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ABSTRACT A formula for the distribution of allelic
frequencies in a finite population is derived assuming step-
wise production of multipfe alleles. Monte Carlo experiments
were performed to check the validity of the formula, and ex-
cellent agreement was obtained between theoretical distribu-
tion and experimental results. The formula should be useful
for analyzing genetic variability in natural populations that
can be detected by electrophoretic methods.

In particular, Ho represents the average homozygosity or the
expectation of the sum of squares of allelic frequencies.
Since the effective number of alleles (ne) is given by the re-
ciprocal of Ho, formula 1 follows immediately from 3. Fur-
thermore, the expectation of the product of frequencies of
adjacent alleles is

For the purpose of analyzing genetic variability that can be
detected by electrophoretic methods, we recently proposed
a model of stepwise production of alleles (1, 2). In this
model, it is assumed that the entire sequence of allelic states
can be expressed by integers (..., A,1, AO, A1, .. .), and
that if an allele changes states by mutation it moves either
one step in the positive direction or one step in the negative
direction in the allele space (Fig. 1). As compared with the
conventional model of Kimura and Crow (3) which assumes
that every mutation leads to a new, not preexisting allele,
this model has a feature that mutations are to some extent
recurrent; less frequent alleles in a population tend to be
produced repeatedly from mutation of more frequent adja-
cent alleles. Analytical treatment of this model is much more
difficult than that of Kimura and Crow, but we have ob-
tained, using diffusion equation methods, the formula for
the effective number of selectively neutral alleles main-
tained in a finite population (2). Namely, if v is the mutation
rate per locus per generation such that the mutational
changes toward the positive and the negative directions
occur with equal frequencies as shown in Fig. 1, and if Ne is
the effective size of the population, then, assuming selective
neutrality of mutation, the effective number of alleles at
equilibrium is given by

ne = 1 + 8NeV* [1]

More generally, we have shown that if Ck is the expectation
of the product of the frequencies between two alleles that
are k steps apart in the allele space, then

Ck = H0X I, [2]
where

Ho = 1/1+ 8Nev [3]
and

X, = (1 + 4NeV - 1 + 8Nev)/(4Nev). [4]

C =
1 + 4NeV -r11 + 8Nev

4NeV F1 + 8Nev
[51

Note that these results are concerned with the second mo-
ments of the distribution of allelic frequencies rather than
the distribution itself.
However, in order to assess, by detailed analyses of obser-

vations, the role of mutation and random drift for the main-
tenance of protein polymorphisms, knowledge on the actual
form of the distribution is required. Although considerable
information can be gained on the nature of the distribution
through careful Monte Carlo experiments (4), it is much
more desirable to derive the distribution analytically. The
purpose of the present paper is to show that under a simpli-
fying assumption (as expressed by Eq. 10 below), a distribu-
tion can be obtained that satisfies known relations 3 and 5,
and also gives excellent fit to Monte Carlo experiments for
4Nev up to unity.

BASIC THEORY
Let us consider a random mating population of N diploid in-
dividuals, and let Ne be the effective size of the population
which may be different from the actual size N. We assume
that under mutation and random drift a statistical equilibri-
um is reached with respect to distribution of allelic frequen-
cies. We shall designate this distribution by CF(x) such that
4.(x)dx represents the expected number of alleles whose
frequencies in the population are in the range (x - x + dx).

Consider an allele (say Ao) whose frequency in the popu-
lation is x. Let x-i and xi be the frequencies of alleles (A-1
and A1) that are adjacent to Ao. Then, under stepwise pro-
duction of alleles as shown in Fig. 1, the mean and the vari-
ance of the change of x per generation are given respective-
ly by

V
M = -ux + - E(x-,. + xljx)2 [6]

and
Vsx = x(l - x)1(2N, ), [7]

where v is the mutation rate and E(x_1 + xilx) is the condi-
tional expectation of the sum of the frequencies of the two
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FIG. 1. Diagram showing the model of stepwise productic
alleles.

adjacent alleles given that the frequency of the allel
question is x.

If E(x_1 + xllx) can be expressed as a known functio
x, then CF(x) may be obtained by applying Wright's (5)
mula for the steady-state gene frequency distribution,
is, by

F(x) = V5xexp{2 f~5dx

where C is a constant determined such that the sum of a
ic frequencies in the population is unity:

f xF(x)dx = 1.
0

)n of

e in

n of
for-
that

[8]

llel-

[9]

Note that this condition is different from the one originally
used by Wright to determine the constant. The reason for
this is that in his case the distribution represents probability
density, while in our case 4(x) represents density of the ex-
pected number of alleles (see also refs. 3 and 6).

Let us now assume that E(x-l + x1lx) can be expressed,
with sufficient accuracy, as a constant fraction of the total
frequencies of the remaining alleles so that

E(x-l + xjx) = b(1 - x), [10]

where b is a constant that may depend on v and Ne but not
on x. Substituting Eq. 10 in Eq. 6 we get

M = -vx + 2vb(1 - x), [6a]

and, this together with Eq. 7, allows us to obtain the distri-
bution by using formula 8. Thus, we obtain

(X) =C(1 - X)' x - 1 [1I]

where a = 4Nev and f = 2Nevb. In this formula, constant C
is determined by using condition 9, and we get

F(a + ,B + 1)
F(a)F( + 1)

In order to determine another constant b, we note that the
expectation of the sum of squares of allelic frequencies is Ho
= 1/x/T + NeV as given in Eq. 3. In terms of the present
distribution, we have

Ho = x24(x)dx = ( + 1)/(a + 3 + 1)
[13]

and therefore, by equating this with 1/x/]7+ WNe, we ob-
tain

/ = (a + 1 - V1+ 8NeV)/(l + 8Nev - 1).
[14]

Thus, the required distribution may be expressed in the fol-
lowing form:

4(x) = F( + 0 + 1) (1 - x)'t - 1 Xl - I [15]F(a)F(h= + 1)

where a = 4Nev, 03 = 2Ne,,vb and

b =l1 + 4Nev - V1 + 8Nev
2Nv(l 1 + 8NeV - 1)

[16]

We shall now show that with this distribution and the
above assignment of constant b in Eq. 10 we can derive the
correct value for the expectation of the product of frequen-
cies between adjacent alleles. In terms of the present distri-
bution, this is given by

Cl = 2 xE(x-, + xJxX4(x)dx

and, noting Eqs. 9, 10, 13, and 16, we get

b C'
Cl = x(1 - x)4?(x)dx

= b(1 - Ho) = -
1 1_+8Ne)

1 + 4Nev - 1/ + 8Nev
4NeV C1 + 8Nev

This agrees with Eq. 5, the result obtained earlier by us (2)
using an entirely different method. Furthermore, by letting
f = xn(n > 2) in EjL(f)j = 0 in Ohta and Kimura's (ref. 2)
formulation, we find that 4(x) must satisfy the relation:

(n - 1) { xn - I(x)dx - fxn4?(x)dx}

-4NeV {fxn4?(x)dx

- 2fE(x_1 + xIIx)xn -'4(x)dx} = 0,

and we can show, in fact, this is satisfied by Eq. 15, assum-
ing Eq. 10. We can also show that as NeV gets small, b ap-
proaches unity so that 4(x) approaches the distribution
given by Eq. 11 but with a = 4Nev and :3 = 2Nev. On the
other hand, it is known (see ref. 6) that this form of distribu-
tion represents the case in which the entire allelic space con-
sists of three allelic states with stepwise production of muta-
tions. This is reasonable since when NeV is small, the number
of different alleles contained at any moment within a popu-
lation seldom exceeds three, so that the triallelic space
should be sufficient for describing the distribution. Inciden-
tally, we note that b can be expressed in the form:

2
ne- 1

[16a]

Since the effective number of alleles excluding the allele
under consideration (i.e., Ao) is ne - 1, of which two are in
the states adjacent to Ao, and, since X1 = C,/Ho represents,
in a sense, correlation between adjacent alleles, we think that
b given by Eq. 16a allows us a very natural interpretation.
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Table i. Comparison of na between Kimura-Crow and stepwise production models

N

5 x 102 103 5 x 103 104

Ne v K-C Step K-C Step K-C Step K-C Step

0.01 1.274 1.256 1.301 1.280 1.366 1.335 1.394 1.358
0.025 1.675 1.578 1.745 1.627 1.906 1.736 1.975 1.780
0.05 2.324 1.994 2.462 2.068 2.784 2.220 2.923 2.280
0.1 3.557 2.562 3.834 2.649 4.478 2.816 4.755 2.874
0.25 6.908 3.434 7.601 3.501 9.210 3.604 9.903 3.633

Comparison of the average number of alleles (n.) between the Kimura-Crow model (K-C) and the model of stepwise production of alleles
(Step), under various combinations of N and NeV, where N and Ne are respectively the actual and the effective numbers of the population,
and v is the mutation rate.

From the frequency distribution 15 thus obtained, we can
derive a few formulae that may be useful for analyzing ob-
servations on protein polymorphisms. The average number
of alleles maintained in a population is given by

na1= l/2Nz
'F(x)dx

a +;; ra- F()Ff+ 1) (_)/3} [171
,B r(t)r(,# + 1) 2N}

The average number of different alleles in a sample of n in-
dividuals is

no = J -(x)I 1 (1 x)2n dx
12N2-

a + #
2N-

ReI
[18]

A corresponding expression for the model of Kimura and
Crow was earlier given by Ewens (7). The probability that a
population is monormorphic can also be obtained by using
Eq. 15. We define that a population is monomorphic if the
proportion of the most frequent allele in the population ex-
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x
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0.2
x

FIG; 2. Comparison between the theoretical distributions and
the results of Monte Carlo experiments. The solid curve represents
the theoretical distribution and solid circles represent the corre-

sponding experimental results for the case Nev 0.2. The broken
curve represents the theoretical distribution and open circles the
experimental results for Nev = 0.05. The abscissa is allelic fre-
quency; the ordinate is the expected number of alleles for each fre-
quency class. For details, see text.

ceeds 1 - q, where q is a small quantity such as 0.01. Let
Pmono be the probability that a population is monomorphic.
Then, for a small value of q, we have, with good approxima-
tion

I

Pmono q4(x)dx
1- q

F(a + FI + 1) q(t
r(a + 1)IF(,s + 1) [19]

where a = 4Nev and ,B = 2Nevb. The probability of poly-
morphism can be computed from 1 - Pmono,

MONTE CARLO EXPERIMENTS
In this section, we intend to show that the allelic distribution
we obtained gives excellent fit to the results of simulation ex-
periments. The procedure of the experiments follows our
previous study (4), namely, the allelic states are arranged on
a circle with a sufficiently large number of total states such
that the number of segregating alleles within a population at
any time is a small fraction of the total states. Each genera-
tion of the experiment consists of mutation and sampling.
Mutational changes were carried out deterministically. Each
experiment, starting from a homogeneous population, was
continued until the generation 50,000. The population size
assumed was 100. The allelic frequencies were counted
every 50 generations. Fig. 2 illustrates the theoretical distri-
bution together with experimental results for the two cases;
NeV = 0.05 and 0.2. As seen from the figure, the agreement
between the theoretical distribution and experimental re-
sults is excellent.

DISCUSSION
The pattern of allelic distribution derived in this paper
based on the step model of mutation is somewhat different
from the corresponding distribution obtained by Kimura
and Crow (3), particularly for a lower frequency range.
Namely, the curve describing the distribution rises less
steeply toward the origin for the step model than for the Ki-
mura-Crow model, and the difference gets larger as NeV in-
creases. This is reflected in the difference of the average
number of alleles (nfa) for the two models as shown in Table
1. In this table, values of na are computed by formula 17 for
the step model, while the corresponding values for the Ki-
mura-Crow model are taken from Kimura (6). Note that na
is always smaller for the step model. The difference of na
between the two models becomes larger as Nev gets larger.
Furthermore, the difference of na is more pronounced than
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that of ne between the two models. This means that the al-
lelic distribution is more uniform for the step model than for
the Kimura-Crow model, as we pointed out in one of our

previous papers (4). We note also that the probability of
polymorphism is only a little influenced under the stepwise
production of alleles.
The step model of mutation assumes that one positive and

one negative change cancel each other. It is possible, as we

pointed out when we first proposed the model (1), that this is
an oversimplification for representing the electrophoretical-
ly detectable changes. However, deviation from reality is of
only minor consequence, and we believe that the step model
is more adequate than the conventional Kimura-Crow
model for the analysis of genetic variability that can be de-
tected by electrophoretic methods. In fact, the idea of step-
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wise production of variants has since been used in several
studies of molecular evolution and polymorphism (8-13).
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