance matrix implied by the SEM showed strong 

concordance with the observed covariance matrix. From a Bayesian perspective, a good 

fitting SEM also exhibits strong concordance with the observed data. However, rather than 

comparing model-implied and observed covariance matrices as in the ML setting, Bayesian 

model fit is gauged by comparing the observed data with predicted values sampled from the 

posterior predictive distribution (PPD) of the measured variables (Gelman et al., 2004, p. 
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159; Gelman & Meng, 1996). Briefly, the PPD is a collection of predicted values (i.e., future 

observations) for the measured variables in a statistical model that are implied by the 

Bayesian estimates of the model parameters contained in the joint posterior distribution. The 

PPD is obtained mathematically by integrating (i.e., averaging) the observed data likelihood 

function with respect to the joint posterior. Samples of predicted values may be drawn from 

the PPD and compared to the observed sample data. Strong concordance between the 

predicted and observed data values suggest a good fitting model from a Bayesian 

perspective.

Due to space limitations, the assessment of model fit based on comparisons between the 

observed data and predicted values sampled from the PPD is detailed in section S6 in the 

online supplemental materials.

Model parameter estimates and inferences—Table S4 in the online supplemental 

materials presents the robust ML and EB parameter estimates. Consistent with results 

obtained by Zhang et al. (2007), there was substantial concordance between the ML 

parameter estimates and the posterior means and medians derived from the EB analysis, 

especially for the normally distributed parameters in the LY, the AL, and BE matrices (see 

also Kaplan & DePaoli, 2012, p. 668). In contrast, a number of the variance parameters for 

the measured and latent variables along the diagonals of the TE and PS matrices, 

respectively, appeared to be more accurately and credibly estimated using EB methods. In 

particular, the ML estimates of the variances on the latent variables capturing pre- to post-

treatment change in adolescent marijuana use [PS(2,2)], delinquency [PS(4,4)] and family 

functioning [PS(7,7)] were fixed to zero in order to remediate negative estimates of these 

parameters -- presumably reflecting an insufficient amount of information contained in the 

sample data for stable estimation of these variances. Given the theoretical centrality of the 

pre-to-post treatment change constructs in the SEM, it is most unsatisfying to constrain the 

variances on these latent factors to zero for the sake of obtaining a proper solution. 

Encouragingly, in contrast to the ML solution, each of the aforementioned variance 

parameters was properly estimated within the EB estimation approach. The EB posterior 

means were 1102.80 for PS(2,2), 11.79 for PS(4,4), and 0.06 for PS(7,7), all of which are 

within the valid parameter space and are more plausible estimates of these variance 

components than the fixed value of zero.

As described previously, the positive definiteness of the element-specific posterior estimates 

of the PS and TE matrices was assessed by computing the Cholesky factorization of each 

matrix. For both matrices, the Cholesky factorization was successfully computed, thereby 

verifying that both posterior matrices were positive definite (See section S4 and Figure S2 in 

the online supplemental materials).

Regarding the clinical process-mechanism-outcome linkages examined in the SEM, EB 

results for the regression parameters in the structural portion of the SEM (Figure 4) suggest 

a positive effect of the following sets of therapist interventions on change in family 

functioning: (a) proportion of individually focused general interventions [BE(7,9) = 17.49, 

95% credible interval: 6.41 – 28.29], and (b) the proportion of relationally focused meaning 

change interventions [BE(7,8) = 5.14, 95% credible interval: 0.64 – 9.77]. In turn, the 

Ozechowski Page 16

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



posterior means and intervals for the effects of change in family functioning on adolescent 

behavioral outcomes indicated that pre- to post-treatment increases in mother reports of 

family functioning predicted concurrent decreases in adolescent reports of delinquent 

behavior [BE(4,7) = −2.04, 95% credible interval: −3.65 – −0.39]. Change in family 

functioning did not appear to independently predict change in adolescent marijuana use 

[BE(2,7) = −4.53, 95% credible interval: −17.06 – 8.27]. Overall, the results of the structural 

portion of the SEM suggest that relatively frequent use of individually focused general 

interventions (i.e., seek information, acknowledge/clarify) as well as relationally focused 

meaning change interventions by therapists during sessions of FFT independently predict of 

pre- to post-treatment increases in levels of family functioning as reported by mothers in 

families of substance abusing adolescents. In turn, increases in mother-reported family 

functioning are predictive of concurrent reductions in levels of adolescent-reported 

delinquent behavior.

Discussion

The current analysis is a demonstration of the use of empirical Bayes estimation methods 

with data-derived prior parameters for studying clinically intricate process-mechanism-

outcome linkages using SEM with small samples which are typical in clinical research. This 

demonstration is intended to provide clinical methodologists and data analysts with a 

feasible alternative to ML estimation for multivariate SEMs addressing research questions 

regarding clinical processes and mechanisms of change in the presence of small samples. 

The strength of the EB approach detailed here is the stabilization of SEM parameter 

estimation using informative prior distributions with prior parameters derived from a 

preliminary model fitting using robust ML methods. Admittedly, referring to data-derived 

priors as “informative” is a misnomer given that such priors contain no information about 

the population parameter values apart from that already contained in the data. Nonetheless, 

the use of data-derived priors permits Bayesian estimation to proceed using MCMC 

estimation methods which afford considerable computational advantages over ML 

estimation with small samples. Foremost among these advantages is the elimination of 

improper SEM solutions containing impermissible values which often arise using ML 

estimation in small samples. A secondary computational advantage of EB MCMC 

estimation is the capacity to converge upon stable parameter estimates for large and complex 

SEMs which may be computationally intractable using ML estimation, especially given a 

small sample.

As noted previously, it is often the case that the results obtained using Bayesian methods are 

nearly identical to those obtained using ML estimation, as illustrated by the results of the 

current analysis (see Table S4 in the online supplemental materials). As such, one might 

question whether the added complexities of implementing EB MCMC methods yield any 

real benefits over and above more familiar and accessible ML methods. There are at least 

two reasons why EB MCMC methods are well worth the extra analytic effort even when 

yielding results very similar to ML. First, as noted previously, with small samples it is often 

the case that certain SEM parameter values, typically one or more latent factor variances, 

must be constrained or fixed to arbitrary and unrealistic values in order for ML estimation 

methods to converge upon a proper solution. In the current analysis, the variances of the 
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latent factors in the SEM measuring change in adolescent behavior [PS(2,2), PS(4,4)] and 

family functioning [PS(7,7)] were fixed to zero in order for ML to properly converge. Given 

that the study of change is sine qua non within clinical intervention research, especially 

studies examining clinical processes and mechanisms of intervention effects, constraining or 

eliminating model parameters regarding change is highly undesirable. In particular, fixing 

change factor variances to zero precludes drawing inferences about individual differences or 

heterogeneity in change processes, and also hampers the ability to calculate effect sizes to 

gauge the magnitude and clinical significance of intervention effects (see Feingold, 2009). 

Calculations of statistical power to detect clinical effects are also substantially impeded by 

constraining change factor variances to zero. In contrast to the ML solution, the EB 

estimation procedure yielded valid estimates for all three change factor variances listed 

above. Even though most other EB parameter estimates were very close to the 

corresponding ML estimates, the capacity to estimate the change factor variances which 

were constrained to zero in the ML analysis is a very important and worthwhile advantage of 

EB over ML estimation of SEMs in small samples. A secondary benefit of supplementing 

ML with EB estimation of SEMs is that the EB estimates may help to cross-validate the ML 

solution, which must always be regarded as suspect when sample sizes are small.

Despite the aforementioned benefits and advantages of Bayesian methods over ML for 

fitting complex statistical models to data obtained from small samples, caution is warranted 

when utilizing the EB approach discussed in this paper. In particular, a well known criticism 

of Bayesian statistical methods, especially for small-sample research, is the degree of 

sensitivity (i.e., non-robustness) of the results to the specification of the prior distribution 

(see Carlin & Louis, 2009, pp. 5–9). In other words, in any Bayesian analysis the influence 

of the prior may substantially outweigh that of the observed data when sample sizes are 

small thereby raising concerns that the results may be driven or shaped primarily by the 

researcher’s subjective prior knowledge or beliefs rather than by empirical evidence. Given 

that the prior parameters in the EB approach presented herein are themselves data-derived, 

one might take some degree of assurance that the EB methodology pays sufficient homage 

to the frequentist statistical adage of “let the data speak for themselves.” Nevertheless, users 

of EB methods should be ever mindful that the data may have relatively little to say when 

the sample size is small, as is the case in the current demonstration analysis. As such, any set 

of statistical results based on a small sample, regardless of the method of estimation, should 

be regarded as preliminary and perhaps suggestive of hypotheses that may be more 

rigorously tested in subsequent research with larger samples.

Although EB estimation with data-derived prior parameters is not a new idea, detailed 

guidelines and examples of such analyses for small-sample studies are absent in the clinical 

psychology literature. In fact, the current analysis is the first application of EB SEM for 

studying theoretically and clinically intricate linkages among observed therapist behaviors, 

pre- to post-treatment change in primary intervention targets (i.e., mechanisms of change), 

and behavioral treatment outcomes. Given that many clinical methodologists and data 

analysts may be unfamiliar with Bayesian SEM methods in general, let alone EB SEM using 

data-derived prior parameters, the current demonstration analysis may provide valuable 
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methodological instruction and guidance which, in turn, may promote more widespread use 

of EB SEM methods in clinical research involving prohibitively small samples.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Latent growth curve model for change in adolescent marijuana use and delinquency. 

Parameter names expressed using LISREL syntax. (MRJ = marijuana use, TLFB = Timeline 

Follow-Back Interview, YSR = Youth Self-Report Scale). Parameter names expressed using 

LISREL syntax.
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Figure 2. 
Latent change score model for family functioning. Covariance between Family Functioning 

at Pre-Treatment and the Adolescent Marijuana Use Intercept in Figure 1 [PS(5,1)] not 

displayed. FES = Family Environment Scale.
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Figure 3. 
Measurement model for observed therapist behaviors during sessions of FFT. Parameter 

names expressed using LISREL syntax.

Ozechowski Page 25

J Consult Clin Psychol. Author manuscript; available in PMC 2015 October 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 4. 
Structural model of the effects of therapist behavior on change in family functioning and 

adolescent marijuana use and delinquency. Parameter names expressed using LISREL 

syntax
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