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Abstract Bayesian model selection or averaging objectively ranks a number of plausible, competing con-
ceptual models based on Bayes' theorem. It implicitly performs an optimal trade-off between performance
in fitting available data and minimum model complexity. The procedure requires determining Bayesian
model evidence (BME), which is the likelihood of the observed data integrated over each model’s parameter
space. The computation of this integral is highly challenging because it is as high-dimensional as the num-
ber of model parameters. Three classes of techniques to compute BME are available, each with its own chal-
lenges and limitations: (1) Exact and fast analytical solutions are limited by strong assumptions. (2)
Numerical evaluation quickly becomes unfeasible for expensive models. (3) Approximations known as infor-
mation criteria (ICs) such as the AIC, BIC, or KIC (Akaike, Bayesian, or Kashyap information criterion, respec-
tively) yield contradicting results with regard to model ranking. Our study features a theory-based
intercomparison of these techniques. We further assess their accuracy in a simplistic synthetic example
where for some scenarios an exact analytical solution exists. In more challenging scenarios, we use a brute-
force Monte Carlo integration method as reference. We continue this analysis with a real-world application
of hydrological model selection. This is a first-time benchmarking of the various methods for BME evalua-
tion against true solutions. Results show that BME values from ICs are often heavily biased and that the
choice of approximation method substantially influences the accuracy of model ranking. For reliable model
selection, bias-free numerical methods should be preferred over ICs whenever computationally feasible.

1. Introduction

The idea of model validation is to objectively scrutinize a model’s ability to reproduce an observed data set
and then to falsify the hypothesis that this model is a good representation for the system under study [Popper,
1959]. If this hypothesis cannot be rejected, the model may be considered for predictive purposes. Modelers
have been encouraged for centuries to create multiple such working hypotheses instead of limiting them-
selves to the subjective choice of a single conceptual representation, therewith avoiding the “dangers of
parental affection for a favorite theory” [Chamberlin, 1890]. These dangers include a significant underestima-
tion of predictive uncertainty due to the neglected conceptual uncertainty (uncertainty in the choice of a
most adequate representation of a system). Recognizing conceptual uncertainty as a main contribution to
overall predictive uncertainty [e.g., Burnham and Anderson, 2003; Gupta et al., 2012; Clark et al., 2011; Refsgaard
et al., 2006] makes model selection an “integral part of inference” [Buckland et al., 1997]. The quantification of
conceptual uncertainty is of importance in a variety of scientific disciplines, e.g., in climate change modeling
[Murphy et al., 2004; Najafi et al., 2011], weather forecasting [Raftery et al., 2005], hydrogeology [Rojas et al.,
2008; Poeter and Anderson, 2005; Ye et al., 2010a], geostatistics [Neuman, 2003; Ye et al., 2004], vadose zone
hydrology [Wohling and Vrugt, 2008], and surface hydrology [Ajami et al., 2007; Vrugt and Robinson, 2007;
Renard et al,, 2010], to name only a few selected examples from the field of water resources.

Different strategies have been proposed to develop alternative conceptual models, assess their strengths
and weaknesses, and to test their predictive ability. Bayesian model averaging (BMA) [Hoeting et al., 1999] is
a formal statistical approach which allows comparing alternative conceptual models, testing their adequacy,
combining their predictions into a more robust output estimate, and quantifying the contribution of
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conceptual uncertainty to the overall prediction uncertainty. The BMA approach is based on Bayes’ theo-
rem, which combines a prior belief about the adequacy of each model with its performance in reproducing
a common data set. It yields model weights that represent posterior probabilities for each model to be the
best one from the set of proposed alternative models. Based on the weights, it allows for a ranking and
quantitative comparison of the competing models. Hence, BMA can be understood as a Bayesian hypothe-
sis testing framework, merging the idea of classical hypothesis testing with the ability to test several alterna-
tive models against each other in a probabilistic way. The principle of parsimony or “Occam’s razor” [e.g.,
Angluin and Smith, 1983] is implicitly followed by Bayes’ theorem, such that the posterior model weights
reflect a compromise between model complexity and goodness of fit (also known as the bias-variance
trade-off [Geman et al., 1992]). BMA has been adopted in many different fields of research, e.g., sociology
[Raftery, 1995], ecology [Link and Barker, 2006], hydrogeology [Li and Tsai, 2009], or contaminant hydrology
[Troldborg et al., 2010], indicating the general need for such a systematic model selection procedure.

The drawback of BMA is, however, that it involves the evaluation of a quantity called Bayesian model evi-
dence (BME). This integral over a model’s parameter space typically cannot be computed analytically, while
numerical solutions come at the price of high computational costs. Various authors have suggested and
applied different approximations to the analytical BMA equations to render the procedure feasible. Neuman
[2003] proposes a Maximum Likelihood Bayesian Model Averaging approach (MLBMA), which reduces com-
putational effort by evaluating Kashyap’s information criterion (KIC) for the most likely parameter set
instead of integrating over the whole parameter space. This is especially compelling for high-dimensional
applications (i.e., models with many parameters). If prior knowledge about the parameters is not available
or vague, a further simplification leads to the Bayesian information criterion or Schwarz’ information crite-
rion (BIC) [Schwarz, 1978; Raftery, 1995]. The Akaike information criterion (AIC) [Akaike, 1973] originates from
information theory and is frequently applied in the context of BMA in social research [Burnham and Ander-
son, 2003] for its ease of implementation. Previous studies have revealed that these information criteria (IC)
differ in the resulting posterior model weights or even in the ranking of the models [Poeter and Anderson,
2005; Ye et al., 2008, 2010a, 2010b; Tsai and Li, 2010, 2010; Singh et al., 2010; Morales-Casique et al., 2010;
Foglia et al., 2013]. This implies that they do not reflect the true Bayesian trade-off between performance
and complexity, but might produce an arbitrary trade-off which is not supported by Bayesian theory and
cannot provide a reliable basis for Bayesian model selection. Burnham and Anderson [2004] conclude that
“... many reported studies are not appropriate as a basis for inference about which criterion should be
used for model selection with real data.” The work of Lu et al. [2011] has been a first step into clarifying the
so far contradictory results by comparing the KIC and the BIC against a Markov chain Monte Carlo (MCMC)
reference solution for a synthetic geostatistical application.

Our study aims to advance this endeavor by rigorously assessing and comparing a more comprehensive set
of nine different methods to evaluate BME. In specific, we will highlight their theoretical derivation, compu-
tational effort, and approximation accuracy. As representatives of mathematical approximations, we con-
sider the AIC, AlCc (bias-corrected AIC), and BIC in our comparison. We further include the KIC evaluated at
the maximum likelihood parameter estimate (KIC@MLE) as introduced in MLBMA, and an alternative formu-
lation that is evaluated at the maximum a posteriori parameter estimate instead (KIC@MAP). We also con-
sider three types of Monte Carlo integration techniques (simple Monte Carlo integration, MC; MC
integration with importance sampling, MC IS; MC integration with posterior sampling, MC PS) and a very
recent approach called nested sampling (NS) as representatives of numerical methods. By pointing out and
comparing the important features and assumptions of these mostly well-known techniques, we are able to
argue which methods are truly suitable for BME evaluation, and which ones are suspected to yield inaccu-
rate results. We then present a simplistic synthetic, linear test case where an exact analytical expression for
BME exists. With this first-time benchmarking of the different BME evaluation methods against the true
solution, we close a significant gap in the model selection literature.

The controlled setup in the simplistic example allows us to systematically investigate the factors which influ-
ence the value of BME and the approximation thereof by the nine featured evaluation methods. The two
main factors investigated are (1) the size of the data set which determines the “seriousness” of the good-
ness of fit rating, and (2) the shape of the parameter prior which characterizes the robustness of a model. In
a second step, we assess the performance of the different methods when confronted with low-dimensional
nonlinear models. In this more challenging scenario of the synthetic example, no analytical solution to
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compute BME exists. We therefore generate a reference solution by brute-force MC integration, after having
proven its suitability as reference solution in the linear case. In a third step, we present a real-world applica-
tion of hydrological model selection. We chose this application such that the model selection task is still rel-
atively simple and unambiguous. Even in this case the deficiencies of some of the evaluation methods
become apparent. Our systematic investigation of methods to determine BME takes an important next step
toward robust model selection in agreement with Bayes’ theorem, heaving it up on solid ground.

We summarize the statistical framework of BMA in section 2 and discuss assets and drawbacks of the avail-
able techniques to determine BME in section 3. In section 4, we present the first-time benchmarking of the
featured methods on the simplistic test case. Section 5 compares the approximation performance in a real-
world hydrological model selection problem. We summarize our findings and formulate recommendations
on which methods to use for reliable model selection in even more complex situations in section 6.

2. Bayesian Model Averaging Framework

We formulate the BMA equations according to Hoeting et al. [1999]. All probabilities and statistics are implic-
itly conditional on the set of considered models. While the suite of models is a subjective choice that lies in
the responsibility of the modeler, it is the starting point for a systematic procedure to account for model
uncertainty based on objective likelihood measures.

Let us consider N, plausible, competing models M. The posterior predictive distribution of a quantity of
interest ¢ given the vector of observed data y, can be expressed as:

N

P(0l¥o)= _ P(lyo, Mi)P(Mly,) (m
k=1

with p(-|y,) representing a conditional probability distribution and P(M|y,) being discrete posterior model
weights. The weights can be interpreted as the Bayesian probability of the individual models to be the best
representation of the system from the set of considered models.

The model weights are given by Bayes’ theorem:

P(Y,|Mi)P(My)
" p(yolM)P(M,)

P(Mkly,)= @)

with the prior probability (or rather subjective model credibility) P(My) that model M, could be the best one (the
most plausible, adequate, and consistent one) in the set of models before any observed data have been consid-
ered. A “reasonable, neutral choice” [Hoeting et al,, 1999] could be equally likely priors P(My)=1/Ny, if there is lit-
tle prior knowledge about the assets of the different models under consideration. The denominator in equation
(2) is the normalizing constant of the posterior distribution of the models. It is easily obtained by determination
of the individual weights. It could even be neglected, since all model weights are normalized by the same con-
stant, so that the ranking of the individual models against each other is fully defined by the proportionality:

P(Mk|yo) X p(yc)'Mk)P(Mk)' 3)

p(Y,|Mx) represents the BME term as introduced in section 1 and is also referred to as marginal likelihood or
prior predictive because it quantifies the likelihood of the observed data based on the prior distribution of
the parameters:

P(Y0|Mk)=Ju P(Yol M, wic)p(ui[My)duy, (4)
k

where uy denotes the vector of parameters of model M, with dimension equal to the number N, x of param-
eters, Uy is the corresponding parameter space, and p(ux|My) denotes their prior distribution. p(y,|Mk, ux)
is the likelihood or probability of the parameter set uy of model M, to have generated the observed data
set. The BME term can either be evaluated via integration over the full parameter space Uy (equation (4),
referred to as Bayesian integral by Kass and Raftery [1995]), or via the posterior probability distribution of
the parameters p(ui|Mx,y,) by rewriting Bayes’ theorem with respect to the parameter distribution (instead
of the model distribution, equation (2)):
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(Vo Mk, uk)p(ux| M)
P(Yo|Mx)

p(Y,|Mx) acts as a model-specific normalizing constant for the posterior of the parameters p(ux|Mx, y,). As
a matter of fact, evaluating p(y,|Mx) for any given model is a major nuisance in Bayesian updating, and
MCMC methods have been developed with the goal to entirely avoid its evaluation. However, in order to
evaluate BME, this normalizing constant has to be determined, which is the challenge addressed in the cur-
rent study. Rearranging equation (5) yields the alternative formulation for equation (4):

puMy.y,)=" - (5)

(Yo My ui)p (u [ M)

(6)
p(u M, y,)

p
P(YolMk)=
MacKay [1992] refers to the twofold evaluation of Bayes’ theorem (equations (2) and (4) or (6)) as the “two
levels of inference” in Bayesian model averaging: the first level is concerned with finding the posterior distri-
bution of the models, the second level with finding the posterior distribution of each model’s parameters
(or rather its normalizing constant).

The integration over the full parameter space in equation (4) can be an exhaustive calculation, especially for
high-dimensional parameter spaces L. The alternative of computing the posterior distribution of the param-
eters (defining the “calibrated” parameter space, equation (5)) is similarly demanding in high-dimensional
applications. Analytical solutions are available only under strongly limiting assumptions. In general, mathe-
matical approximations or numerical methods have to be drawn upon instead. We discuss and compare the
nine different methods to compute BME in the following section and assess their accuracy in section 4.

3. Available Techniques to Determine BME

We will adopt the notation of Kass and Raftery [1995] for equation (4):

Ie=PLYlM)= | Py M () @)
k

and denote any approximation to the true BME value Iy as /,. After explaining two formulations of the ana-
lytical solution in detail in section 3.1, we examine mathematical approximations in the form of ICs in sec-
tion 3.2. Finally, we discuss assets and drawbacks of selected numerical evaluation methods in section 3.3
and summarize our preliminary findings from this theoretical comparison in section 3.4. All BME evaluation
methods featured in this study are listed with their underlying assumptions in Table 4. All approximation
methods (i.e., the nine nonanalytical approaches) follow equation (7) to evaluate BME. We do not use equa-
tion (6) here, since typically for medium to highly parameterized applications, the multivariate probability
density of posterior parameter realizations cannot be estimated. Knowing the posterior parameter distribu-
tion up to its normalizing constant (as in MCMC methods, see section 3.3.3) does not suffice here since the
normalizing constant is actually the targeted quantity itself.

3.1. Analytical Solution

The Bayesian integral or BME I, for model M, can be evaluated analytically for exponential family distribu-
tions with conjugate priors [see e.g., DeGroot, 1970]. Thus, analytical solutions for BME are available, if the
observed data y, are measurements of the model parameters uy or a linear function thereof and a conju-
gate prior (i.e., the prior parameter distribution is in the same family as the posterior parameter distribution)
exists. This is generally not the case in realistic applications. However, we will briefly outline the analytical
solution to BME under these restrictive and simple conditions, before we discuss other evaluation methods
that are not limited by these strong assumptions in sections 3.2 and 3.3.

We will focus here on the special case of a linear model M, with a linear model operator Hy relating multi-
Gaussian parameters uy to multivariate Gaussian distributed variables y,:

My @y, =Hguy. (8)

The prior parameter distribution is defined as a normal distribution p(uy) ~ N (U, Cy,) with the prior mean
uy and the covariance matrix C,,,. For simplicity of notation, the index k is dropped from the notation for
the parameter covariance matrix.
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The residuals e=y, —y, signify any type of error associated with the data set and the models, e.g., measure-
ment errors and model errors. Here we assume the models to be perfect (free of model errors) and only
measurement errors to be relevant, and adopt a Gaussian model € ~ N (0, R) with a diagonal matrix R rep-
resenting the covariance matrix for uncorrelated measurement errors. This results in a Gaussian likelihood
function p(y,|Mx, ux) ~ N (¥, R). Using the theory of linear uncertainty propagation [e.g., Schweppe, 1973] and
the stated assumptions, BME can be directly evaluated for any given data set y, from the Gaussian distribution:

Ik=p(y,|Mx) ~ N (Hctx, Cy +R), )
with C,, =H,C, Hf.

As an alternative way to determine BME analytically, the posterior distribution of the parameters can be
derived since the Gaussian distribution family is self-conjugate [Box and Tiao, 1973]. In general, the likeli-
hood L of the observed data given the prior parameter space of model M, can be written as a function of
the parameters L(My, ukly,) [Fisher, 1922]. Note that the likelihood function is not necessarily a proper
probability density function with respect to uy, because it does not necessarily integrate to one. With the
assumptions of Gaussian measurement noise and a linear model, the likelihood can be expressed as a Gauss-
ian function of the parameters £(Mx, uly,) ~ N (i, C;g) with G, = (H{Hy) “"Hly, and Cyy= [HiR "H(] -
The mean of the distribution, Uy, is the maximum likelihood estimate (MLE) and (in this case) also the estimate
obtained by ordinary least squares regression. It represents the parameter vector that yields the best possible
fit to the observed data to be achieved by model M.

The combination of a Gaussian prior distribution and a Gaussian likelihood function yields an analytical
expression for the posterior distribution p(ukly,, Mk) ~ N (G, Cuz ), which is again Gaussian with t,=Cyj
(Colay+C; k) and Coa= (€57 +C;,) . Under the current set of assumptions, the mean of the posterior
distribution, Gy, is the maximum a posteriori estimate (MAP). The MAP represents those parameter values
that are the most likely ones for model My, taking into account both prior belief about the distribution of
the parameters and the performance in fitting the observed data. For a derivation of these statistics, see
e.g., Box and Tiao [1973].

With the posterior parameter distribution, the quotient in equation (6) (Bayes’ theorem rewritten to solve
for the normalizing constant, equivalent to the integral in equation (7)) can be determined for any given
value uy; within the limits of p(uy).

3.2. Mathematical Approximation

If no analytical solution exists to the application at hand, equation (7) can be approximated mathematically,
e.g., by a Taylor series expansion followed by a Laplace approximation. We briefly outline this approach in
section 3.2.1 and then discuss the derivation of the KIC (section 3.2.2) which is based on this approximation.
In this context, it becomes more evident how Occam’s razor works in BMA (section 3.2.3). The BIC (section
3.2.4) represents a truncated version of the KIC. Another mathematical approximation, which is based on
information theory, results in the AIC(c) (section 3.2.5). We contrast the expected impact of the different IC
formulations on model selection in section 3.2.6.

3.2.1. Laplace Approximation

The idea of the Laplace method [De Bruijn, 1961] is to approximate the integral by defining a simpler mathe-
matical function for a subinterval of the original parameter space, assuming that the contribution of this
neighborhood almost makes up the whole integral. Here a Gaussian posterior distribution is assumed as sim-
plification to the unknown distribution. This is a suitable approximation if the posterior distribution is highly
peaked around its mode (or maximum) u. This assumption holds, if a large data set with a high information
content is available for calibration. Expanding the logarithm of the integrand in equation (7) by a Taylor
series about the posterior mode uy (i.e., the MAP), neglecting third-order and higher-order terms, taking the
exponent again and finally performing the integration with the help of the Laplace approximation yields:

=L (M., iy, )p (8 M) (2m)"2 £, (10)

with the likelihood function £(M, tkly,), the prior density p(t,|My), and the number of parameters N, .

~ 2 =1
The Npk X Npx matrix X=— [00*:‘(2“)} lu—q is the negative inverse Hessian matrix of second derivatives and

represents an asymptotic estimator of the posterior covariance Cy;. It is equal to Cy;; for the case of an
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actually Gaussian posterior (see section 3.1). For details on the Laplace approximation in the field of Bayes-
ian statistics and an analysis of its asymptotic errors, please refer to Tierney and Kadane [1986].

If the parameter prior is little informative, the expansion could also be carried out about the MLE 1y instead
of the MAP . This approximation will be less accurate in general, with the deterioration depending on the
distance between the MAP and MLE estimators. However, the MLE may be easier to find than the MAP with
standard optimization routines. The corresponding approximation takes the following form:

=L (M, ey, )p (i M) (2m) /2 £ 112, (1)
The inverse of the covariance matrix 2 is the observed Fisher information matrix evaluated at the MLE,
F=— g—jé lu—g- With / being the log-likelihood function [Kass and Raftery, 1995].

If the normalized (per observation) Fisher information is used, F; =F /N, ) equals [F Ns]f1 = Ff1 [Ye et al, 2008]:

1
N
=L (Mg, iy, )p(ay [ M) (2m)"+/|E| '/
N N 271. Np.k/2 A (12)
=0 ity (o) (37 )
S

For clarity in notation, model indices are omitted here for the covariance matrices and for the Fisher infor-
mation matrix.

The presented mathematical approximations to the Bayesian Integral (equation (7)) are typically known in
the shape of ICs, i.e, as —2In /,. We subsequently discuss the three most commonly used ICs in the BMA
framework. They all generally aim at identifying the optimal bias-variance trade-off in model selection, but
differ in their theoretical derivation and therefore in their accuracy with respect to the theoretically optimal
trade-off according to Bayes’ theorem.

3.2.2. Kashyap Information Criterion
The Kashyap information criterion (KIC) directly results from the approximation defined in equation (12) by
applying —2In/, [Kashyap, 1982]:

N. R
KIC;=—2In L(M, x|y,) —2In p(Gx|Mk) +NpxIn 24 +In|Fq|. (13)
Y

The KIC is applied within the framework of MLBMA [Neuman, 2002]. By means of this approximation,
MLBMA is a computationally feasible alternative to full Bayesian model averaging if knowledge about the
prior of parameters is vague. For applications of MLBMA, see Neuman [2003], Ye et al. [2004], Neuman et al.
[2012], and references therein.

If an estimate of the postcalibration covariance matrix Cy; is obtainable, equation (11) can be drawn upon
instead:

KIC[, = —2In L‘,(/\/’k7 ﬁk|yo)—2ln p(ﬁk|Mk)—Np>k|n (27r)—ln\C(,(, | (14)

Ye et al. [2004] point toward the close relationship of the KIC; with the original Laplace approximation, but
prefer the evaluation at the MLE, because it is in line with traditional MLE-based hydrological model selec-
tion and parameter estimation routines. Neuman et al. [2012] appreciate that MLBMA “admits but does not
require prior information about the parameters” and include prior information in their likelihood optimiza-
tion routine, which makes it de facto a MAP estimation routine. We strongly advertise the latter variant,
because the Laplace approximation originally involves an expansion about the MAP instead of the MLE, and
we understand prior information on the parameters as a vital part of Bayesian inference. Therefore, we pro-
pose to explicitly evaluate the KIC at the MAP:

K/Cu: —2In ,C(Mk7 ﬁk|y0) 72Inp(ﬁk|Mk) prkan (27[) */ﬂlCag . (15)
3
NLL 1 2

Occam factor

We will refer to this formulation as KIC@MAP as opposed to the KIC@MLE (equation (14)) to avoid any con-
fusion within the MLBMA framework, which seems to admit both of the KIC variants discussed here. The

SCHONIGER ET AL.

©2014. The Authors. 9489



@AG U Water Resources Research 10.1002/2014WR016062

evaluation at the MAP is consistent with the Laplace approach to approximate the Bayesian integral and, in
case of an actually Gaussian parameter posterior, will yield accurate results; this does not hold if the approx-
imation is evaluated at the MLE. If the assumption of a Gaussian posterior is violated, it needs to be assessed
how the different evaluation points affect the already inaccurate approximation. We will investigate the dif-
ferences in performance between the KIC@MLE and our proposed KIC@MAP in section 4.

3.2.3. Interpretation Via Occam’s Razor

In equation (15), we have distinguished different terms of the Laplace approximation in the formulation of
the KIC@MAP. They can be interpreted within the context of BMA, and if the assumption of a Gaussian pos-
terior parameter distribution is satisfied, this represents an interpretation of the ingredients of BME (or
more specifically, minus twice the logarithm of BME). It incorporates a measure of goodness of fit (the nega-
tive log-likelihood term, NLL) and three penalty terms that account for model dimensionality (dimension of
the model’'s parameter space). These three terms are referred to as Occam factor [MacKay, 1992].

The Occam factor reflects the principle of parsimony or Occam'’s razor: If any number of competing models
shows the same quality of fit, the least complex one should be used to explain the observed effects. Any
additional parameter is considered to be fitted to noise in the observed data and might lead to low parame-
ter sensitivities and poor predictive performance (due to little robustness of the estimated parameters). Syn-
thesizing the discussions by Neuman [2002, 2003], Ye et al. [2004], and Lu et al. [2011], and explicitly
transferring them to the expansion about the MAP, we make an attempt to explain the role of the three
terms that are contained in the Occam factor.

The parameter prior p(u,|My) (term 1) implicitly penalizes a growing complexity in that it gives a lower
probability density to models with larger parameter spaces (larger N, ), since high-dimensional densities
have to dilute their total probability mass of unity within a larger space. Thus, a more complex model with
its smaller prior parameter probabilities will obtain a higher value of the criterion or a decreased value of
BME, which will compromise its chances to rule out its competitors according to Occam’s razor.

The opposite is true for —N,, xIn (27) (term 2): here, an increase in dimensionality yields a decrease of the
KIC or an increase in model evidence. This term is actually part of the normalizing factor of a Gaussian prior
distribution and thus partially compensates the effect of (1).

Finally, |Cyi | (term 3) accounts for the curvature of the posterior distribution. A strong negative curvature,
i.e., a very narrow posterior distribution, represents a high information content in the data with respect to
the calibration of the parameters. A narrow posterior leads to a low value for the determinant and thus to a
decrease in model evidence or an increase of the KIC. This might seem counter-intuitive at first, but has to
be interpreted from the viewpoint that if the data provide a high information content, the resulting likeli-
hood function shall be narrow, and thus, its peak value shall also be high. The determinant is thus a partially
compensating counterpart to the NLL term. If two competing models achieve the same likelihood, but differ
in their sensitivity to the data, the one with a smaller sensitivity will be chosen because of its robustness [Ye
et al, 2010b].

3.2.4. Bayesian Information Criterion
The Bayesian information criterion (BIC) or Schwarz information criterion [Schwarz, 1978] is a simplification
to equation (13) in that it only retains terms that vary with Ng:

BIC=—2In £(Mk,ﬁk|yo)+Np,kIn N. (16)

Evaluating this criterion for the MAP u, would not be consistent, because the influence of the prior is
completely ignored in equation (16). Since only parts of the Occam factor are retained compared to
equation (15), the BIC penalizes a model’s dimensionality to a different extent. Those differences are
not supported by any specific theory. However, the KIC@MLE reduces asymptotically to BIC with grow-
ing data set size N,. The reason is that the prior probability of G, as well as the normalized Fisher infor-
mation do not grow with data set size, but the likelihood —2In £L(Mj, Gk|y,) and N, «In N do, rendering
contributions that only grow with N, x negligible [Neuman, 2003]. The error in approximation by the
BIC is therefore expected to reduce to the error made by the KIC for large data set sizes. In section
3.2.6, we will compare the different IC approximations with regard to their penalty terms, and in sec-
tion 4 we will investigate the convergence behavior of the KIC and BIC in more detail on a synthetic
test case.
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Applying the KIC or BIC for model selection (as opposed to averaging) is consistent as the assigned weight
for the true model (if it is a member of the considered set of models) converges to unity for an infinite data
set size. The truncated form (BIC) still seems to perform reasonably well for model identification or explana-
tory purposes [Koehler and Murphree, 1988]. It is also much less expensive to evaluate than the KIC for mod-
els with high-dimensional parameter spaces, since the evaluation of the covariance matrix is not required.

3.2.5. Akaike Information Criterion

The Akaike information criterion (AIC) or, as originally entitled, “an information criterion,” originates from
information theory (as opposed to the Bayesian origin of the KIC and BIC), but has frequently been applied
in the framework of BMA [e.g., Poeter and Anderson, 2005]. It is derived from the Kullback-Leibler (KL) diver-
gence that measures the loss of information when using an alternative model M, with a predictive density
function g(Y|Mx, uk) instead of the “true” model with predictive density function f(Y), with Y being a ran-
dom variable from the true density f of the same size N; as the observed data set y,:

_ f(v)
on(001=[ 0 (g "
=Ef[ln f(Y)] —Ef[ln g(Y‘/\/’k7 uk)}.

The first term in the second line of equation (17) is an unknown constant that drops out when comparing
differences in the expected KL-information for the competing models in the set [e.g., Kuha, 2004]. Akaike
[1973, 1974] argued that the second term, called relative expected KL-information, can be estimated using
the MLE. For reasons not provided here, this estimator is biased by N, x, the number of parameters in the
model M,. Correcting this bias and multiplying by —2 yields the AIC [Burnham and Anderson, 2004]. The AIC
formulation contains the NLL term as an expression for the goodness of fit and a penalty term for the num-
ber of parameters:

AIC==2In L(My, G|y,)+2Np «. 18)

Compared to the BIC in equation (16), the penalty term for the number of parameters N, « is less severe. For
data set sizes N; > 7, BIC favors models with less parameters than AIC, since its penalty term N xIn Ns
becomes larger than the AIC's 2N, k.

For a finite data set size N, a second-order bias correction has been suggested [Sugiura, 1978; Hurvich and
Tsai, 1989]:

2N,k (Npy+1)

AlCc=AIC+
Ns—Npx—1

(19)
Among others, Burnham and Anderson [2004] suggest using the corrected formulation for data set sizes
Ns < 40N, . For increasing data set sizes, the AlCc converges to the AIC.

The posterior Akaike model weight is derived from:
exp (—0.5A) exp(—0.5AICy)

P(Mkly,)= = : (20)
° Z:V; exp (—0.54;) Zﬁ exp (—0.5AIC;)

with Ag=AICk—AlCpin or Ax=AICck—AICcmin, respectively. Based on its theoretical derivation, the absolute
value of AIC, or AlCc, has no explanatory power [Burnham and Anderson, 2004], only the difference Ay with
respect to the lowest AIC, or AlCc, can be interpreted. The BIC or KIC, in contrast, are a direct approximation
to BME (equation (7)) and therefore yield meaningful values, also in interpretation as absolute values.

The AIC seems to perform well for predictive purposes, with a tendency to over-fit observed data [see e.g.,
Koehler and Murphree, 1988; Claeskens and Hjort, 2008]. This tendency is supposedly less severe for the bias-
corrected AlCc. Both versions of the AIC do not converge to the true model for an infinite data set size. The
reason is that, with an increasing amount of data, the model chosen by AIC(c) will increase in complexity,
potentially beyond the complexity of the true model (if it exists) [Burnham and Anderson, 2004].

The KIC is expected to provide the most consistent results among the ICs investigated here because it is
based on the approximation closest to the true equations. Applications and comparisons of KIC, BIC, and
AIC can be found in Ye et al. [2008], Tsai and Li [2010], Singh et al. [2010], Riva et al. [2011]1, Morales-Casique
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et al.[2010], and Lu et al. [2011]. In the following, we will summarize the main theoretical differences in the
BME approximation by these ICs.

3.2.6. Theoretical Comparison of IC Approximations to BME
Based on equation (10), the Laplace approximated BME can be divided into the likelihood and the Occam
factor OF (see section 3.2.3):

=L (M, ly,)p (@ [My) (2m)"/2 |/ = L (M, Gy, ) OF (21

The ICs analyzed here all share the same approximation for the goodness of fit term based on the MLE. The
only exception is the KIC@MAP, which is evaluated at the MAP instead of at the MLE. However, they all differ
in their approximation to the OF. The OF represents the penalty for the dimensionality of a model or what
we call the sharpness of Occam’s razor. For the different ICs, it is given by:

OF s =p(@|My) (2m)"*/2|Cyq '/
OFc.u=p(@|Mi)(2m)""*/?|Cyq 2
OFgic=N;"et/2
OFsic=exp (—Np)

12Nk (Npi+1)
2 Ny—Npx—1 )’

The OF as approximated by KIC does not explicitly account for data set size, yet N; typically influences the
curvature of the posterior probability (or the likelihood function) and thus implicitly affects |Cyy |1/2 (or

|Cau \1/2). In contrast, AlCc and BIC explicitly take data set size N, in account, but do not evaluate the sensitiv-
ity of the calibrated parameter set via the curvature. The effects of these differences on the accuracy of the
BME approximation will be demonstrated exemplarily on two test case applications in sections 4 and 5.

3.3. Numerical Evaluation

Numerical evaluation offers a second alternative to determine BME, if no analytical solution is available or if
one mistrusts the approximate character of the ICs. A comprehensive review of numerical methods to eval-
uate the Bayesian integral (equation (7)) is given by Evans and Swartz [1995]. In the following, we will shortly
review selected state-of-the-art methods and discuss their strengths and limitations. Note that conventional
efficient integration schemes (e.g., adaptive Gaussian quadrature) are limited to low-dimensional applica-
tions [Kass and Raftery, 1995]. In this study, we focus on numerical methods that can also be applied to
highly complex models (models with large parameter spaces) in order to provide a useful discussion for a
broad range of research fields and applications.

3.3.1. Monte Carlo Integration

Simple Monte Carlo integration [Hammersley, 1960] evaluates the integrand at randomly chosen points uy
in parameter space. These parameter sets uy; are randomly drawn from their prior distribution p(uy|My).
The integral (or expected value over parameter space, cf. equation (4)) is then determined as the mean
value of the evaluated likelihoods (sometimes referred to as arithmetic mean approach):

1
he= 1 2 £ (M w1y (23)

i=1

with the number of Monte Carlo (MC) realizations N. For large ensemble sizes N and a friendly overlap of
the parameter prior and the likelihood function, this method will provide very accurate results. For high-
dimensional parameter spaces, however, a sufficient (converging) ensemble might come at a high or even
prohibitive computational cost. If the likelihood function is sharp compared to the prior distribution, only
very few integration points will contribute a high likelihood value to the integral (making £ a very skewed
variable), and the numerical uncertainty in the approximated integral might be large.

3.3.2. Monte Carlo Integration With Importance Sampling

To reduce computational effort and improve convergence, importance sampling [Hammersley et al., 1965]
aims at a more efficient sampling strategy. Instead of drawing random realizations from the prior parameter
distribution, integration points are drawn from any arbitrary distribution that is more similar to the posterior
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distribution. Thus, the mass of the integral will be detected more likely by the sampling points. When draw-
ing from a different distribution g than the prior distribution p, the integrand in equation (7) must be
expanded by g / g. This modifies equation (23) to:

- ZL WL (M, ukily,)

N )
E Wi
i=1

with weights w;=p (u,;|Mx) /q(uk;|M). The improvement achieved by importance sampling compared to
simple MC integration will greatly depend on the choice of the importance function q.

i, (24)

3.3.3. Monte Carlo Integration With Posterior Sampling

Developing this idea further, it could be most advantageous to draw parameter realizations from the poste-
rior distribution p(uk|y,, Mk) in order to capture the full mass of the integral. Sampling from the posterior
distribution is possible, e.g., with the MCMC method [Hastings, 1970].

For posterior sampling, the approximation to the integral reduces to the harmonic mean of likelihoods
[Newton and Raftery, 1994], also referred to as the harmonic mean approach:

-1

; 1 -1
l= N;E(Mk,umyo) ) (25)

Equation (25) can be subject to numerical instabilities, due to small likelihoods that may corrupt the evalua-
tion of the harmonic mean.

According to Jensen’s inequality [Jensen, 1906], sampling exclusively from the posterior parameter distribu-
tion yields a biased estimator that overestimates BME. Thus, the harmonic mean approach should be seen
as a trade-off between accuracy and computational effort. In order to avoid the instabilities of the harmonic
mean approach by solving equation (6) instead, it would be necessary to estimate the posterior parameter
probability density from the generated ensemble through kernel density estimators [e.g., Hardle, 1991],
which is only possible for low-dimensional parameter spaces. We therefore do not investigate this alterna-
tive option further within this study.

3.3.4. Integration in Likelihood Space With Nested Sampling

The main challenge in evaluating BME lies in sufficiently sampling high-dimensional parameter spaces. A
promising approach which avoids this challenge and instead samples the one-dimensional likelihood space
is called nested sampling [Skilling, 2006]. The integral to obtain BME is written as:

/k:p<yo|Mk>:J£<Mk,uk|yo>dz, 26)

where Z represents prior mass p(ux|My)du. It is solved by discretizing into m likelihood threshold values
with the sequence £; < £; < ... < Ly, and summing up over the corresponding prior mass pieces 1 > Z;
>Zy > ...>Zy, > 0according to a numerical integration rule. How to find subsequent likelihood thresh-
olds is described in Skilling [2006].

One of the remaining challenges for this very recent approach lies in finding conforming samples
above the current likelihood threshold. We follow Elsheikh et al. [2013] in utilizing a short random walk
Markov chain starting from a random sample that overcame the previous threshold. However, instead
of using the ratio of likelihoods as acceptance distribution, we take the ratio of prior probabilities
instead, to ensure that new samples still conform with their prior. Another challenge lies in ending the
procedure with a suitable termination criterion (e.g., stop if the increase in BME per iteration has flat-
tened out or if the likelihood threshold cannot be overcome within a maximum number of MCMC
steps).

If the prior mass enclosing a specific likelihood threshold was known, the value of BME could be determined
as accurately as the integration scheme allows. However, the fact that the real prior mass pieces Z; are
unknown introduces a significant amount of uncertainty into the procedure, which reduces its precision. To
quantify the resulting numerical uncertainty, an MC simulation over randomly chosen prior mass shrinkage
factor tj=2;/Z;_ should be performed [Skilling, 2006].
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3.4. Conclusions From Theoretical Comparison

From our comparison of the underlying assumptions for the nine BME evaluation methods considered here,
we conclude that out of the ICs, the KIC@MAP is the most consistent one with BMA theory. It represents the
true solution if the assumptions of the Laplace approximation hold (i.e., if the posterior parameter distribu-
tion is Gaussian). The other ICs considered here represent simplifications of this approach or, in the case of
the AIC(c), are derived from a different theoretical perspective and are therefore expected to show an infe-
rior approximation quality. Among the numerical methods considered here, simple MC integration is the
most generally applicable approach because it is bias-free and spares any assumptions on the shape of the
parameter distribution, but is also the computationally most expensive one. The other numerical methods
vary in their efficiency, but are expected to yield similarly accurate results, except for MC integration with
posterior sampling, which yields a biased estimate. We will test these expectations on a synthetic setup in
the following section. The underlying assumptions of the nine BME evaluation methods analyzed in this
study are summarized in Table 4.

4. Benchmarking on a Synthetic Test Case

The nine methods to solve the Bayesian integral (equation (7)) differ in their accuracy and computational
effort, as described in the previous section. To illustrate the differences in accuracy under completely con-
trolled conditions, we apply the methods presented in section 3 to an oversimplified synthetic example. In
a first step, we consider a setup with a linear model where an analytical solution exists. We create an ideal
premise for the KIC@MAP and its variants (KIC@MLE and BIC) by using a Gaussian parameter posterior,
which fulfills their core assumption. We designed this test case as a best-case scenario regarding the per-
formance of these ICs: there is no less challenging case in which the information criteria could possibly per-
form better. In a second step, we also consider nonlinear models of different complexity that violate this
core assumption. Since in this case no analytical solution exists, we use brute-force MC integration as refer-
ence for benchmarking. We designed this test case as an intermediate step toward real-world applications
that typically entail nonlinear models and a higher number of parameters.

4.1. Setup and Implementation

In the first step, a linear model y=u;x+uj, relates bivariate Gaussian distributed parameters u={u, u,]
(slope and intersect of a linear function) to multi-Gaussian distributed predictions y at measurement loca-
tions x. This linear model is tested against a synthetic data set. The synthetic truth underlying the data set is
generated from the same model, but with slightly different parameter values than the prior mean. To obtain
a synthetic data set, a random measurement error is added according to a Gaussian distribution

e ~ N(0,R).

For this artificial setup, BME can be determined analytically according to equations (9) (determining BME via
linear uncertainty propagation) or 6 (solving Bayes’ theorem for BME). This exact value is used as reference
for the approximate methods presented in section 3. In this simple case, the MAP, G, and the MLE, 4, are
known analytically. Also, the corresponding covariances C;; and Cy;; are known. We allow the mathematical
approximations to take advantage of this knowledge by evaluating them at these exact values. Normally,
these quantities have to be approximated by optimization algorithms first. This initial step represents the
computational effort needed to determine BME with mathematical approximations in the form of ICs, since
the evaluation of their algebraic equations itself is very cheap. Here we are not concerned with the potential
challenge to find these parameter estimates, but merely wish to remind the reader of this fact.

The numerical evaluation schemes do not take advantage of the linearity of the test case. Their computational
effort is determined by the number of required parameter realizations, and hence by the number of required
model evaluations. To assess the expected improvement in accuracy by investing in computational effort, we
repeat the determination of BME for increasing ensemble sizes (MC integration, importance sampling, sampling
from the posterior) or increasing sizes of the active set (nested sampling). To determine the lowest reasonable
ensemble size, we investigate the convergence of the BME approximation for each method. Simple MC integra-
tion is performed based on ensembles of 2000-1,000,000 parameter realizations drawn from the Gaussian prior.
MC integration with importance sampling is performed based on the same ensembile sizes. The sampling distri-
bution for importance sampling is chosen to be Gaussian with a mean value equal to the MAP and a variance
equal to the prior variance. Realizations of the posterior parameter distribution for MC integration with posterior
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sampling are generated by the differential evolution adaptive metropolis adaptive MCMC scheme DREAM [Vrugt
et al,, 2008]. With DREAM, BME is approximated based on ensembles of 5000-1,000,000 parameter realizations.
Convergence of the MCMC runs was monitored by the Gelman-Rubin criterion [Gelman and Rubin, 1992] and
we chose to take the final 25% of the converged Markov chains as posterior ensemble. Nested sampling is per-
formed with initial ensembile sizes of 10-10,000. A nested sampling run is complete if one of the two following
termination criteria is reached. The first termination criterion stops the calculation if the current likelihood
threshold could not be overcome within 100 MCMC steps with a scaling vector §=0.05[1/Cy1, /€22 |. The sec-
ond termination criterion stops the calculation if the current BME estimate would not increase by more than
0.5% even if the current maximum likelihood value would be multiplied with the total remaining prior mass.
This results in total ensemble sizes (summed over all iterations) of roughly 1000-1,000,000.

As a base case, we generate a synthetic data set of size N; = 15. Figure 1 shows the setup for the synthetic
test case. The parameters used in the synthetic example are summarized in Table 1.

In our synthetic test case, the computational effort required for one model run is very low. This allows us to
repeat the entire analysis for the base case and to average over 500 runs for each ensemble size in order to
quantify the inherent numerical uncertainty in the results obtained from the numerical approximation
methods. In the case of nested sampling, we additionally average over 200 random realizations of the prior
mass shrinkage factor per run.

With the setup described above, we compare the performance of the different approximation methods in
quantifying BME. Additionally, we study by scenario variations the impact of varied data set size and varied
prior information (different mean values and variances of parameters) on the outcome of BME and on the
performance of the different methods. The behavior of the mathematical approximations for small or large
data set sizes has been touched upon in the literature [e.g., Burnham and Anderson, 2004; Lu et al.,, 2011].
We will underpin these discussions by systematically increasing the data set size from N; = 2 to N = 50.
Again, the same model is used to generate the synthetic truth as in the base case, and the measurements
are taken at equidistant locations on the same interval of x. To show the general behavior of the approxima-
tion methods and to eliminate artifacts caused by a specific outcome of measurement error, we generate
200,000 perturbed data sets for each data set size and average over the results of these realizations.

To our knowledge, the impact of prior information on the performance of BME approximation methods has not
yet been studied in such a systematic approach. With the help of our synthetic test case, we can assess and then
discuss this impact in a rigorous manner. Figure 2a visualizes the prior parameter densities, the likelihood func-
tion, and the posterior densities for a range of prior widths, Figure 2b for different prior/likelihood overlaps. The
second column represents the base case as described above. Variations in prior width are normalized as fractions
of the base case variances (covariance is not varied), variations in overlap of prior and likelihood are measured as
distance between the prior mean and the MLE. The varied parameter values are also listed in Table 1.

Besides the factors explained above, the model structure and dimensionality of the models’ parameter
spaces is expected to influence the performance of the different approximation methods. In the first step,
we consider varying complexity with regard to the allowed parameter ranges as defined by the prior. In the
second step, we also consider models with varied structure. Differences in model structure can manifest
themselves in either differences in the dimensionality of the model (i.e., the number of parameters), or in
the type of model (linear versus nonlinear), or in both. We consider all of these options here by including a
linear model with one parameter y=ux (smaller number of parameters, but same model type; L1), a weakly
nonlinear model with two parameters y=exp (u;x)+u, (same number of parameters, but different model
type; NL2), and a nonlinear model with four parameters y=u;cos (u;x+us)+us (higher number of parame-
ters and different model type; NL4) into the analysis. All prior distributions are chosen to be Gaussian with
their mean and covariance values given in Table 1. For nonlinear models, no analytical solution exists. In
order to still be able to assess the differences in approximation quality, we generate a reference solution
with brute-force MC integration using a very large ensemble of 10 million realizations per model. We
choose this exceptionally large number of realizations to obtain a very reliable estimate of BME as a refer-
ence. In a numerical convergence analysis (bootstrapping) [Efron, 1979], we determined the variance upon
resampling of the ensemble members, which confirmed that the BME estimate is varying less than 0.001%.
This variation is insignificant in relation to the lowest error produced by the compared BME evaluation
methods, which is two orders of magnitude larger. The average BME approximation quality (and its
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scattering) achieved by the other numerical
methods is based on 500 repeated runs with
ensemble sizes of 50,000, which might be con-
sidered a reasonable compromise between
accuracy and computational effort based on
the findings from the first step of our synthetic
P test case. From the posterior parameter sam-
- ple generated by DREAM, we determine the
MAP and the covariance matrix needed for the
evaluation of the KIC@MAP. We obtain the
respective ML statistics for the KIC@MLE from
a DREAM run with uninformative prior distri-

0 S - - - ' butions to cancel out the influence of the
prior. We also evaluate the AIC(c) and the BIC
at this parameter set.

—
L2 (base case)

— N2

N4

® Measurements

Prediction y
N

N

Measurement location x

Figure 1. Synthetic test case setup. Measurements marked in black, prior For all cases (base case, varied data set size
estimate of linear (L1, L2) and nonlinear (NL2, NL4) models in solid lines, ! !

95% Bayesian prediction confidence intervals in dashed lines of the varied prior information, varied model struc-
respective color. ture), the error in BME approximation is quan-

tified as a relative error

Ul

Erer= f7 (27)
with the subscript i representing any of the discussed methods. In the case of numerical techniques, the

average £, value and its Bayesian confidence interval out of all repetitions is provided.

Finally, we determine the impact of BME approximation errors on model weights based on the same
setup and implementation details as described for the investigation of the influence of model structure
(section 4.5).

4.2, Results for the Base Case

Figure 3 shows the relative error of BME approximations with respect to the analytical solution for the base
case (see definition of parameters in section 4.1) as a function of ensemble size (number of model calls).
Obviously, the accuracy of approximation improves for numerical methods when investing more computa-
tional effort, i.e., when increasing the numerical ensemble size. The improvement includes both a reduction

Table 1. Definition of Parameters Used in Different Scenarios of the Synthetic Test Case®

Parameter Symbol Value

Base Case (L2)

Prior mean u uy=1;u,=0

Prior covariance G C11=0C5,=0.04; C;,=C5;=—0.007

Data set size N, Ng=15

Meas. error covariance R Ri=0.3%; Rj=0

Varied Data Set Size

Data set size N N;=2-50

Varied Prior Width

Prior covariance (Sm C11=0C5,=0.008-2; C;,=C;;=—0.007
Varied Prior/Likelihood Overlap

Prior mean u u;=0.95-1.5; u,=-0.05-0.5

Varied Model Structure

Prior mean (L1) u u=1

Prior variance (L1) s? 52=0.04

Prior mean (NL2) u U1=0.4;u,=-03

Prior covariance (NL2) G C11=0.003; 5, =0.03; C;,=C,;=—0.0001
Prior mean (NL4) u U1=2.6;U,=0.5U3=—2.8;u3=2.3

Prior covariance (NL4) (G C11=0.44; C;,=0.02; C33=0.21; C44=0.28; C;,=—0.07;

C13=0.24; C14,=—0.14; C;3=—0.05; (;4=0.02; C3,=—0.16

For variations of the base case, only differences to the base case parameters are listed.
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Figure 2. Prior densities (gray), likelihood (orange), and posterior densities (blue) for the different scenarios of the synthetic test case. Contour lines represent 10-90% Bayesian confi-
dence intervals: (a) variations of prior width (fractions of base case variance shown here: 0.5,. .. .,5), (b) variations of prior/likelihood overlap (distance between prior mean and MLE shown

here: 0,...,0.3).

in bias (error) and a reduction in variance (numerical uncertainty, shown as 95% Bayesian confidence inter-
vals of the approximation error in Figure 3).

Simple MC integration (MC) and MC integration with importance sampling (MC IS) perform equally well for
this setup. MC results improve linearly in quality in this log-log-plot, which complies with its well-known
convergence rate of O(NS_W) (Central Limit Theorem) [Feller, 1968]. MC integration with sampling from the
posterior (MC PS), however, leads to a severe overestimation of BME as anticipated (see section 3.3.3) and
does not improve linearly with ensemble size in log-log-space, but shows a slower convergence. It also pro-
duces a much larger numerical uncertainty (keep in mind the logarithmic scale of the error axis). Note that
the bias in BME approximation stems from the harmonic mean formulation and not from the sampling
technique, because the posterior realizations generated with DREAM were checked to be consistent with
the (in this case) known analytical posterior parameter distribution.

Nested sampling (NS) shows a similar approximation quality to MC integration, but is shifted on the x axis,
i.e, itis less efficient with regard to numerical ensemble sizes in this specific test case. The convergence
behavior shown here might not be a general property of nested sampling, because we found that modifica-
tions in the termination criteria significantly influence its approximation quality and uncertainty bounds. For
this synthetic linear test case, we conclude that nested sampling is not as efficient as simple MC integration.
It is also less reliable due to its somewhat arbitrary formulation with respect to the search for a replacement
realization and the choice of termination criteria. In principle, it offers an alternative to simple MC integra-
tion and might become more advantageous in high-dimensional parameter spaces. We will continue this
discussion for the real-word hydrological test case (section 5) and draw some final conclusions in section 6.

Since the ICs do not use random realizations to approximate BME, they are plotted as horizontal lines. With
its assumptions fully satisfied, the KIC@MAP is equal to the analytical solution in this case. Therefore, it does
not produce any error to be plotted in Figure 3. Evaluating the KIC at the MLE (KIC@MLE), however, leads to
a significant deviation from the exact solution. For this specific setup, the AlCc (after the KIC@MAP) per-
forms best out of the mathematical approximations with a tolerable error of 3%. However, we will demon-
strate later that this is not a general result. Note that we assess the AlC(c)’s performance in approximating
the absolute BME value here for illustrative reasons, although strictly speaking, it is only derived for compar-
ing models with each other, i.e., only the resulting model weights should be assessed (see section 4.6). The
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10° - other ICs yield approximation errors of 20—
MG PS 60%. Figure 3 shows that, except for MC inte-
102 FAC gration with posterior sampling, the numeri-
cal methods outperform all of the ICs
9 10 [ BIC evaluated at the MLE, if only enough realiza-
S A tions are used.
o110 ¢
o MC/MC IS
B 4.3. Results for Varied Data Set Size
Q L . . .
x 10 The approximation results as a function of
1072 data set size are shown in Figure 4. Since we
have demonstrated that the numerical
107 ! X | methods (except for posterior sampling) can
10° 10* 10° 10° approximate the true solution with arbitrary
Ensemble size accuracy if only the invested computational

power is large enough, we do not show their
Flgure 3. Relative error of BME apprommatlorT with respect to the analytical results here, as they would coincide with the
solution for the synthetic base case as a function of ensemble size. IC solu- uti f the KIC@MAP. Fi h
tions are plotted as horizontal lines, as they do not use realizations for BME solution of the @ - Figure 4a shows
evaluation. Results of the numerical evaluation schemes are presented with  the approximated BME values, while the rela-
95% Bayesian confidence intervals. tive error in percent with respect to the ana-

lytical solution is shown in Figure 4b.

The true BME curve (represented by the KIC@MAP here) is approximated quite well by both the KIC@MLE
and by the BIC. However, while the KIC@MLE converges to the KIC@MAP with increasing data set size, the
BIC does not. Its relative error with respect to the analytical solution becomes stable at more than 20%. This
result is not in agreement with the findings of Lu et al. [2011], who confirmed the general belief that the BIC
approaches the KIC with increasing data set size. In our case, the contribution of the terms dismissed by the
BIC (see section 3.2) is still significant and hence produces a relevant deviation between the two BME
approximations.

The AIC shows a linear dependence on data set size in this semilog plot. As expected, the AlCc converges to
the AIC with increasing data set size. Still, both variants of the AIC produce a relative error of more than
30%, which even increases with increasing data set size to more than 300% in this specific test case. Again,
be reminded that the AIC(c) is only derived for comparing models with each other by the means of model
weights, not as an approximation to the absolute BME value.

We investigate the reasons for the different behavior of the ICs over data set size by separating the likeli-
hood term from the Occam factor penalty term (see section 3.2.6). Figure 4c shows how the true likelihood
term (here: KIC@MAP) is approximated by the other ICs. Obviously, approximating this term produces negli-
gible errors if the data set size is reasonably large, i.e., if the MAP and the MLE almost coincide. The prob-
lems in BME approximation clearly stem from the challenge of approximating the Occam factor (Figure 4d).
The true Occam factor (or complexity penalty term) decreases with data set size. The KIC@MLE converges to
this true behavior. The BIC is able to closely approximate the true curve, but does not yet converge to it in the
range analyzed here. The penalty term of the AIC is a constant, which intersects the BIC's penalty term curve
at N; = 7 (see explanation in section 3.2.5). The penalty term of the AlCc variant is converging to the constant
AIC from below, i.e,, it is increasing in contrast to the true, decreasing behavior. We conclude that the ICs differ
substantially in the way they approximate the penalty term and therefore yield very different BME approxima-
tions with huge relative errors observed for the AlIC and AlCc.

Note that the results for Ns = 15 measurements, marked with circles in Figure 4, are similar, but not equal to
the results we showed in Figure 3. This is due to the fact that to investigate the influence of data set size,
we have marginalized over the random measurement error, while as a base case, we presented results for
just one specific outcome of measurement error. We chose this scenario on purpose to illustrate that all
those approximation methods which do not explicitly account for the sensitivity of the parameters to the
specific data set, suffer from unpredictable behavior. The range of potential relative errors (95% Bayesian
confidence intervals) over all 200,000 random realizations of measurement errors are shown as shaded
areas in Figure 4b. It becomes clear that, up to a data set size of about N; = 20 in our test case, none of the
specific ICs would be a reliable choice: the AIC, AlCc, and BIC could potentially yield very low (<1%) or very
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approximation of BME, (b) relative error with respect to the analytical solu-
tion with 95% Bayesian confidence intervals, (c) likelihood term approxima-
tion, (d) Occam factor approximation. The result obtained from KIC@MAP

represents the analytical solution in this case.

high (>100%) relative errors. Choosing the
KIC@MLE is a more reliable choice, since it
shows narrower bounds of potential relative
errors, but still results in intolerable errors up
to a data set size of about 30 in this case. We
will elaborate on the question of how to
make a safe choice of BME evaluation
method in section 6.

4.4. Results for Varied Prior Information
Next, we investigate the behavior of the
ICs for varied prior information. Figure 5
compares the influence of the prior width
(left column) with the influence of varied
distance between the MLE and the prior
mean, i.e., of a shifted prior (right column).
Again, we present the BME approximation
(Figures 5a and 5e) and its relative error
(Figures 5b and 5f), and the KIC@MAP rep-
resents the true solution. The AIC, AICc,
and BIC approximations are constant over
both variations, because they are not able
to detect any information about the prior
beyond the sheer number of parameters.
In theory, however, increasing the prior
width and moving the prior away from the
area of high likelihood, both lead to a
decrease in BME, which can be seen in the
BME curve obtained by the KIC@MAP.
While BME stabilizes at some point when
increasing the prior width to a fully unin-
formative prior, it falls steeply if the prior is
shifted farther away. This is important to
keep in mind, because also the systematic
relative errors in approximation (Figures 5b
and 5f) are much larger for the shifted
prior.

Only the KIC@MLE is able to track the varia-
tions in prior information and yields accept-
able errors in both BME approximation and
the approximation of the individual terms
(likelihood term, Figures 5c and 5g, and
penalty term, Figures 5d and 5h). Neverthe-
less, this error is in the range of 10%. In the
case of increased prior width, the KIC@MLE
converges to the true solution because the
MAP moves toward the MLE, and, at the
same time, the posterior covariance is
approximated more closely by the covari-

ance around the MLE. In contrast, there is no such convergence behavior with decreasing distance
between the MLE and the prior mean, because in that case only the MAP moves toward the MLE, but
the covariances do not coincide if the prior is still somewhat informative. Therefore, the solution of the
KIC@MLE deviates from the true BME value even if the MAP is equal to the MLE, still producing a relative
error of 30%.
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Figure 5. (left) Results obtained for the synthetic test case as a function of prior width and (right) as a function of distance between prior
mean and MLE. (a and e) Approximation of BME, (b and f) relative error with respect to the analytical solution, (c and g) likelihood term
approximation, (d and h) Occam factor approximation. The result obtained from KIC@MAP represents the analytical solution in this case.

For increasing distance between the MLE and the prior mean, the approximation of the likelihood term (Fig-
ure 5g) by MLE-based criteria deteriorates significantly. Since neither the likelihood term nor the penalty
term are adequately approximated by the AIC, AICc, or BIC, substantial errors in BME approximation arise.
There are poles in the relative error curves, where they cut the analytical solution. These locations are, how-
ever, dependent on the actual model at hand and on the outcome of the measurement error, and can
therefore not be predicted a priori. Again, preferring any IC among AIC, AICc, and BIC as an approximation
to BME is not a reliable choice as already pointed out when analyzing their performance over data set size.
We will discuss implications of this finding in section 6.
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4.5. Results for Varied Model Structure

In this section, we illustrate the influence of model structure on the BME approximation quality achieved by
the nine different evaluation methods. In the previous sections, we have investigated the behavior of the
ICs for varied data set size and varied prior information under optimal conditions, i.e., their underlying
assumption of a Gaussian posterior distribution was fulfilled. For the nonlinear models considered here, this
is no longer the case. This setup therefore represents a more realistic setting where no analytical solution
exists. In order to still be able to assess the differences in approximation quality, we generate a reference
solution with brute-force MC integration. We choose this method as reference for its absence of assump-
tions (section 3.3.1), i.e,, its unrestricted applicability to any arbitrary (linear or nonlinear) setup, and for its
precision and accuracy in BME approximation as demonstrated in the first step of our synthetic test case
(section 4.2).

The relative approximation errors made by the different BME evaluation methods for the four different
models are listed in Table 2. The performance of the numerical methods is comparable to the results shown
in the previous sections, since their approximation quality is not directly related to model structure (but
might be influenced by the shape of the area of high likelihood). Results for the AIC, AlCc, and BIC vary arbi-
trarily with regard to model type and model dimensionality. We have shown that their approximation qual-
ity hugely depends on the actual data set (cf. section 4.3). This effect seems to be similarly strong here,
mixing with errors due to the linear approximation of the complexity penalty term and due to violations of
the underlying assumptions by the nonlinear models. The KIC variants show a much clearer tendency to fail
with increasing nonlinearity of the model. The KIC@MAP is equal to the true solution in the case of the lin-
ear models L1 and L2, but not in the nonlinear case of the models NL2 and NL4. Since its approximation is
perfect under linear (and multi-Gaussian) conditions, the deterioration in approximation quality for the non-
linear models clearly shows its deficiencies if these assumptions are not fulfilled. The KIC@MLE additionally
suffers from differences in the location of the MAP and the MLE, which seems to cause similar trouble in the
linear case (L2) and in the weakly nonlinear case (NL2). Note that the KIC@MLE suffers more strongly than
the other ICs considered in this study, since not only its likelihood term, but also its Occam factor (penalty)
term depends on this chosen point of expansion (see section 4.4).

4.6. Impact of Approximation Errors on Model Selection

The overestimation or underestimation of BME itself might not be a major concern, if it yielded consistent
results in model weighting, i.e,, if the estimated BME values were correlated with the exact values, so that
ratios of BME between alternative models were consistent. Furthermore, the AIC(c) is derived to assess dif-
ferences between competing models, and one would expect to see a better approximation to the true
model weights than to the absolute BME values. To investigate this, we determine the model ranking for
the four models described in section 4.1. We further introduce two additional versions of the base case
model L2 by using two different prior distributions: Model L2a (see Figure 2) acts on an informative prior
which has a significant overlap with the area of high likelihood. Model L2b uses a slightly less informative
prior, which is significantly shifted away from the area of high likelihood. Model L2a is therefore clearly the
favorite among those two model versions, because it makes better predictions while being even more parsi-
monious. We deliberately include those two versions as competing models to illustrate the inability of the
AlC(c) and the BIC to detect differences in the parameter prior. We assign equal prior weights to all six mod-
els to let BME be the decisive factor in model averaging (see equation (2)).

Figure 6 shows the resulting posterior model weights as obtained from the different approximation meth-
ods, with the model weights of L2b, NL2, and NL4 additionally displayed on a logarithmic axis for better
visual inspection. The ranking obtained from simple MC integration with an ensemble of 10 million realiza-
tions per model is used as reference solution. The solution obtained for the KIC@MAP coincides with the
true weighting according to Bayes’ theorem in case of the linear models L1, L2a, L2, and L2b, since the
underlying assumption for the Laplace approximation is fulfilled. The results of simple MC integration (MC)
and MC integration with importance sampling (MC IS) are shown in one bar in Figure 6 because, as demon-
strated for the base case, they yield nearly identical results. MC integration with sampling from the posterior
(MC PS) yields a biased result for model ranking, while nested sampling (NS) yields, on average, a very accu-
rate result of model weighting, which indicates that the potential bias in overestimation or underestimation
of BME induced by the somewhat arbitrary choice of termination criteria is consistent (correlated with the
true value across the competing models).
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Table 2. Relative Error of BME Approximation Methods for Different Model Structures as Compared to the Reference Solution (Analyti-
cal Solution Equal to the KIC@MAP in Case of Linear Models, Brute-Force MC Integration in Case of Nonlinear Models, Highlighted in

Italic Font)®

Method Ever 11 (%) Erel 12 (%) Everniz (%) Evernia (%)
KIC@MLE 0.9 304 249 99.8
KIC@MAP 0.0 0.0 13.2 59.4

BIC 94.0 213 375 703

AIC 176.4 59.7 179.2 225

AlCc 137.0 3.2 69.4 834

MC 0.0 0.0 0.0 0.0
MCIS 0.8 [0.0; 2.2] 0.1 [0.0; 0.4] 1.1 [0.0; 2.9] 1.5[0.1;4.1]
MCPS 132.0 [25.7; 196.6] 131.8 [23.5; 221.7] 324.8 [40.8; 490.3] 232.8[18.1; 481.8]
NS 24100.1;6.4] 2.8[0.4; 27.2] 4.0[0.2; 10.7] 11.2 [3.3; 18.9]

?95% Bayesian confidence intervals of numerical results given in parentheses.

The AIC, AlCc, and BIC assign a too large weight to the simplest model in the set (L1). This is due to the fact
that these criteria merely count the number of parameters used by a model, instead of considering correla-
tions among the parameters (defined by the parameter prior) which reduce the actual degrees of freedom.
Furthermore, these criteria are not able to distinguish between the three models L2a, L2, and L2b, which
only differ in their prior parameter assumptions, but not in their respective MLE. The corresponding BME
approximations by AIC, AlCc, and BIC therefore yield the most indecisive weighting for these three models
(equal weights), whereas the true BMA weights convey the clear message that, out of these three models,
L2a should be preferred over L2, and L2b should be discarded.

Within this model set, the nonlinear models obtain very small weights (see Figure 6) in the reference solu-
tion because the model structure of NL2 does not match the data well and NL4 is already too complex to
compete with the simpler linear models. Since the BME approximation errors of the KIC variants increase
drastically with the nonlinearity of the models, these errors are expected to impact model ranking signifi-
cantly if nonlinear models are playing a relevant role in the model selection competition. Here the nonlinear
models play an almost irrelevant role and thus model ranking is not too badly compromised when using
the KIC@MLE or the KIC@MAP, with the latter still outperforming the former.

4.7. Conclusions From Synthetic

VI tzal ] 2] e[ ] N2 NosE Test Case

] ] . . . The benchmarking has shown that
all ICs (except for the KIC@MAP)
potentially yield unacceptably
large errors in BME approximation.
Their performance depends on the
actual data set (including the out-
come of measurement error) that
is used for calibration. We have
learned that the AIC and AlCc
behave differently from the BIC
and KIC for increasing data set
size, i.e., the error made by the
AIC(c) increases, while the error of
the BIC and KIC decreases. Under
varied prior information, however,
the BIC follows the error behavior
‘ ‘ : of the AIC(c) in that it cannot dis-
0 0.2 04 06 0.8 1 10* 107 0 tinguish models which only differ

Posterior model weight in their prior definition of the

parameter space. This is a crucial
Figure 6. Posterior model weights as obtained from the different BME evaluation meth- . . . .
ods for linear (L1, L2) and nonlinear (NL2, NL4) models. L2, L2a, and L2b represent the ﬁndlng’ since the prior contains all
same linear model with differently shaped priors. Green vertical lines indicate reference the information about the
solution (obtained from brute-force MC integration).
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flexibility of a model and is the basis for an adequate punishment of model complexity. Also, differences in
model dimensionality cannot be adequately captured by those ICs. Among the ICs considered here, the
KIC@MLE is closest to the true solution, which is identical to the KIC@MAP in the linear case. The perform-
ance of the KIC under nonlinear conditions deteriorates toward unacceptable approximation errors in both
its versions, while the KIC@MAP still outperforms the KIC@MLE. Except for MC integration with posterior
sampling, we have shown that the numerical methods considered here are capable of approximating the
true BME value with satisfying accuracy, if the required computational power is affordable. Out of the
numerical methods, simple MC integration and MC integration with importance sampling show the highest
accuracy and lowest uncertainty for a given computational effort, which is in agreement with the theoretical
basis of the respective methods (see section 3.4). Our findings regarding the approximation quality of the
absolute BME value also apply to the approximation quality of the resulting model weights in this synthetic
case, with one exception: nested sampling proves to yield a similarly accurate model ranking despite its
slightly higher BME approximation errors as compared to MC integration.

5. Real-World Application to Hydrological Model Selection

In this section, we describe the application of the BME approximation methods presented in section 3 to
real-world hydrological model selection. Due to the nonlinearity in the hydrological models considered
here, no analytical solution exists. As already argued in section 4.5, we generate a reference solution by
investing a large amount of computational effort into a brute-force MC integration. Hydrological model
selection based on discharge measurements as presented here can be seen as a relatively simple model
selection task, since generally a large number of measurements is available, which emphasizes differen-
ces in model behavior. In other disciplines, model selection might become more difficult, as the number
of measurements and their information content are typically limited. Therefore, this real-world applica-
tion can still be considered as a rather good-natured case of model selection. BME evaluation methods
which fail in this application are expected to perform similarly insufficiently or even worse in other
applications.

5.1. Setup and Implementation

We use the distributed mesoscale hydrologic model (mHM, Version 4.0) [Samaniego et al., 2010] to illus-
trate the performance of the different BME approximation methods in hydrological model selection.
mHM is based on numerical approximations of dominant hydrological processes that have been tested
in various existing hydrological models (e.g., in HBV [Bergstrom et al., 1997] and VIC [Liang et al., 1996]).
It features a novel multiscale parameter regionalization technique to treat subgrid variability of input
variables and model parameters [Samaniego et al., 2010; Kumar et al., 2010]. A detailed description of
mHM can be found in Samaniego et al. [2010], Kumar et al. [2010]1, and Wohling et al. [2013] and is there-
fore not repeated here. The model is applied to the Fils river catchment (area 361 km2) of the Upper
Neckar basin, Southwest Germany, using daily discharge measurements for the time period between 1980
and 1988. Please refer to sub-catchment 17 in Wohling et al. [2013] for details on the model setup and a multi-
criteria model calibration. The original model considers two soil layers and employs 53 global parameters, 33
of which have been found sensitive to discharge predictions in a sensitivity analysis conducted prior to this
study (results not shown here). This model is subsequently referred to as mHM2L. For the purpose of this
study, a slightly simpler model with a single soil layer was built (mMHM1L), where 29 of the 53 global parame-
ters have been found sensitive to discharge predictions. Conventional model calibration for these two models
yields Nash-Sutcliffe efficiencies (NSE) [Nash and Sutcliffe, 1970] of 0.9309 and 0.9073 for mHM2L and mHMIL,
respectively. These values indicate that both models are able to adequately reproduce the observed discharge
time series.

A uniform prior is assumed for the sensitive parameters with parameter ranges set to mHM-recommended
values [see Kumar et al., 2010]. The insensitive parameters are fixed at midrange.

From a preprocessing analysis, the residuals between predictions and observations were found to be heter-
oscedastic, which is often encountered in hydrological modeling [Sorooshian and Dracup, 1980]. To mitigate
heteroscedasticity, we applied a Box-Cox transformation [Box and Cox, 1964] to both discharge predictions
y; and discharge observations y,:
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y="—"7— (28)

A value of 1=0.55 proved to be best suitable to reduce heteroscedasticity and to achieve a satisfying com-
promise in the fit to both high-flow and low-flow periods. The remaining variance in residuals is attributed
to both measurement noise and conceptual errors. If only tested against measurement noise, both models
(just like any other conceptual model) would be rejected from the statistical viewpoint [Reichert and Mieleit-
ner, 2009] despite the high NSE values reported above, because not all observations can be reproduced
within measurement error bounds. The residuals appeared to be correlated to a varying extent on different
time scales (most likely due to superposition of seasonal trends and event-based model deficiencies), such
that we could not identify a parsimonious correlation model that would reasonably explain the observed
patterns. Since the identification of more elaborate but robust error models [see e.g., Del Giudice et al., 2013;
Evin et al., 2014] is beyond the scope of our study, we restricted ourselves to a simple uncorrelated error
that increases with discharge in the untransformed space, similar to a relative error. We chose a relatively
large and constant standard deviation of 4.4 (m3s™! )0‘55 for this lumped error in transformed space as a
mild penalty for deviations from the observations. The sheer length of the observed time series neverthe-
less led to an effective reduction of parameter and prediction uncertainty, i.e., to a successful and reliable
calibration. Posterior uncertainty in discharge predictions was reduced to around 5% of prior uncertainty
for both models. Our chosen error parameterization is represented as an error matrix R’ with entries on the
main diagonal. The Gaussian likelihood function to be evaluated in equation (7) then takes the form:

_ _ T/ Nl N\ T
P (Yol Mi, u) =21 M2 R 7"/% - exp (—E(v,-—vo) R 1(v;—vo)>Hv5ﬂ (29)
j=1

with the last term being the derivative of the transformed observations y'o with respect to the untrans-
formed observations y,. Prior and posterior predictions of discharge as obtained from both models are
shown for the first year of the observation time series in Figure 7.

The reference BME value for each model was determined by MC integration (equation (23)) over ensembles
of 1.1 million realizations per model. Effective sample sizes [Liu, 2008] (the number of prior realizations that
significantly contribute to the posterior distribution) of 95 for the double-layer model (mHM2L) and of 27
for the single-layer model (mHM1L) were considered to be sufficiently large to produce a reliable statistic of
BME. We again performed a numerical convergence analysis (see section 4.1), which confirmed that the
BME estimate is varying less than 1%.

Based on this reference solution, we assess the approximation quality of the different methods presented in
section 3. From a posterior parameter ensemble of size 25,000 generated by DREAM, we determine the MAP
(and the covariance matrix needed for the evaluation of the KIC). In this case, the MAP is equal to the MLE due
to the uniform prior parameter distributions, and because the MLE does not fall outside of the bounds of the
prior. We evaluate the AIC, BIC, and KIC at this parameter set. Note that, when using the full calibration time
series with N; = 3227 measurements, we do not consider the AlCc, because it yields the same results as the
AIC. This is expected since the ratio N; /N, is much larger than 40 and, therefore, there is no need to correct for
a small data set size (see section 3.2.5). Importance sampling is performed with Gaussian sampling distributions
that are centered about the MLE (obtained from DREAM) with the same standard deviations as specified for
the prior parameter distributions. 100,000 realizations are generated from each model. Nested sampling is per-
formed with an initial ensemble size of 500. The same termination criteria as described in the synthetic test
case (section 4) are used. This leads to a total ensemble size (number of model calls) of around 110,000.

All BME approximation methods are assessed with regard to the error in reproducing the absolute BME value as
well as with regard to model ranking. Since all mathematical approximation methods drastically underestimate
BME in this test case and relative errors would all end up being 100%, we specify the approximation error instead
by determining the ratio between approximate and reference BME value and taking the natural logarithm:

Engy=InL=Inf;=In1. (30)

A good approximation will hence be characterized by a ratio of close to 1 and an £y, value of close to 0. A
negative value indicates that the approximation underestimates the reference value, and a positive value
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Figure 7. Model predictions of discharge for first year of calibration time series. (a) mHM1L, (b) mHM2L. Prior 95% Bayesian confidence intervals are shaded in gray, posterior 95% Bayes-

ian confidence intervals in respective color.

indicates overestimation. The impact on model ranking is evaluated by comparing the resulting model
weights (equation (2)).

5.2. Results for Full Observation Time Series

When using the full observation time series of 3227 daily discharge measurements for calibration, BME
takes a very small value since the likelihood of a parameter set is the product of the relatively small likeli-
hoods for each data point. We therefore report the natural logarithm of the BME value instead. The refer-
ence In(BME) values as obtained from MC integration are —10,003 for the single-layer model (mHM1L) and
—9991 for the double-layer model (mHM2L). While the numerical methods and the KIC arrive relatively
close to this reference solution, the AIC and BIC drastically underestimate the reference values (see Table 3).
Again, the AIC might be excused because it is not derived for approximating the absolute BME value, but
for approximating the differences in models via model weights. The numerical methods tend to overestimate
BME (especially posterior sampling and importance sampling), while the KIC underestimates instead. Nested
sampling yields the most accurate results of all numerical methods (besides the MC reference solution that has
a roughly 10-fold computational effort). MC integration with importance sampling leads to an overestimation of
BME here. This indicates that the choice of importance density is already close enough to the posterior parame-
ter density to inherit (some of) the biasedness of MC integration with posterior sampling (see section 3.3.3).
Results of all approximation methods are summarized in Table 3.

Based on BME values, the double-layer model mHM2L is the clear winner in this model comparison.
Although both models exhibit a good predictive performance which is confirmed by NSE values greater
than 0.90, mHM2L outperforms mHM1L because the concept of two soil layers is able to mimic the water
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retention capacity and the water movement in

Table 3. Performance of BME Approximation Methods in Hydrologi- . .
the unsaturated zone better than a single soil

cal Test Case as Compared to the Brute-Force MC Reference Solution

(Highlighted in Italic Font) layer. This leads to a slightly but notably better
Full Time Series Reduced Time Series fit of the simulated discharge hydrograph to

Method Ein(ry.mHme Ein(r) mumar Ein(r) mHmnt Ein(r).mHmaL the data. With regard to model complexity,

both models use the same number of parame-

KIC -52 -7.2 -68 -84 o .

BIC 1031 1206 797 921 ters, but differ in the number of sensitive (non-

AIC —15.0 —203 —23.1 —27.8 fixed) parameters. Even though the number of

AlCe —27 —312 sensitive parameters is slightly smaller for

MC 0.0 0.0 0.0 0.0 .

MC IS 14 33 1.0 15 mHM1L than mHM2L (29 versus 33), the size of

MC PS 3.1 48 08 1.0 the parameter space as defined by the prior

NS 11 05 03 —0.1

density is larger in the case of mHM1L due to
the actual permitted range of parameter values;
i.e., some sensitive parameters of mHM1L, which are fixed in mHM2L, have a larger range of values. As a
consequence, there is no trade-off between goodness of fit and model complexity, and model mHM2L
obtains a full posterior model weight of 100% (mHM1L obtains a weight of 0.0004% in the reference
solution).

All numerical methods as well as the KIC and AIC agree with the reference model weights. The BIC, however,
yields the exact opposite: It assigns a weight of 99.4% to the competing model, mHM1L. The BIC's parame-
terization of the Occam factor is in this case the decisive (and guilty) factor, because the difference in the
countable number of parameters is large enough to compensate the slightly better goodness of fit, which is
in reality not the case. Posterior model weights are visualized in Figure 8a. Although the quality of approxi-
mation achieved by the different methods varies drastically, the model ranking and model selection result
is (except for BIC) extremely clear and correct. This is due to the fact that the difference in goodness of fit is
significantly large, in favor of mHM2L. This is mirrored in the difference of maximum likelihoods between
both models, and is therefore detected by the ICs.

Previous studies on hydrological model selection have yielded similar results in that one model obtained an IC
weight of close to 100% [e.g., Meyer et al., 20071. Lu et al. [2013] have interpreted this clear weighting as too
“aggressive,” because it did not seem justified given the available data and prior knowledge. They therefore
propose to use a different formulation for the likelihood function which considers not only uncorrelated (mea-
surement) errors, but also correlated model structural errors. This led to a less clear weighting for all of the ICs
that are also considered here. Tsai and Li [2010] proposed a different procedure, but following the same line of
thought: They suggest to modify the calculation of the model weights by scaling the IC results in order to
obtain a less obvious model ranking. Ye et al. [2010a] used the generalized likelihood uncertainty estimation
method (GLUE) [Beven and Binley, 1992]), which penalizes deviations from the observed values in a nonformal,
user-specified manner. They calculated posterior model weights merely based on GLUE-likelihoods of the cali-
brated models (which does not incorporate any Bayesian penalty for complexity) and compared them with
model weights obtained from ICs, also finding that ICs seem to discriminate too harshly. Rojas et al. [2008], on
the other hand, compared different (formal and informal) likelihood formulations within the theoretical BMA
framework, but did not find significant differences in the resulting model weights.

We would like to add to this discussion by pointing out that the choice of likelihood function clearly influen-
ces the outcome of BME and, potentially, the resulting model weights as a consequence. If uncorrelated
errors are assumed, the likelihood for all individual data points are multiplied. If, for a long data series, one
model at all times predicted only slightly worse than its opponent, multiplying all the slightly lower likeli-
hoods would lead to a drastically lower total likelihood and hence to a significantly lower BME value. BMA
theory therefore supports the finding that, if only enough data points are available for calibration (and such
a type of likelihood function is used), one model will be the clear winner—no matter if the competing
model is performing very well, too, as it is the case in our application.

This might seem counter-intuitive, as one would argue that there is not necessarily more information about
model choice in a more frequently measured time series. But it needs to be kept in mind that the clear
model ranking is only based on the calibration period, i.e., the models might behave very differently under
changing boundary conditions. Hence, the choice of the calibration period, the sampling frequency and the
definition of the likelihood function lie in the responsibility of the modeler and should be subject to further
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Figure 8. Posterior model weights for (a) full observation time series and b) reduced observation time series as obtained from the different
BME evaluation methods for models mHM1L (dark blue) and mHM2L (light blue). Green vertical line indicates reference solution generated
by MC integration.

research. In summary, overly decisive weights are not an artifact of BME evaluation via ICs. They are a char-
acteristic of BMA theory (and hence also of BME evaluation via numerical methods). Future investigations
on the adequate choice of likelihood functions should therefore consider a suitable numerical method as a
reference for the true characteristics of the BMA framework.

We hypothesize that, if the difference in model performance was not as dominant, model ranking would
not be as obvious and not as accurately reproduced by approximation methods. To test this hypothesis, we
shorten the observation time series in the spirit of a thought experiment and only consider the first year for
calibration. By virtue of reducing the number of data points, the difference in goodness of fit will not be as
pronounced because the multiplication of likelihoods for each data point of the time series will have a
much less drastic effect. We do not advocate to use such a short time series for proper hydrological model
calibration, but proceed with it in section 5.3 to illustrate the impact of the number of observations. Note
that we do not change the analysis framework here (neither the definition of the likelihood function nor the
formulation of how to calculate model weights from ICs) as suggested by the authors listed above, but
actually change the amount of information that goes into the BMA analysis. Using the reduced time series
for model selection can also be seen as representative for more difficult model selection tasks in other disci-
plines that have to cope with a limited number of measurements.

5.3. Results for Reduced Observation Time Series

When using the reduced observation time series of 365 daily discharge measurements for calibration, BME
takes values of —1134 for the single-layer model (mHM1L) and —1132 for the double-layer model (mHM2L)
in the reference solution. As intended, the difference in goodness of fit and therefore in BME values is now
much less pronounced. Again, the numerical methods and the KIC achieve relatively good results. The AIC,
AICc (considered here since Ny/N, < 40), and BIC again drastically underestimate the reference values.
Nested sampling consistently yields the most accurate BME value. Approximation results are summarized in
Table 3.

This setup now leads to a less decisive weighting of 16.5% (mHM1L) versus 83.5% (mHM2L) in the reference
solution. Apparently, the difference in performance over the reduced time series is now small enough such
that model mHM1L should not be discarded, despite its slightly larger parameter space. Nevertheless,
mHMZ2L still obtains a significantly larger posterior probability of being the better model due to its more
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suitable representation of water retention capacity and water movement in the unsaturated zone. This
time, however, not only the BIC yields model weights erroneously in clear favor of mHM1L, but also the AIC
and AICc (even though they are derived for approximating BMA weights). Despite its BME approximation
quality being inferior to nested sampling, posterior sampling surprisingly yields weights closest to the refer-
ence solution. Nested sampling and importance sampling weights still convey a similar message, but
already deviate significantly from the reference weighting. Here the KIC yields indecisive weights of 51.9%
versus 48.1% and therefore does not qualify as a reliable approximation method. Resulting model weights
are visualized in Figure 8b.

5.4. Conclusions From Real-World Test Case

From this real-world test case, we have found that, still, the KIC performs best out of the ICs considered
here, but it produces a much larger approximation error than any of the numerical methods. All of the
methods used in this study, except for the BIC, are able to reproduce the reference model weighting when
using a large calibration data set. The BIC yields exactly the opposite model ranking and therefore contra-
dicts the true Bayesian model ranking, even in such a good-natured model selection problem where a large
data set is available. The fact that the BIC did not perform particularly badly (e.g., definitely not worse than
the AIC) in the synthetic setup (section 4) is alarming, because this means that there is not necessarily a cor-
relation between the ICs’ performance under linear conditions with their performance under nonlinear (but
still good-natured) conditions. When using a significantly shorter time series, the quality of BME approxima-
tion deteriorates for the AIC and improves in case of the BIC, while the approximation quality of the KIC
slightly decreases. This was expected from our investigation of the influence of the data set size in the syn-
thetic test case (see section 4.3). Independently of the actual BME approximation quality, all ICs yield inaccu-
rate posterior model weights. We therefore have to face the fact that the ICs considered here produce a
rather arbitrary model ranking result in nonlinear real-world applications, and their accuracy cannot be pre-
dicted in a general manner. Only the numerical methods are able to reproduce the true model ranking reli-
ably and sufficiently well.

6. Summary and Conclusions

In this study, we have compared nine methods to approximate Bayesian model evidence (BME), which is
required to perform Bayesian model averaging (BMA) or Bayesian model selection. Since analytical solutions
only exist under strongly limiting assumptions, we have investigated the usefulness of four numerical meth-
ods (simple MC integration, MC integration with importance sampling, MC integration with posterior sam-
pling, and nested sampling) which do not rely on any assumptions, but suffer from high computational
effort and potential inefficiency in high parameter dimensions. We have further considered four different
mathematical approximations which are known as information criteria (AIC, AlCc, BIC, and KIC evaluated at
the MLE) and are frequently used in the context of BMA, but in previous studies yielded contradicting
results with regard to model ranking. To be most consistent with approximation theory, we have proposed
to evaluate the KIC at the MAP, instead, and also included this variant in our intercomparison. The nine BME
evaluation methods analyzed in this study are summarized in Table 4.

6.1. Summary of Results

We have systematically compared these nine approximation techniques with regard to their theoretical
derivations, common features, and differences in underlying assumptions. From this extensive analysis,
we conclude that out of the ICs, the KIC evaluated at the MAP (KIC@MAP) is the most consistent one
with BMA theory, but also the most expensive one to evaluate. It yields the true solution if the posterior
parameter distribution is Gaussian (e.g., if the data set is large). The other ICs considered here are simpli-
fied versions of the KIC@MAP (KIC@MLE and BIC) or derived in a non-BMA context (AIC and AlCc). Since
the ICs" assumptions to calculate BME are too strong for nonlinear models or lack the correct theoretical
foundation altogether, the contradicting reports on their performance at various accounts in the litera-
ture were to be expected. The numerical methods considered here are not limited by any assumptions.
Simple MC integration is bias-free, but computationally very expensive. The other numerical methods
are potentially more efficient, but prone to show a bias in their BME estimate. The most important
assumptions and limitations of the nine BME evaluation methods analyzed in this study are summarized
in Table 4.
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The main contribution of this study is a first-time benchmarking of the different methods on a simplistic
synthetic example where an exact analytical solution exists. The benchmarking has shown that all ICs
(except for the KIC@MAP) potentially yield unacceptably large errors in BME approximation, with their per-
formance depending on the actual calibration data set. Therefore, it cannot be recommended to use either
of these criteria for a reliable, accurate approximation of BME. Especially, the AIC(c) and BIC cannot distin-
guish models which only differ in their prior definition of the parameter space. This is a major concern, since
the specification of prior information is a fundamental part of Bayesian inference and Bayesian model rank-
ing. It is misleading to think that the AlC(c) or BIC would perform acceptably if prior information is vague or
not available; we have demonstrated that actually the opposite is the case. Also, these criteria are incapable
of capturing the true dimensionality of a model. It remains an open question for future investigation,
whether model dimensionality could be more adequately “encoded” in these ICs to improve their so far
unacceptable performance in BME approximation. While the KIC@MAP represents a perfect choice if its
assumptions are fulfilled, its performance deteriorates significantly with increasing nonlinearity in the con-
sidered models as illustrated in the second part of our synthetic example. The accuracy of BME approxima-
tion by the numerical methods considered here is only limited by computational effort (except for MC
integration with posterior sampling, which is expected to overestimate BME due to its theoretical formula-
tion). Simple MC integration and MC integration with importance sampling showed the highest accuracy
and lowest uncertainty for a given computational effort, which agrees with the expectations based on the
theoretical background of the respective methods.

We have continued our analysis with a real-world application to hydrological model selection. We have
compared two conceptually slightly different versions of the distributed mesoscale hydrologic model
(mHM) [Samaniego et al., 20101, which are applied to the Fils river catchment of the Upper Neckar basin in
Southwest Germany. Here the nonlinearity in model equations represents a typical case where the assump-
tions of the analytical solution or the Laplace approximation are not fulfilled. Based on the findings from
our theoretical comparison and the benchmarking, we have therefore used simple MC integration as refer-
ence solution. In this realistic setup, the KIC again performs best out of the ICs considered in this study, but
it produces a much larger approximation error than any of the numerical methods. Using a long time series
of daily discharge measurements between 1980 and 1988 for calibration, model choice turns out to be very
clear, such that the conceptually superior model obtains a posterior model weight of 100%. In this case, all
of the methods considered in this study, except for the BIC, reproduce this clear model weighting, despite
their difficulties in approximating the actual value of BME. Note that the BIC yields exactly the opposite
model ranking and therefore contradicts the true Bayesian model ranking, even in this good-natured model
selection problem where a large data set is available. The BIC's much worse performance in the real-world
application could not be foreseen from its performance in the synthetic setup. This fact is revealing,
because it reminds us again that the approximation quality of the ICs is rather arbitrary and application-
dependent, which has already become evident in the synthetic test case.

We have pointed out that BMA theory supports the finding from our studies and previous work that, if only
enough data points are available for calibration, one model will be the clear winner, even if the competing
model is also performing very well as in our application. This might seem counter-intuitive, but is not an
artifact of approximating BME via ICs as previously suspected by other authors. To test our hypothesis that
also the other ICs discussed here would not be able to yield a consistent ranking if the calibration time
series were shorter (as would often be the case for model selection in disciplines other than hydrology), we
have repeated the analysis using only the first year of measurements for calibration. We do not advocate to
use such a short data set for a robust calibration of mHM, but provide this analysis to make the reader
aware of the important role of the data set length. Independently of the actual BME approximation quality,
all ICs yield inaccurate posterior model weights in this case, while the numerical methods are able to repro-
duce the true model ranking sufficiently well.

6.2. Implications for Robust Model Selection

Both test case applications have revealed that using ICs to approximate BME potentially can, but not neces-
sarily will, produce acceptable results for both the absolute BME value and the resulting model ranking. The
Bayesian trade-off between model performance and model complexity is not represented adequately by
the ICs, with the potential exception of the KIC@MAP. However, it cannot be decided in advance if a data
set is large enough for the KIC@MAP to perform well for a given application and model set. This is why we
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advocate to perform a comparison of the KIC@MAP with at least one of the numerical methods presented
here, in order to assess the degree of agreement between the methods. If the discrepancy is large, one
should continue with numerical methods if computationally feasible. If computation time is limited, nested
sampling could be an efficient alternative to full MC integration as indicated by our test case results. If
numerical evaluation is not an option at all because large model run times prohibit such an approach, we
still do not recommend to compare several ICs amongst each other as frequently suggested in the litera-
ture, since this procedure cannot provide any conclusive insight. Instead, we suggest to solely use the KIC,
evaluated at the MAP. Note that this still involves nonnegligible computational effort, since the MAP and
the posterior covariance need to be determined; this could however be done by more efficient numerical
optimization schemes. Nonetheless, finding a reliable alternative to numerical BME evaluation is still an
open research question.

6.3. Conclusions

In conclusion, the findings from our theoretical intercomparison, the benchmarking results from our syn-
thetic study as well as the insights from the application to a real-world hydrological model selection prob-
lem demonstrate that

1. for real-world applications, BME typically needs to be evaluated numerically or approximated by ICs
because no analytical solution exists;

2. out of the ICs, the KIC evaluated at the MAP is the most consistent one, but might still be heavily biased
when applied to nonlinear models;

3. the choice of evaluation method for BME substantially influences the deviation from the true BME value,
the outcome of posterior model weights and model ranking as such;

4. for reliable model selection, there is still no reliable alternative to bias-free numerical methods.
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