Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Jul;72(7):2649–2652. doi: 10.1073/pnas.72.7.2649

Release of (oligo) peptidyl-tRNA from ribosomes by erythromycin A.

T Otaka, A Kaji
PMCID: PMC432827  PMID: 1101261

Abstract

Erythromycin A released peptidyl-tRNA in the in vitro polypeptide synthesis system with bacterial components programmed by synthetic polynucleotide. This is consistent with our hypothesis that erythromycin A inhibits translocation by preventing proper situation of oligopeptidyl-tRNA in the donor (D) site on ribosomes.

Full text

PDF
2650

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anaka K., Teraoka H. Effect of erythromycin on polylysine synthesis directed by polyadenylic acid in an Escherichia coli cell-free system. J Biochem. 1968 Nov;64(5):635–648. doi: 10.1093/oxfordjournals.jbchem.a128942. [DOI] [PubMed] [Google Scholar]
  2. Cundliffe E., McQuillen K. Bacterial protein synthesis: the effects of antibiotics. J Mol Biol. 1967 Nov 28;30(1):137–146. doi: 10.1016/0022-2836(67)90249-5. [DOI] [PubMed] [Google Scholar]
  3. Cuzin F., Kretchmer N., Greenberg R. E., Hurwitz R., Chapeville F. Enzymatic hydrolysis of N-substituted aminoacyl-tRNA. Proc Natl Acad Sci U S A. 1967 Nov;58(5):2079–2086. doi: 10.1073/pnas.58.5.2079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. De Groot N., Groner Y., Lapidot Y. Peptidyl-tRNA. VII. Substrate specificity of peptidyl-tRNA hydrolase. Biochim Biophys Acta. 1969 Aug 20;186(2):286–296. doi: 10.1016/0005-2787(69)90006-9. [DOI] [PubMed] [Google Scholar]
  5. Hirashima A., Kaji A. Factor-dependent release of ribosomes from messenger RNA. Requirement for two heat-stable factors. J Mol Biol. 1972 Mar 14;65(1):43–58. doi: 10.1016/0022-2836(72)90490-1. [DOI] [PubMed] [Google Scholar]
  6. Hirashima A., Kaji A. Role of elongation factor G and a protein factor on the release of ribosomes from messenger ribonucleic acid. J Biol Chem. 1973 Nov 10;248(21):7580–7587. [PubMed] [Google Scholar]
  7. Igarashi K., Ishitsuka H., Kaji A. Comparative studies on the mechanism of action of lincomycin, streptomycin, and erythromycin. Biochem Biophys Res Commun. 1969 Oct 22;37(3):499–504. doi: 10.1016/0006-291x(69)90943-7. [DOI] [PubMed] [Google Scholar]
  8. Kössel H., RajBhandary U. L. Studies on polynucleotides. LXXXVI. Enzymic hydrolysis of N-acylaminoacyl-transfer RNA. J Mol Biol. 1968 Aug 14;35(3):539–560. doi: 10.1016/s0022-2836(68)80013-0. [DOI] [PubMed] [Google Scholar]
  9. Mao J. C., Putterman M. Accumulation in gram-postive and gram-negative bacteria as a mechanism of resistance to erythromycin. J Bacteriol. 1968 Mar;95(3):1111–1117. doi: 10.1128/jb.95.3.1111-1117.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Mao J. C., Robishaw E. E. Effects of macrolides on peptide-bond formation and translocation. Biochemistry. 1971 May 25;10(11):2054–2061. doi: 10.1021/bi00787a014. [DOI] [PubMed] [Google Scholar]
  11. Mao J. C., Robishaw E. E. Erythromycin, a peptidyltransferase effector. Biochemistry. 1972 Dec 5;11(25):4864–4872. doi: 10.1021/bi00775a035. [DOI] [PubMed] [Google Scholar]
  12. Modolell J., Davis B. D. Breakdown by streptomycin of initiation complexes formed on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1148–1155. doi: 10.1073/pnas.67.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Otaka T., Kaji A. Evidence that fusidic acid inhibits the binding of aminoacyl-tRNA to the donor as well as the acceptor site of the ribosomes. Eur J Biochem. 1973 Sep 21;38(1):46–53. doi: 10.1111/j.1432-1033.1973.tb03031.x. [DOI] [PubMed] [Google Scholar]
  14. Otaka T., Kaji A. Micrococcin: acceptor-site-specific inhibitor of protein synthesis. Eur J Biochem. 1974 Dec 16;50(1):101–106. doi: 10.1111/j.1432-1033.1974.tb03876.x. [DOI] [PubMed] [Google Scholar]
  15. Pestka S. Antibiotics as probes of ribosome structure: binding of chloramphenicol and erythromycin to polyribosomes; effect of other antibiotics. Antimicrob Agents Chemother. 1974 Mar;5(3):255–267. doi: 10.1128/aac.5.3.255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Tai P. C., Wallace B. J., Davis B. D. Selective action of erythromycin on initiating ribosomes. Biochemistry. 1974 Oct 22;13(22):4653–4659. doi: 10.1021/bi00719a029. [DOI] [PubMed] [Google Scholar]
  17. Tanaka K., Teraoka H., Tamaki M. Peptidyl puromycin synthesis; effect of several antibiotics which act on 50 S ribosomal subunits. FEBS Lett. 1971 Feb 12;13(1):65–67. doi: 10.1016/0014-5793(71)80666-x. [DOI] [PubMed] [Google Scholar]
  18. Tanaka S., Otaka T., Kaji A. Further studies on the mechanism of erythromycin action. Biochim Biophys Acta. 1973 Nov 26;331(1):128–140. doi: 10.1016/0005-2787(73)90425-5. [DOI] [PubMed] [Google Scholar]
  19. Vogel Z., Zamir A., Elson D. On the specificity and stability of an enzyme that hydrolyzes N-substituted aminoacyl-transfer RNA's. Proc Natl Acad Sci U S A. 1968 Oct;61(2):701–707. doi: 10.1073/pnas.61.2.701. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. WALEY S. G., WATSON J. The action of trypsin on polylysine. Biochem J. 1953 Sep;55(2):328–337. doi: 10.1042/bj0550328. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. de Groot N., Panet A., Lapidot Y. Enzymatic hydrolysis of peptidyl-tRNA. Biochem Biophys Res Commun. 1968 Apr 5;31(1):37–42. doi: 10.1016/0006-291x(68)90027-2. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES