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Abstract

Neurologic conditions including stroke, Alzheimer’s disease, Parkinson’s disease and 

Huntington’s disease are leading causes of death and long-term disability in the United States, and 

efforts to develop novel therapeutics for these conditions have historically had poor success in 

translating from bench to bedside. Hypoxia Inducible Factor-1alpha (HIF-1α) mediates a broad, 

evolutionarily conserved, endogenous adaptive program to hypoxia, and manipulation of 

components of the HIF pathway are neuroprotective in a number of human neurological diseases 

and experimental models. In this review, we discuss molecular components of one aspect of 

hypoxic adpatation in detail, and provide perspective on which targets within this pathway appear 

to be ripest for preventing and repairing neurodegeneration. Further, we highlight the role of HIF 

prolyl hydroxylases as emerging targets for the salutary effects of metal chelators on ferroptosis in 

vitro as well in animal models of neurological diseases.
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Adaptive mechanisms to stress: combating neurodegeneration

Over the past twenty years, our laboratory has used two primary approaches to understand 

therapeutic strategies for preventing oxidative stress-mediated neurodegeneration. First, we 

have studied the endogenous mechanisms that lead to or prevent cell death induced by 

depletion of the antioxidant glutathione in primary neurons in vitro. Detailed biochemical 

analysis of this form of death, recently termed ferroptosis [1], has revealed novel redox 
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regulated transcriptional pathways that can compensate for persistent glutathione depletion 

and oxidative stress in order to foster cell survival [2, 3]. In parallel, investigations into the 

mechanism of classical “antioxidants” in our in vitro model has surprisingly revealed 

remarkable and recurrent bias toward transcriptional adaptive mechanisms often involving 

more than 100 genes [4–7]. In this review, we will discuss evidence from these distinct 

investigations, and how that evidence has led us to focus our attention on an evolutionarily 

conserved adaptive response and its role in neuroprotection.

Oxygen-dependent metabolism

It is thought that self-replicating RNA became enclosed in a phospholipid membrane about 

3.8 billion years ago, forming the basic unit of life called the cell (reviewed by [8]. These 

cells were able to obtain the energy required to replicate themselves and perform other 

necessary tasks from the sea of organic molecules from which they originated. However, 

such a self-limiting situation drove cells to evolve mechanisms through which they could 

autonomously generate, store, and use energy.

The principal pathways of energy metabolism are remarkably similar in all present-day cells, 

indicating that they emerged early in the process of evolution and have been conserved. For 

instance, all cells use ATP as the currency of energy to drive the synthesis of cell 

constituents and to carry out other energy-requiring activities. The mechanisms by which 

cells generate ATP are thought to have evolved sequentially: first glycolysis, then 

photosynthesis, and finally oxidative metabolism. In glycolysis, glucose is broken down to 

produce 2 ATP molecules. In photosynthesis, energy from the sun is harvested to produce 

glucose, which creates molecular oxygen (O2) as a byproduct and causes that oxygen to 

become abundant in Earth’s atmosphere. In oxidative metabolism, oxygen is used to break 

down glucose much more efficiently than in glycolysis, yielding 36 ATP molecules instead 

of 2.

Because of this efficiency, almost all present-day cells—including archaea, bacteria, and 

eukaryotic cells in humans—use oxidative reactions as their principal source of energy. In 

order for cells to rely on oxygen for metabolism, they need to be able to sense a decrease in 

oxygen availability—a phenomenon called hypoxia—and to then trigger a response program 

that helps them to cope with that decrease. One simple way to do so is to have sensor 

enzymes that use oxygen to inhibit the response program; when oxygen supply drops, the 

sensors are inhibited and the response program is then rapidly activated.

Cells as simple as bacteria express prolyl 4-hydroxylase domain-containing enzymes 

(PHDs) that use oxygen to add a hydroxyl group to proline residues on specific substrate 

proteins. This hydroxylation is a highly evolutionarily conserved sensory mechanism for 

oxygen; in fact, prolyl 4-hydroxylation is the single most prevalent posttranslational 

modification in humans [9]. In all animal cells, even those of the simplex animal, Trichoplax 

adhaerens, one of the proteins subject to prolyl 4-hydroxylation is called Hypoxia Inducible 

Factor (HIF) [10].
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Hypoxia Inducible Factor

HIF was first identified as a transcriptional activator that binds to the hypoxia response 

element (HRE) in the promoter region of erythropoietin, and has since been shown to 

coordinate many evolutionarily conserved adaptive responses to hyoxia [11]. HIF target 

genes include VEGF, EPO, GLUT1, PFK1, BNIP3, Neuroglobin and dozens of other genes 

that work in concert at cellular, local tissue, and systemic levels, to restore oxygen delivery, 

to enhance glucose uptake and glycolysis, to reduce mitochondrial content and the rate of 

oxidative phosphorylation, and to regulate cell survival either by promoting adaptation or by 

engaging programmed cell death under prolonged or severe stress conditions. HIF-1 

regulates gene expression not only by direct binding to target gene promoters at the 

consensus sequence (5′-RCGTG-3′), but also by counting among its targets numerous 

transcription factors, histone demethylases, and microRNAs that can in turn affect gene 

expression [12].

HIF is a heterodimer consisting of a constitutively present β subunit and a short-lived, 

oxygen-regulated α subunit. HIF family members are diagrammed in Figure 1. Three α 

isoforms have been identified in humans, and HIF-1α is highly evolutionarily conserved, 

sharing approximately 90% homology with mouse and rat. All α and β subunits contain an 

N-terminus basic Helix-Loop-Helix (bHLH) domain for DNA binding and a PAS domain 

for dimerization. HIF-1α and -2α subunits contain two oxygen dependent degradation 

domain, and a C-terminal transactivation domain (C-TAD) that binds the co-activators CBP/

p300; HIF-3α is truncated to lack the C-TAD, and thus is speculated to act as a competitive 

inhibitor of HIF-1α and HIF-2α.

HIF subunits do not only activate transcription of HRE-regulated genes, though. HIF-2α 

was recently shown to bind the RNA-binding protein RBM4 and the cap-binding eIF4E2 in 

order to initiate translation of select mRNAs; this process occurs under conditions of 

hypoxia in which the normal cap-dependent translation machinery is inhibited [13]. HIF-1α 

binds to the transcription factor Sp1 to block activation of the gene encoding the mismatch 

DNA repair protein MSH2, and also binds to the Notch intracellular domain (NICD) in 

order to potentiate transcriptional activation of Notch target genes [12]. HIF-β subunits, first 

identified as the aryl hydrocarbon receptor nuclear translocator (ARNT), are necessary for 

xenobiotic response mediated by the aryl hydrocarbon receptor (AhR).

HIF-1α is the most widely studied of the α isoforms, and is expressed in all human cell 

types, while HIF-2α shows more restricted expression. Both HIF-1α and HIF-2α show some 

selectivity in their cassettes of target genes. For example, HIF-1α preferentially induces 

glycolytic enzyme genes whereas HIF-2α induces several genes involved in neurological 

disorders and cancer invasion [14]. HIF-1α appears to mediate acute responses to hypoxia, 

while HIF-2α is activated primarily during chronic hypoxia.

Constitutive deletion of the Hif-1a gene in mice causes lethality by day eleven of embryonic 

development (E11), resulting from cardiovascular malformation and defective cephalic 

vascularization, indicating that HIF-1α is essential for embryonic vascularization. Neural 

cell-specific HIF-1α-deficient mice exhibit hydrocephalus accompanied by a reduction in 
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neural cells and an impairment of spatial memory, indicating that expression of HIF-1α in 

neural cells is essential for normal development of the brain.

Oxygen-Dependent Degradation of HIF-1α

HIF-α protein half-life is regulated by oxygen-dependent degradation (Figure 1.A). Under 

normoxic conditions, prolyl hydroxylase domain enzymes (PHDs) hydroxylate P564 on 

HIF-1α, allowing the domain to be recognized by Von Hippel-Lindau (VHL) protein, an E3 

ubiquitin ligase, and thereby targeted for degradation by the 26s proteasome [15–17]. Under 

hypoxia, a decrease in PHD activity leads to HIF-1α accumulation, heterodimerization with 

β-subunits, recruitment of the histone acetyltransferases p300 and CBP, and transactivation 

of target gene expression [18].

A number of other proteins contribute to the canonical PHD-VHL-Proteasome degradative 

pathway. ARD1 acetylates lysine532 of HIF-1α, located in the ODD domain. This 

modification appears to enhance recruitment of VHL, but is not required for HIF-1α 

degradation under normal conditions [19]. VHL binds hydroxylated PHD in complex with 

Elongin B, Elongin C, Cul2, and Rbx1, all of which are required for ubiquitination [20].

HIF Prolyl Hydroxylases (PHDs)

Prolyl Hydroxylase Domain (PHD) enzymes are highly conserved iron-dependent, 2-

oxoglutarate-dependent dioxygenases. PHDs are the primary oxygen sensors that keep 

HIF-1α protein levels low during normoxia and allow the protein to be rapidly stabilized 

upon hypoxia [16, 17]. Pharmacological and molecular studies have demonstrated that PHD 

inhibition is broadly neuroprotective and mediates the salutary effects of iron chelating 

drugs. FDA-approved drugs that inhibit PHDs have been identified and are poised for 

clinical trials [21–23].

PHDs, also known as egl nine homologs (EGLNs), exist in three isoforms named PHD1 

(EGLN2), PHD2 (EGLN1) and PHD3 (EGLN3). They are part of a superfamily of iron-

dependent, 2-oxoglutarate-dependent dioxygenases; other members of this family include 

the collagen prolyl hydroxylases, which regulate the extracellular matrix, and the jumonji-

domain containing histone demethylases, which regulate gene expression through chromatin 

structure modifications. PHDs hydroxylate both P564 and P402 on HIF-1α, but under 

conditions of normoxia, P564 is hydroxylated prior to P402 and primarily regulates oxygen-

dependent degradation [24]. PHD2 is the most abundant PHD and the most important in 

setting steady-state levels of HIF-α subunits [25]. PHDs, especially PHD2 and PHD3, are 

transcriptionally upregulated by HIF-1, and are therefore important not only for basal 

regulation of HIF but for feedback-inhibition during prolonged hypoxia or rapid degradation 

upon reoxygenation [26]. Although all three PHD isoforms recognize the LXXLAP motif, 

they show some isoform-selective preferences for flanking regions on substrates, which 

provides some direction for attempts to develop isoform-specific inhibitors [27].

Several isoform-specific, HIF-independent functions of the PHDs have been identified. 

Some alternative substrates have been identified that show selectivity among the PHD 

isoforms. The β-(2)adrenergic receptor, a G-protein coupled receptor important for cardiac 
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function, is hydroxylated specifically by PHD3, ubiquitinated by VHL, and proteasomally 

degraded under hypoxia [28]. Rbp1, the large and enzymatically active subunit of RNA 

polymerase II, is recruited to DNA under oxidative stress conditions in a manner requiring 

its hydroxylation at Pro1465 and subsequent non-degradative ubiquitination by VHL; PHD1 

is necessary for Pro1465 hydroxylation while PHD2 inhibits this hydroxylation [29]. PHD1 

also specifically regulates Cyclin D1 in a hydroxylase-dependent, transcription-dependent, 

HIF-independent manner: PHD1 inactivation decreases Cyclin D1 levels and suppresses 

mammary gland cell proliferation and tumor formation in vivo [30].

Indeed, PHDs are not only gatekeepers for the oxygen-dependent degradation of HIF-1α, 

but are integrated sensors of cellular metabolism [31]. Proline hydroxylation is 

enzymatically coupled to the decarboxylation of 2-oxoglutarate (2-OG), a process which 

yields succinate and CO2. PHD activity therefore requires 2-OG and is inhibited in the 

presence of high concentrations of tricarboxylic acid cycle intermediates such as pyruvate, 

isocitrate, oxaloacetate, succinate, or fumarate. Since PHD enzyme activity also requires 

iron, PHDs serve moreover as sensors of iron homeostasis [32].

Although it is well-established that PHDs, particularly PHD2, are critical for normoxic 

degradation of HIF-1α, it remains debated exactly how hypoxia inhibits PHD activity. At 

least three distinct models have been proposed to explain this phenomenon. The first model 

proposes that PHD enzymatic activity could be reduced as substrate levels drop; this is a 

simple model in which PHDs are the primary oxygen sensors regulating HIF, and is 

consistent with Km for PHD observed in vitro [33]. The second model argues that O2 

consumption by an intact electron transport chain redistributes O2 intracellularly into 

mitochondria [34, 35]. Models one and two are not mutually exclusive, however, since 

subcellular O2 gradients could shift the apparent Km of PHDs for O2 in vivo. The third 

model purports that mitochondrial peroxide production increases under hypoxia, and that 

H2O2 dismutated from O2
− produced at Reiske proteins is a specific signaling molecule 

released from mitochondria in order to inhibit PHDs [36]. Work by several groups suggests 

that the stabilization of HIF-1α by hypoxia requires signaling through mitochondria and 

intracellular kinases, in contrast to HIF-1α stabilization by anoxia or by PHD inhibiting-iron 

chelators [37, 38]. Models two and three invoke conflicting data on whether mitochondrial 

ROS production is necessary for or irrelevant to hypoxic HIF stabilization.

Von Hippel-Lindau Protein

VHL was first identified as a tumor-suppressor gene that is mutated in Von Hippel-Lindau 

syndrome, a dominantly inherited familial cancer syndrome that precipitates a variety of 

malignant and benign tumors. The most common of these tumors are central nervous system 

hemangioblastomas (benign, highly-vascularized tumors), pheochromocytomas (tumors 

originating from the chromaffin cells of the adrenal glands), and clear-cell renal-cell 

carcinomas (ccRCCs). Somatic mutations affecting VHL are also seen in the majority of 

cases of sporadic ccRCC.

VHL was shown to mediate HIF-1α degradation, which explains the angiogenic phenotype 

of many VHL-null tumors [39]. VHL was subsequently shown to have a number of 
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substrates other than HIF-α, including fibronectin and collagen IV α2 chain in the 

extracellular matrix, microtubules, the RNA Polymerase II subunits Rbp1 and Rbp7, 

atypical protein kinase Cλ, VHL-interacting deubiquitinating enzymes VDU-1 and VDU-2, 

p27, p53, and Jade-1 [40]. VHL-mediated ubiquitination does not always lead to substrate 

degradation, though; VHL stabilizes p53 and Jade-1, for example [41].

The Ubiquitin-Proteasome Degradation Pathway

An ATP-dependent proteolytic system independent of lysosomes was first described in 

reticulocytes [42], and the Nobel Prize in Chemistry 2004 was awarded jointly to Aaron 

Ciechanover, Avram Hershko and Irwin Rose for the discovery of ubiquitin-mediated 

protein degradation.

Proteins are targeted for proteasomal degradation by the covalent addition of at least four 

ubiquitin molecules to a lysine residue on the client protein [43]. The addition of ubiquitin 

requires three enzymatic steps. First, a ubiquitin-activating enzyme (E1) couples the 

hydrolysis of ATP with adenylylation of a ubiquitin molecule [44]. This adenylylated 

ubiquitin is then transferred to a cysteine of a second enzyme, ubiquitin-conjugating enzyme 

(E2). Finally, a ubiquitin ligase (E3) recognizes the specific protein to be ubiquitinated and 

transfers the ubiquitin from E2 to the target protein. Addition of further ubiquitin groups can 

be mediated by an E3 or an E4 polyubiquitin chain conjugation factor. This conjugation is 

significant, since the way in which ubiquitin chains are constructed can determine the fate of 

ubiquitinated proteins [45]. Polyubiquitinated proteins are recognized by the 19S regulatory 

cap, then deubiquitinated and unfolded, so that they can be translocated through a narrow 

gate into the central channel of the 20S catalytic core of the proteasome. The beta-subunits 

of the 20S core act as proteases to degrade client proteins, releasing short peptides typically 

7–9 amino acids in length.

ATP is required at several steps of the ubiquitin-proteasome degradative pathway (reviewed 

by [46]. First, ATP hydrolysis is required for activation of ubiquitin by E1, but not for later 

steps of ubiquitin conjugation. ATP binding, but not hydrolysis, is required for the assembly 

of the 26S proteasome from the 19S and 20S particles, as well as for target protein binding 

by the 19S subunit, gate opening, translocation, and proteolysis. ATP hydrolysis is required 

for the unfolding of substrate proteins and, in some cases but not all, for proteolysis and 

deubiquitination [47, 48].

ATP is required for proteasomal degradation and can also be depleted under conditions of 

ischemia (when blood supply drops, leading to a scarcity of oxygen, glucose, and other 

energy substrates). Nevertheless, it is worth noting that proteasomal degradation continues 

during brief ischemia, and can even mediate rapid preconditioning tolerance to later harmful 

ischemia [49]. In contrast, prolonged ischemia can inactivate proteasomal degradation, 

leading to the accumulation of ubiquitinated proteins. Such accumulation may contribute to 

cell stress, or form aggregates that may in turn be degraded by the autophagasome/lysosome 

pathway [49]. A major regulator of ATP homeostasis, AMPK is negatively regulated by the 

proteasome such that inhibition of proteasomal degradation can stimulate the energy 

conservation program mediated by AMPK [50].
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Regulation of HIF-1α by ODD-independent mechanisms

HIF-1α synthesis, stability, and ability to activate target gene transcription can be regulated 

through many known ODD-independent mechanisms under different physiological and 

pathological conditions.

Regulation of HIF-1α activity

Once HIF-1α is stabilized, its ability to bind p300/CBP is negatively regulated by an O2
− 

and Fe2
+-dependent asparaginyl hydroxylase, a Factor Inhibiting HIF (FIH), which targets 

Asn803 within the C-TAD [51]. In addition to CPB and p300, other histone 

acetyltransferases (HATs) that coactivate transcription have been shown to interact with and 

potentiate HIF, including SRC1 and TIF2. On the other hand, the HAT CITED2 competes 

with HIF-1 for binding to p300/CBP and is transcriptionally upregulated in hypoxia by 

HIF-1, and thus may provide a negative feedback on HIF1 activity during extended hypoxia 

[52]. CITED2 is also a negative regulator of NF-κB mediated gene transcription, and thus 

may serve a general role in feedback regulation for homeostatic programs.

HIF-1α phosphorylation by casein kinase 1delta at Ser247 within the PAS domain inhibits 

dimerization with HIF-α and subsequent transcriptional activity, without affecting HIF-1α 

stability or nuclear accumulation [53]. HIF-1α phosphorylation by p42 / p44 mitogen-

activated protein kinases (MAPK1/3) at Ser641/643, and this phosphorylation enhances 

HIF-1-dependent nuclear localization and gene transcription [54, 55]. The regulatory 

associated protein of mTOR (Raptor) interacts with HIF-1α at an mTOR signaling (TOS) 

motif located in the N terminus of HIF-1α. Raptor facilitates binding of HIF-1α to the co-

activator CBP/p300 thus enhancing HIF-1α-mediated transcription [56]. S-nitrosylation of 

Cys800 and the redox responsive protein Ref-1/APE-1 also promote HIF-1 transcriptional 

activity in a manner dependent on p300 [57–59].

ODD-independent Regulation of HIF-1α protein stability

The half-life of HIF-1α is regulated in an O2-independent manner by the competitive 

binding of either the heat shock protein 90 (HSP90) or the receptor of activated protein 

kinase C (RACK1) to the PAS domain of HIF-1α. RACK1 is an E3 ubiquitin ligase that 

interacts with Elongin C via a binding site that shows significant sequence similarity to 

VHL, thereby promoting HIF-1α ubiquitination and degradation in a manner that is 

independent of PHD2 and VHL [60]. RACK1-mediated HIF-1α degradation can be blocked 

not only by HSP90, but by Calcineurin, a calcium-activated phosphatase that 

dephosphorylates RACK1 and thus blocking its dimerization and binding to Elongin C, 

suggesting that HIF-1α can be stabilized by increases in intracellular calcium [61].

GSK3 can directly phosphorylate Ser551, Thr555, and Ser589 within the ODD domain, 

leading to recognition by a ubiquitin ligase called F-box and WD protein (Fbw7) and 

targeting HIF-1α for proteasomal degradation independent of prolyl hydroxylation and VHL 

binding [62, 63]. HIF Associated Factor (HAF), an E3 ligase for HIF-1α (but not HIF-2α), 

plays an important role in oxygen-independent HIF-1α regulation in cancer by degrading 

HIF-1α in response to growth factor signaling, and perhaps other stimuli even in the 
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presence of hypoxia [64]. The small ubiquitin-related modifier (SUMO) can be conjugated 

to HIF-1α at Lys391 and Lys477 and enhance HIF-1α stability [65], but the mechanism by 

which this stabilization occurs and the physiological or pathological context in which 

SUMOylation regulates HIF-1 has not been determined. In response to oxidative stress, a 

small ubiquitin-like protein called neural precursor cell expressed developmentally down- 

regulated 8 (NEDD8) becomes conjugated to the PAS domain of HIF-1α and stabilizes 

HIF-1α [66]. The role of ROS in hypoxic HIF-1α stabilization is controversial.

Regulation of HIF-1α transcription and translation

HIF-1α is regulated by positive and negative feedback loops; in addition to hypoxic 

induction of PHD3 described above, Hif1a itself is among the target genes of HIF-1α. 

Hypoxic induction of HIF-1α mRNA requires the activity of the PI3K/Akt pathway but not 

ERK1/2 pathway [67].

NF-κB, a major mediator of immune responses, binds to the promoter of HIF-1α and 

increases HIF-1α mRNA levels under hypoxia [67]. Crosstalk between NF-κB and HIF-1α 

is complex; for example, NF-κB has long been known to be induced by hypoxia [68], and 

more recently it was shown that NF-κB protein levels are increased under hypoxia 

downstream of HIF PHD1 hydroxylation of IKKβ [69].

The NO donors NOC18 or S-nitrosoglutathione induce HIF-1α expression and 

transcriptional activity without inhibiting HIF-1α hydroxylation, ubiquitination, and 

degradation, indicating an effect on HIF-1α protein synthesis that was confirmed by pulse 

labeling studies and shown to require PI3K and MAPK signaling through the translational 

regulatory proteins 4E-BP1, p70 S6 kinase, and eIF-4E [70]. The tumor suppressor p53 

binds HIF-1α and promotes its degradation in hypoxia via Mdm-2-mediated ubiquitination 

and proteasomal degradation [71]. This can be overcome by Jun activation domain-binding 

protein-1 (Jab-1), which was previously known as a coactivator of the AP-1 transcription 

factor before it was shown to activate HIF-1 transcriptional activity by interfering with p53 

binding to HIF-1 [72].

Growth factor signaling boosts the rate of translation of HIF-1α, and a select group of other 

mRNAs (reviewed by [73]). Receptor tyrosine kinases in the plasma membrane are activated 

by extracellular growth factor ligand binding, which initiates two parallel cascades of 

phosphorylation activation: PI3K → Akt/PKB → mTOR and RAS→MEK→ERK. mTOR 

and ERK converge on two mechanisms of promoting translation: activation of S6K and 

subsequent activation of the ribosomal protein S6, as well as inhibition of eukaryotic 

translation initiation factor 4E binding protein (4E-BP1), to disinhibit cap-dependent 

translation mediated by eIF-4E. Additionally, ERK activates MNK, which directly 

phosphorylates eIF-4E to increase its activity. It is not known precisely how mTOR 

signaling promotes the translation of HIF-1α, but HIF-1α is likely to be particularly 

sensitive to fluctuations in the rate of protein synthesis due to its short half-life 

(approximately 5 minutes) under normoxic conditions. The many levels of regulation on 

HIF-1α, and its involvement in cellular responses to stimuli other than hypoxia such as 
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inflammation and growth factor signaling, all support the notion that HIF-1α is a critical 

central regulator of adaptive transcriptional responses.

HIF PHD inhibition as a neuroprotective strategy

Because HIF-1α is primarily degraded under normoxia in a manner requiring prolyl 

hydroxylase enzymes (PHDs), HIF can be pharmacologically induced by structurally diverse 

small molecule PHD inhibitors. HIF PHD inhibition consistently produces neuroprotection 

in diverse neurological disease models, including stroke [5, 74], Alzheimer’s Disease [75]; 

[76]), allergic encephalomyelitis [77], Parkinson’s Disease [78], oxidative stress [79], 

excitotoxicity [80], trophic factor deprivation [81] and mitochondrial dysfunction [82] 

(Table 1). PHDs have been identified as the critical targets of iron chelators such as 

desferoxamine that are clinically beneficial in many neurological disorders and that 

recapitulate the neuroprotective effects of hypoxic preconditioning on later ischemic 

challenge [5]. Novel PHD inhibitors poised for clinical trials have been identified through 

high-throughput screening of FDA-approved drug libraries [83]. PHD inhibition produces 

neuroprotection via both HIF-dependent and HIF-independent mechanisms [84]. Thus, PHD 

inhibition is a promising therapeutic approach that engages multiple downstream effector 

pathways, of which HIF is one.

Prolyl hydroxylation is substantially more sensitive than asparaginyl hydroxylation to 

inhibition by iron chelators [85]. Therefore, FDA-approved iron chelators or more specific 

PHD inhibitors could therapeutically activate the many downstream effectors of PHD 

signaling. There is also potential for off-target effects upon pathophysiological or 

pharmacological HIF manipulation. For these reasons, probing the mechanisms by which 

HIF is regulated by ischemia and by candidate drugs is as important for safety and efficacy 

as measuring HIF activity itself. Identifying the physiological, pathological and 

pharmacological conditions permissive to HIF stabilization and their mechanism of action is 

an important first step in understanding the therapeutic benefits or potential side effects of 

manipulating HIF signaling.

HIF PHD inhibitors abrogate ferroptosis, a novel form of non-apoptotic 

death

Recently a novel form of iron-dependent, non-apoptotic death was defined by Brent 

Stockwell and coworkers [1]. Using Ras mutant cancer cells, the group elegantly 

demonstrated that cancer cell death induced by the chemotherapeutic agent, erastin had 

unique morphological, biochemical and genetic features when compared to cell death 

induced by the non-specific tyrosine kinase inhibitor, staurosporine, the ROS hydrogen 

peroxide, or the autophagy inducer rapamycin. Specifically, ferroptosis could be blocked by 

iron chelators (DFO), Erk signaling pathway inhibitors (e.g. U0126), and cycloheximide, a 

protein synthesis inhibitor. Moreover, an unbiased short interfering RNA screen involving 

1,087 genes identified 6 genes that are required for errastin induced ferroptosis: ribosomal 

protein L8 (RPL8), iron response element binding protein 2 (IREB2), ATP synthase Fo 

complex subunit C3 (ATP5G3), citrate synthase (CS), tetratricopeptide repeat doman 35 

(TTCC35), and acetyl-CoA synthetase family member (ACSF2) (Table 2). In this model, 

Speer et al. Page 9

Free Radic Biol Med. Author manuscript; available in PMC 2015 February 13.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



cell death occurs downstream of inhibition of the plasma membrane transporter for cystine, 

Xc−. Inhibiton of cystine transport leads to depletion of antioxidant levels via starvation of 

cysteine, the rate limiting amino acid precursor in glutathione synthesis. Erastin thus induces 

oxidative stress which ultimately leads to death. The findings are intriguing because it is 

well established that iron chelators [79], Erk signaling pathway inhbitors [86, 87] and 

cycloheximide [88] can abrogate oxidative glutamate toxicity in neurons. In the neuronal 

paradigm, glutamate, like erastin, inhibits cystine uptake leading to an iron dependent, 

protein synthesis dependent form of cell death. And while it as yet unclear whether the 

genes necessary for erastin induced ferroptosis also are required for oxidative glutamate 

toxicity in neurons we have shown that an on target effect of iron chelators in preventing 

oxidative glutamate toxicity (likely a neuronal form of ferroptosis) are the HIF Prolyl 

hydroxylases [5], specifically HIF Proly Hydroxylase 1 [89]. Thus we would argue that the 

salutary effects of iron chelators in preventing ferroptosis can be assigned to inhibition of a 

specific family of iron, 2-oxoglutarate and oxygen dependent dioxygenases, the HIF prolyl 

hydroxylases, and not to direct inhibition of Fenton Chemistry or reactive oxygen species 

formation.

Cerebral Ischemia

Epidemiology and Pathology of Cerebral Ischemia

Stroke is a leading cause of death and long-term disability in the US [90]. Every year, about 

795,000 people in the United States have a stroke, and about 23% of people who survive a 

stroke eventually have another [90]. In 2010, the estimated cost of stroke in the United 

States was $53.9 billion, including the cost of health care services, medications, and lost 

productivity [90]. Cerebral ischemia is the most common form of stroke, accounting for 

approximately 87% of all strokes. Cerebral ischemia is defined as insufficient blood flow to 

the brain to supply an adequate amount of oxygen and nutrients. Cerebral ischemia may 

result from occlusion or constriction of blood vessels. At present, there is only one FDA-

approved drug treatment for cerebral ischemia: the thrombolytic agent tissue plasminogen 

activator (tPA), which is recommended for IV administration only within the first 4.5 hours 

following onset of stroke symptoms.

Unlike hypoxia, in which cells can maintain ATP levels by shifting metabolism away from 

mitochondrial respiration and toward glycolysis, ischemia involves a reduction in glucose 

supply. Glucose is generally understood to be the obligatory energy substrate for the brain; 

in an intact brain, astrocytes take up glucose and utilize it for glycolysis, then shuttle 

pyruvate and lactate into neurons, which then use these substrates for oxidative 

phosphorylation [91]. More recently it has been shown that ketone bodies can also be used 

by the brain as energy substrates, and indeed are taken up by the brain at an increased rate 

during cerebral ischemia [92, 93]. Nonetheless, in the ischemic core where oxygen and 

glucose supply are lowest, ATP may be severely depleted within minutes; in a rat model of 

forebrain ischemia, within 10 minutes glucose concentration dropped from 3.64 to 0.21 

μM/g and ATP concentration dropped from 2.64 to 0.18 μM/g, with corresponding increases 

in lactate and AMP [94].
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ATP depletion in the ischemic core causes rapid necrotic cell death. Although many ATP-

requiring processes such as gene transcription, DNA repair, protein synthesis and 

trafficking, and proteasomal degradation can be shut down briefly without causing lasting 

harm, neurons need a constant supply of ATP in order to maintain ionic gradients that 

support membrane polarization. Loss of membrane potential leads to excessive glutamate 

release, activation of extrasynaptic NMDA receptors, aberrant calcium influx, mitochondrial 

damage, and downstream intracellular signaling events culminating in excitotoxic cell death 

(reviewed by [95]). In addition to glutamate-mediated mechanisms, a number of other ion 

channels can contribute to ion dyshomeostasis and activate cell death pathways, including 

sodium-calcium exchangers, hemichannels, volume-regulated anion channels, acid-sensing 

channels, transient receptor potential channels, and nonselective cation channels [96]. 

Aberrant calcium influx can cause not only to excitotoxic release of neurotransmitters but 

also activation of calcium-dependent intracellular death pathways (e.g. through calpain), and 

mitochondrial permeability transition leading to caspase-dependent apoptotic cell death.

In the tissue surrounding a focal ischemic core, termed the penumbra, collateral blood flow 

produces gradients of oxygen and glucose that allow cells to avoid rapid energetic crisis and 

necrotic cell death, but many of these cells die in the 24–72 hours following the ischemic 

event. This death is largely apoptotic rather than necrotic and follows a complex cascade of 

excitotoxicity, inflammation and oxidative stress [97]. Current strategies for developing 

novel therapeutics to reduce the loss of brain tissue and motor/cognitive function are focused 

on restoring homeostasis and promoting neuronal survival within the penumbral regions. In 

experimental models of cerebral ischemia, hypoxic preconditioning has been shown to be 

extremely effective in reducing infarct volume and behavioral deficits ([98]; reviewed by 

[99]). Elucidating the mechanisms by which hypoxic preconditioning affords protection has 

been a major focus of ischemia research. Endogenous sensors of hypoxia and their 

downstream effectors of broad, evolutionarily conserved adaptive responses to hypoxia are 

prime targets for therapeutic manipulation [100]. Key among these targets is the 

transcriptional activator Hypoxia-Inducible Factor (HIF).

HIF-1α in cerebral ischemia

HIF-1α protein levels are increased in mouse and primate brains after experimental cerebral 

ischemia [101, 102], but it is unclear whether HIF-1α limits or contributes to ischemic 

pathology.

In vivo models of cerebral ischemia show that HIF-1α can prevent injury [103] and improve 

functional recovery [104], or increase infarct and edema volume [105, 106]. In a rat model 

of focal ischemia, a biphasic induction of HIF-1α was observed both in vivo and in vitro at 

1–12 hours after stroke and then again after 48 hours, and selective inhibition of HIF-1α at 

the early but not late timepoint was neuroprotective [107]. In vitro models of cerebral 

ischemia also show HIF-1α either protects or exacerbates cell death via expression of target 

genes that encode both pro-survival and pro-apoptotic proteins [108, 109], and demonstrate 

divergent roles of HIF-1α in distinct CNS cell types [110].

Hypoxia and ischemia activate other stress response pathways that engage in cross-talk with 

the HIF pathway, including ER stress-induced activation of the unfolded protein response 
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(UPR) and suppression of protein synthesis [111]. Accumulation of misfolded proteins in 

the ER lumen leads to PERK-mediated phosphorylation of eIF2α, inhibiting protein 

synthesis to prevent further accumulation of unfolded proteins in the ER. Therefore the rates 

of translation of HIF-1α, its target genes, and its interactors are subject to additional layers 

of regulation under hypoxic or ischemic conditions. In vitro studies using oxygen and 

glucose deprivation (OGD) have indicated that glucose is required for hypoxic HIF-1α 

stabilization in human mesangial and hepatoma (Hep3B) cells [112] and in human renal 

carcinoma (UOK262) cells [113]. In considering how glucose deprivation could curtail 

hypoxic HIF-1α stabilization, these researchers considered that glucose not only supports 

ATP production through glycolysis and mitochondrial oxidative phosphorylation, but also 

supplies the pentose phosphate pathway (also known as the hexose monophosphate shunt) 

which produces NADPH. They proposed a model by which glucose fuels NADPH 

production through the pentose phosphate pathway/hexose monophosphate shunt to provide 

a substrate for NADPH-dependent oxidases, which in turn produce reactive oxygen species 

that inhibit prolyl hydroxylases. According to this model, glucose deprivation enhances 

HIF-1α degradation by relieving a ROS-mediated inhibition on PHD enzyme activity. 

However, it remains unclear 1) whether PHDs in fact mediate the effects of glucose and 2) 

whether this model is applicable to neuronal cells. More recent work demonstrated that 

NEDD8 conjugation to the PAS domain mediates ROS-induced HIF stability, calling into 

question whether proline hydroxylation is truly the target through which glucose deprivation 

affects HIF-1α levels [114].

Quantitative mechanistic reporters for HIF-1α as a surrogate for dynamically monitoring 
PHD activity in cells

Although the potential therapeutic value of HIF PHD inhibition and HIF-1α in cerebral 

ischemia has been widely appreciated for over a decade, prior studies of HIF-1α regulation 

in neurons have been limited by the difficulty of performing quantitative analysis of 

immunoblotting employing commercially available HIF-1α antibodies. This is particularly 

true in neuronal cells, where HIF-1α levels are very low, and complicates the study of post-

transcriptional modifications of HIF-1α that are key for understanding the mechanisms by 

which it is regulated. Further, given the neuroprotective properties of prolyl hydroxylase 

inhibition, a practical, quantitative reporter for PHD enzyme activity in vivo would be 

extremely valuable. To address this gap, we have developed a sensitive, specific reporter to 

quantitatively examine distinct parts of the canonical HIF degradation pathway in human 

neuronal cells, representing a substantial departure from the status quo, namely the approach 

of looking only at HIF-1α levels and HIF-1 mediated gene transcription [115].

Hypoxia Response Element (HRE)-promoter-driven luciferase reporters have been widely 

used to measure HIF transactivation of target gene expression. For example, HRE-luciferase 

expressed in an immortalized mouse striatal neuron cell line, HT22, was used for high-

throughput screening of drugs that activate HIF-mediated transcription [116]. These 

constructs are valuable tools for assaying an endpoint of HIF activation, but do not provide 

mechanistic insight regarding HIF regulation. For measuring HIF-1α protein accumulation, 

several reporters containing luciferase and GFP have been developed [117–119]. The main 

advantage of using luciferase rather than GFP is the substantial increase in sensitivity with 
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an enzymatic assay; luciferase is three orders of magnitude more sensitive and has a 

correspondingly much wider dynamic range of linearity than fluorescent proteins. 

Quantitative assays of luciferase activity can be confirmed with immunoblotting with a 

highly specific and sensitive commercially available monoclonal antibody against firefly 

luciferase that are much more quantitative than currently available antibodies against 

HIF-1α.

A full-length HIF-1α reporter such as that used by Moroz et al. which includes the 

transactivation domain introduces the confound of exaggerating HIF-mediated gene 

transcription, thus engaging feedback loops that may alter HIF-1α regulation. In contrast, a 

reporter containing only the ODD lacks the dimerization and DNA-binding domains, 

allowing it to report on the oxygen-dependent regulation of HIF-1α protein levels without 

interfering with endogenous HIF signaling. Some studies have inferred PHD activity from 

HIF-1α levels without directly assaying PHD enzyme activity [112] [113]. This is 

problematic given that HIF-1α protein stability is regulated in PHD-independent ways. PHD 

enzymatic assays employing GST-fusion constructs have been performed in cell lysates 

from HEK293 cells [120], but not in neuronal cells. In vitro assays of PHD enzyme activity 

have been developed, but require large amounts of recombinant enzyme and expensive 

reagents (reviewed by [121]). Therefore it would be highly valuable to be able to 

biochemically detect not only stabilization but prolyl-hydroxylation and ubiquitination of a 

HIF-1α reporter in order to identify mechanisms by which HIF-1α is stabilized under given 

experimental conditions.

A fusion protein containing the oxygen dependent degradation domain of HIF-1α (a.a. 530–

652) fused to firefly luciferase under control of the cytomegalovirus (CMV) promoter has 

been previously used as a reporter for HIF-1α stabilization in high-throughput screening for 

novel activators of the hypoxic response [83], and for in vivo imaging [122] [117]. These 

studies employing the ODD-luc reporter have looked only at accumulation of the reporter as 

measured by luciferase activity assay, without investigating the mechanism by which it 

accumulates or is degraded. We have used the ODD-luc reporter as a quantitative reporter 

for the oxygen-dependent degradation of HIF-1α in SH-SY5Y human neuroblastoma cells, 

taking advantage of luciferase activity assays and the wider dynamic range of luciferase 

antibodies relative to antibodies for endogenous HIF-1α. We have confirmed that ODD-luc 

is regulated by PHD, VHL, and the proteasome in a manner similar to endogenous HIF, and 

found that ODD-luc is a practical, specific, and quantitative reporter for the oxygen-

dependent degradation of HIF in human neuronal cells [115]. Further, immunoblotting for 

P564 hydroxylation on ODD-luc provides a sensitive and quantitative direct assay of PHD 

enzyme activity in human neuronal cells. We expect this reporter to provide important 

information regarding PHD activity in vitro and in vivo following ischemia (and in other 

neurological disorders) and we expect that it will facilitate strategies to stabilize HIF in 

ischemia. These efforts will provide additional, needed clarification regarding the salutary 

and deleterious roles of HIF in ischemia, and how HIF PHD inhibition can be used to bias 

outcomes favorably.
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Concluding remarks

In this review, we have tried to highlight the important evolutionary role that hypoxic 

adaptation has played in metazoans. We have reviewed the molecular mechanisms 

subserving post transcriptional and transcriptional adaptation to hypoxia, focusing primarily 

on the nervous system. Finally, we highlight the fact that HIF activation and HIF prolyl 

hydroxylase inhibition are not interchangeable, and the articulate potential roles for 

inhibitors of the HIF prolyl hydroxylases in a range of neurological conditions, particularly 

stroke.
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Highlights

• Homeostatic responses to hypoxia have evolved over billions of years.

• Central sensors in adaptive responses to hypoxia are the prolyl-4 hydroyxlases- 

oxygen, iron, and 2-oxoglutarate dependent dioxygenases

• Molecular and pharmacological inhibition of the HIF prolyl hydroxylases in 

normoxia by “antioxidant” iron chelators not only stabilizes HIF-1, but also 

protects against oxidative stress induced ferroptosis in vitro, but also against 

cerebral ischemia in vivo.

• HIF prolyl hydroxylase inhibition protects via HIF dependent and independent 

pathways.
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Figure 1. Schematic of oxygen-dependent HIF-1α regulation
A. Under normoxic conditions, PHDs hydroxylate P564 on HIF-1α, allowing it to be 

recognized by the E3 ubiquitin ligase von Hippel-Lindau protein (VHL), ubiquitinated, and 

targeted for proteasomal degradation. As members of a large family of iron- and 2-

oxoglutarate dependent dioxygenases, PHDs integrate multiple signals of metabolic 

homeostasis, and are one of many such sensors; further, PHDs have HIF-independent 

substrates, and HIF protein levels and transcriptional activity are regulated in many PHD-

independent ways. B. Under hypoxia, PHDs are inhibited, allowing HIF-1α to elude 

degradation, dimerize with its β partner in the nucleus, bind transcriptional coactivators and 

hypoxia response elements in promoter regions of target genes, and enhance transcription 

rates. Glucose deprivation has been reported to decrease hypoxic stabilization of HIF-1α; 

the mechanisms by which this occurs are unclear.
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Table 2
Features of Ferroptosis (from [1])

Ferroptosis appears to be a biochemically, morphologically and genetically distinct form of cell death that is 

sensitive to iron chelation in cancer cells. While ferroptosis has not been characterized fully in neurons, our 

studies suggest that several agents known to block ferroptosis in cancer cells, also block ferroptosis in primary 

neurons (e.g. Erk inhibitors, cycloheximide, and iron chelators). Our studies suggest that iron chelators target 

the HIF prolyl hydroxylases to inhibit ferroptosis [89]; [123].

Ferroptosis

Characteristic features Occurrence

Morphology Smaller mitochondria with increased membrane density

Cell death mechanism Iron dependent ROS accumulation

Precursor requirement Requires initial lipid precursor

Possible cell death rescue mechanisms Iron chelation and genetic inhibition of cellular iron uptake

Regulatory genes RPL8, IREB2, ATP5G3, CS, TTC35, ACSF2,

Reported inducers RSLs such as erastin and RSL-3

Characterized inhibitor Ferrostatin-1

Other inhibitory compounds Iron chelator DFO, antioxidant trolox, MEK inhibitor U0126, and 
protein synthesis inhibitor cycloheximide

Reported incidences of ferroptosis Glutamate induced neurotoxicity and cell death of certain cancer 
cells

Bioenergetics failure (A necrotic feature) No

Cytoplasmic and organelle swelling (A necrotic feature) No

Plasma membrane rupture (A necrotic feature) No

Apoptotic bodies (An apoptotic feature) No

Chromatin condensation (An apoptotic feature) No

Formation of double membrane vesicle (An autophagic cell death 
feature)

No
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