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Abstract

Objectives—New chest compression detection technology allows for the recording and 

graphical depiction of clinical cardiopulmonary resuscitation (CPR) chest compressions. The 

authors sought to determine the inter-rater reliability of chest compression pattern classifications 

by human raters. Agreement with automated chest compression classification was also evaluated 

by computer analysis.

Methods—This was an analysis of chest compression patterns from cardiac arrest patients 

enrolled in the ongoing Resuscitation Outcomes Consortium (ROC) Continuous Chest 

Compressions Trial. Thirty CPR process files from patients in the trial were selected. Using 

written guidelines, research coordinators from each of eight participating ROC sites classified 

each chest compression pattern as 30:2 chest compressions, continuous chest compressions 

(CCC), or indeterminate. A computer algorithm for automated chest compression classification 
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was also developed for each case. Inter-rater agreement between manual classifications was tested 

using Fleiss’s kappa. The criterion standard was defined as the classification assigned by the 

majority of manual raters. Agreement between the automated classification and the criterion 

standard manual classifications was also tested.

Results—The majority of the eight raters classified 12 chest compression patterns as 30:2, 12 as 

CCC, and six as indeterminate. Inter-rater agreement between manual classifications of chest 

compression patterns was κ = 0.62 (95% confidence interval [CI] = 0.49 to 0.74). The automated 

computer algorithm classified chest compression patterns as 30:2 (n = 15), CCC (n = 12), and 

indeterminate (n = 3). Agreement between automated and criterion standard manual classifications 

was κ = 0.84 (95% CI = 0.59 to 0.95).

Conclusions—In this study, good inter-rater agreement in the manual classification of CPR 

chest compression patterns was observed. Automated classification showed strong agreement with 

human ratings. These observations support the consistency of manual CPR pattern classification as 

well as the use of automated approaches to chest compression pattern analysis.

The advent of cardiopulmonary resuscitation (CPR) chest compression detection technology 

is one of the most important advances in resuscitation science and practice. Using 

accelerometer or electrical impedance sensors, this technology has enabled characterization 

of CPR chest compression delivery during clinical resuscitation efforts. Prior studies have 

used CPR process data to describe interruptions in chest compressions, as well as the 

associations between chest compression fraction and out-of-hospital cardiac arrest 

outcomes.1-6

Recent studies have promoted novel strategies for CPR using continuous chest compressions 

(CCC) with few or no pauses for ventilation.7-9 However, these prior studies relied on 

rescuer self-reports to characterize the patterns of delivered chest compressions, without the 

use of CPR measurement technology. The classification of observed chest compression 

patterns (e.g., CCC vs. 30:2 vs. other) requires manual interpretation of CPR process data, a 

process that is arduous, is time-consuming, and has unknown inter-rater agreement. 

Automated computer analysis could potentially improve the efficiency of CPR pattern 

classification, but no studies have described this technique nor compared its accuracy with 

manual CPR patterns classifications.

In this study of CPR delivered in the Resuscitation Outcomes Consortium (ROC) CCC 

Trial, we determined the inter-rater reliability of CPR chest compression patterns classified 

by manual data review. We also compared manual and automated computer approaches to 

chest compression pattern classification.

METHODS

Study Design

We conducted an analysis of chest compression patterns from cardiac arrest patients 

enrolled in the ongoing ROC CCC Trial. The ROC CCC Trial (www.clinicaltrials.gov 

NCT01372748) is conducted under US regulations for exception from informed consent for 

emergency research (21 CFR 50.24) and the Canadian Tri-Council Policy Statement: Ethical 

Wang et al. Page 2

Acad Emerg Med. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://www.clinicaltrials.gov


Conduct for Research Involving Humans. Additional reviews and approvals were obtained 

from the Office of Human Research Protection and Health Canada, as well as the 

institutional review boards and research ethics boards in the communities where the research 

was conducted.

Study Setting and Population

The ROC is a North American multicenter clinical trial network designed to conduct out-of-

hospital interventional and clinical research in the areas of cardiac arrest and traumatic 

injury.10,11 Of the 264 emergency medical services (EMS) agencies in ROC, 101 from eight 

ROC regional sites (Alabama; Dallas, Texas; King County, Washington; Milwaukee, 

Wisconsin; Pittsburgh, Pennsylvania; British Columbia, Canada; and Ottawa and Toronto, 

Ontario, Canada) are participating in the ROC CCC Trial.12-14

The aim of the ROC CCC Trial is to compare survival to hospital discharge between adult 

out-of-hospital cardiac arrests randomized to a strategy of 30:2 CPR chest compressions 

versus a strategy of CCC. The protocol entails three consecutive 2-minute bouts of chest 

compressions. The 30:2 chest compressions arm consists of 30 chest compressions 

alternating with a full pause for the delivery of two ventilations by bag-valve-mask device. 

CCC consists of continuously delivered chest compressions with a single, brief ventilation 

after every 10th compression, without chest compression interruptions.

Study Protocol

Procurement of CPR Chest Compression Process Data—All ROC EMS agencies 

record CPR chest compressions using state-of-the art portable cardiac monitors with chest 

compression detection technology, including the Zoll M and X series (Zoll, Inc., 

Chelmsford, MA), Philips MRX (Philips, Inc., Amsterdam, The Netherlands), and Physio-

Control LifePak 12 and 15 (Physio-Control, Inc., Redmond, WA). The Philips device 

measures chest compressions through an accelerometer-based sternal detector. The Zoll 

device similarly uses a sternal detector, but the sensor is physically fixed between the two 

cardiac defibrillation pads. The Physio-Control device detects chest compressions through 

changes in electrical impedance between chest electrodes; there is no additional hardware 

required. Independent studies have verified the accuracy of these detection technologies.15 

While minimal formal training is required for operation of the CPR detection technology, 

technical points reinforced during CPR training typically include (where applicable) proper 

midsternal placement of the detector, application of chest compressions over the detector, 

and strategies for maintaining proper detector placement.

All manufacturers provided commercially available processing software for translating the 

chest compression data into analyzable format. The software identified the timing of each 

individual chest compression, from which one can determine CPR performance parameters 

such as compression rate and the segment durations of chest compressions application and 

interruptions. Because of their use of a sternal accelerometer, only the Philips and Zoll 

devices are able to indicate chest compression depth. The Physio-Control device uses 

thoracic impedance changes and cannot ascertain chest compression depth.
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Selection of CPR Chest Compression Process Cases—For this analysis we 

assembled a test set of 30 CPR chest compression process files selected from cardiac arrest 

cases enrolled in the trial. Based on a projected kappa of 0.6 and at least six raters, we 

estimated needing CPR pattern ratings on at least 30 cases to achieve a lower one-sided 95% 

confidence interval (CI) no lower than 0.48.16,17 Although we planned to solicit ratings from 

eight raters, we designed the study for six raters to allow for potential subject dropout.

The study team selected candidate chest compression files to encompass the spectrum of 

chest compression patterns observed during the trial. The final selection of images included 

examples from both study intervention arms (CCC and 30:2) and seven of the eight ROC 

sites (Alabama, five; Dallas, five; Milwaukee, three; Pittsburgh, six; British Columbia, five; 

Ottawa, three; and Toronto, three). The candidate chest compression image set also included 

examples from the three brands of cardiac monitors used by participating EMS agencies 

(Zoll, 11; Philips, six; and Physio-Control, 13). We did not systematically sample images by 

site or manufacturer.

We provided CPR process images for the first 8 minutes of resuscitation, defined from the 

time of first reported EMS chest compressions and reflecting the 8-minute duration of the 

trial protocol (Figure 1 and Data Supplement S1, available as supporting information in the 

online version of this paper). For the Physio-Control and Zoll files, we provided per-minute 

summary statistics available from the respective software processing programs. We placed 

the chest compression images in random order without repeats. To minimize subject burden, 

we did not test intra-rater agreement, which would have required repeat assessment of 10 to 

15 additional CPR process files.

Manual Classification of Chest Compression Patterns—A trained research 

coordinator from each of the eight participating ROC regional coordinating centers reviewed 

the sample CPR process images. All raters possessed extensive CPR process analysis 

experience from prior ROC studies. Most raters had prior out-of-hospital or in-hospital 

clinical experience as doctors, nurses, or paramedics. Using structured guidelines, raters 

classified the chest compression pattern as CCC, 30:2, or indeterminate (Table 1). The 

guidelines for manual classification were developed by the lead study investigators and 

approved by the cardiac workgroup of the Consortium.

Pilot efforts suggested that CCC may be characterized by: 1) the presence of approximately 

2-minute periods of uninterrupted chest compressions without pauses; 2) the presence of 

only brief, nonperiodic chest compression pauses; and 3) the presence of no more than two 

chest compression pauses per 2-minute cycle of CPR. Similarly, 30:2 appeared to be 

characterized by: 1) the presence of approximately 20- to 30-second segments of chest 

compression interspersed with regular deliberate pauses and 2) the presence of at least three 

chest compression pauses per 2-minute cycle of chest compressions. Preliminary efforts also 

confirmed that the chest compression pattern in select cases may be indeterminate; for 

example, if an EMS crew started with 30:2 chest compressions but switched to CCC.

Automated Classification of Chest Compression Patterns—Research coordinators 

identified the start and end clock times for each chest compression segment appearing on the 
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CPR process file. (Data Supplement S2, available as supporting information in the online 

version of this paper) Using these parameters, one of the authors (RHS) developed 

automated computer algorithms identifying mean chest compression fraction, median chest 

compression time segment length, and mean number of chest compression interruptions 

(Table 2). The algorithms defined chest compression fraction as the number of seconds with 

chest compressions, divided by the number of seconds of analyzable data. The program 

defined chest compression time segment length as the duration of each section of 

uninterrupted chest compressions, with interruptions defined as chest compression pause 

greater than 2 seconds.

The automated analysis included available CPR data for the first 8 minutes of resuscitation, 

excluding time epochs with missing or unanalyzable data. The automated analysis required 

fulfillment of two of three criteria for classification as 30:2 or CCC (Table 2). If neither 

criteria were fulfilled, the program classified the case as “indeterminate.” (A detailed 

description of and rationale for the automated classification criteria are provided in Data 

Supplement S3, available as supporting information in the online version of this paper.).

Data Analysis

We determined inter-rater agreement between manual classifications using Fleiss’s kappa 

for multiple raters.18 Using the Stata module “kapci,” we applied bootstrapping with 100 

repetitions to determine the 95% CI for the kappa value. Because of their varying graphical 

representations of CPR process, on a post hoc basis we repeated the comparisons stratified 

by cardiac monitor manufacturer.

To determine the agreement between automated and manual CPR patterns classifications, 

we first defined the criterion standard manual classification as the chest compression pattern 

provided by the majority (at least five of eight) of human ratings. We determined inter-rater 

agreement between automated and criterion standard manual classifications using Cohen’s 

kappa. We similarly determined the 95% CIs by using bootstrapping with 100 repetitions. 

We also repeated the comparisons stratified by cardiac monitor manufacturer.

The use of three classification categories (CCC, 30:2, indeterminate) may have biased the 

analysis toward lower kappa values. Therefore, in a sensitivity analysis, we evaluated the 

potential range of kappa values with indeterminate manual ratings reclassified as CCC or 

30:2. All analyses were conducted using Stata v.12.2 and R v.2.15.1.

RESULTS

Based on the majority of classifications for each case, the eight raters classified 12 CPR 

patterns as 30:2, 12 as CCC, and six as indeterminate. CPR pattern classification was 

unanimous for 15 cases, including 30:2 (n = 7) and CCC (n = 8; Table 3). Inter-rater 

agreement between manual classifications of chest compression patterns was κ = 0.62 (95% 

CI = 0.49 to 0.74; Table 4). Inter-rater agreement was similar when stratified by cardiac 

monitor manufacturer.
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The automated algorithm classified 15 chest compression patterns as 30:2, 12 as CCC, and 

three as indeterminate (Table 3). Classification agreement between automated and criterion 

standard manual classifications was κ = 0.84 (95% CI = 0.59 to 0.95). There was 

disagreement in three of 30 cases; the pattern of discordance in all three cases was [criterion 

standard manual = indeterminate vs. automated = 30:2]. The kappa measure of agreement 

between automated and criterion standard manual ratings was lowest for Philips CPR 

process files, despite near-perfect concordance in ratings (there was disagreement in only 

one of six cases), possibly due to the small sample size (Table 4).

In a sensitivity analysis, when reclassifying all indeterminate ratings as CCC, the kappa 

measure of inter-rater agreement between manual classifications was 0.69 (95% CI = 0.56 to 

0.81). When reclassifying indeterminate ratings as 30:2, kappa was 0.75 (95% CI = 0.59 to 

0.86).

DISCUSSION

In this study we observed good inter-rater agreement in the manual classification of CPR 

chest compression patterns, a finding that sets the foundation for use of CPR process data to 

characterize chest compression strategies.19 More importantly, we also observed strong 

agreement between manual and automated classifications, a finding that supports the 

viability of automated approaches to chest compression pattern identification and 

categorization.

Our findings have important implications for CPR research. The use of CPR detection 

technology provides a more rigorous approach to identifying and characterizing chest 

compressions delivered during clinical care. Prior studies have relied on self-reports for 

characterizing different CPR chest compression strategies. For example, in the comparison 

of minimally interrupted with traditional 30:2 CPR by Bobrow et al.,7 the type of CPR 

delivered by EMS personnel was indicated by paramedic reports, without supporting CPR 

process data. No prior studies have independently confirmed the application of nor 

adherence to an intended CPR pattern strategy. The identification of CPR patterns is 

particularly important in an interventional trial (such as the ROC CCC Trial) where it is 

essential to determine both the intended and the actual CPR treatment received by a subject.

While inter-rater agreement was good, the raters did not show unanimous agreement in 15 

cases; in the majority of these cases, the disagreement pattern was either [CCC vs. 

indeterminate] or [30:2 vs. indeterminate], and in many instances there was only one 

dissenting rating. Furthermore, the majority of raters classified the CPR pattern as 

“indeterminate” in 20%; raters indicated that in most of these cases the intended chest 

compression patterns were simply not discernable. These observations are not unexpected 

given the complexity of the CPR process images and the natural chest compression 

variations that may occur from personnel changes, efforts to move the patient, manipulations 

of the airway, or rescuer fatigue.4 The inclusion of an “indeterminate” chest compression 

category in this analysis was both necessary and appropriate, as we expected natural 

variation in CPR delivery. While we provided structured guidelines for chest compression 

pattern classification, the reviewers affirmed that their exact interpretation likely varied.
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Perhaps the most important finding of this study is the agreement of automated with manual 

chest compression classifications. Manual CPR pattern review and classification is time-

intensive and arduous; raters in this study reported spending between 5 to 60 minutes to 

assess and assign a rating to each case. An automated approach may lend efficiencies to this 

process, bringing clear benefits to scientific and clinical applications. While our automated 

analysis was based on information that was manually extracted (the time and duration of 

each CPR segment), we surmise that computer analysis could also automate the latter task. 

We suspect that the feasibility of computer classification analysis likely depends on the 

complexity of a given chest compression strategy, and thus independent validation would be 

appropriate prior to application to a new CPR strategy.

In post hoc analyses, we found that agreement between manual and automated 

classifications was lower for the Philips CPR process files, an observation that was likely 

due to the small number of Philips CPR files in the series. However, the raters did comment 

on graphical distinctions between the CPR process reports that may have influenced chest 

compression pattern classifications. For example, the Physio-Control device uses bar graphs 

to depict each discrete compression, while the Zoll and Philips devices use line graphs 

depicting the vertical displacement of the chest compression sensor (Figure 1 and Data 

Supplement S1). The time resolution of the CPR reports also varies, with each line of the 

Physio-Control and Zoll graphical output spanning approximately 15 seconds and each line 

of the Philips output spanning 2 minutes. Unlike the Philips software, the Physio-Control 

and Zoll software also offer per-minute summaries of chest compression metrics. Additional 

study must identify the graphical characteristics most conducive to CPR pattern analysis.

Our study also highlights unexplored strategies for characterizing chest compressions. Prior 

efforts have focused on individual dimensions of CPR process such as the number and 

duration of chest compression interruptions or chest compression depth or rate.2-5,20,21 In 

the automated algorithm, we classified chest compression patterns using combinations of 

chest compression fraction, segment length, and number of interruptions. There may be 

other individual or combinations of metrics that better characterize the overall pattern of 

chest compressions and correlate with clinical outcomes. These measures might also 

improve our understanding of the physiologic mechanisms linking CPR strategy to 

improved outcomes. Additional study must explore these important unanswered questions.

LIMITATIONS

We used as a convenience sample of CPR process images by study team consensus rather 

than by random selection by site or cardiac monitor manufacturer, and thus selection bias 

may have influenced the observed results. To minimize subject burden, we did not test intra-

rater agreement, which would have required repeat ratings of an additional 10 to 15 chest 

compression cases. We did not evaluate inter-rater agreement of other chest compression 

metrics such as compression depth, rate, or chest compression fraction. As suggested in the 

sensitivity analysis, a smaller number of indeterminate cases would have increased the 

observed kappa. We did not use audio recordings of the encounters.
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In the evaluation of the automated chest compression algorithm, we designated criterion 

standard classifications by using the ratings assigned by the majority of manual ratings, 

which may have resulted in misclassification in a small number of cases. Given the 

complexity of classifying chest compression patterns, we opted not to designate criterion 

standard by study team consensus. Although we observed good inter-rater agreement 

estimates, the bootstrapped CIs suggest that a portion of the estimates may have been lower 

than observed.

Given the absence of prior data, we developed definitions for manual and automated 

classifications based on study team consensus. The development of different metrics and 

approaches to chest compression pattern classification is possible, but was outside the scope 

of this analysis. Additional study must explore and identify additional strategies for chest 

compression pattern classification.

This analysis used chest compression data from out-of-hospital cardiac arrests treated by 

expert EMS agencies specifically trained in the ROC research protocols. The clarity of chest 

compression patterns may differ with other EMS agencies or practitioners. Also, the raters in 

this study possessed extensive experience with CPR process analysis. We evaluated 

classification agreement for two specific treatment algorithms; the potential inter-rater 

agreement for alternate chest compression strategies is unclear.

CONCLUSIONS

In this study human raters showed good inter-rater agreement in the classification of 

cardiopulmonary resuscitation chest compression patterns. Automated classification showed 

strong agreement with human ratings. These observations support the consistency of manual 

cardiopulmonary resuscitation pattern classification as well as the use of automated 

approaches to chest compression pattern analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Sample chest compression process file and summary report from Physio-Control cardiac 

monitor. (Top) Compression process file; (bottom) summary report: Additional sample chest 

compression process files for Philips and Zoll monitors are provided in Data Supplement S1.
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Table 1

Guidelines for Manual Classification of Chest Compression Patterns

30:2 Chest Compressions Continuous Chest Compressions

- For the first 8 minutes of resuscitation.

- For at least 60% of the available and analyzable CPR 
chest compression image.

- There are chest compression periods of at least 20 
seconds duration interspersed with regular chest 
compression pauses (presumptively for two 
ventilations).

- The chest compression pauses occur in a periodic 
fashion.

- There are at least three chest compression pauses per 
cycle of CPR. A "cycle" of CPR refers to an 
approximately 2-minute period of compressions 
performed preceding a rhythm analysis.

- For the first 8 minutes of resuscitation.

- For at least 60% of the available and analyzable CPR chest 
compression image.

- There are chest compressions periods of at least 90 
seconds duration without regular chest compression 
pauses.

- Any observed chest compression pauses during a CPR 
cycle are brief and do not occur in a periodic fashion.

- There are fewer than three chest compression pauses per 
cycle of CPR, where cycle of CPR is defined as above.

Patterns fulfilling neither (or both) criteria were classified as indeterminate.

CPR = cardiopulmonary resuscitation.
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Table 2

Criteria Used for Automated Classification of Chest Compression Patterns

Measure
Criteria for Continuous
Chest Compressions

Criteria for 30:2
Chest Compressions

Mean chest compression fraction >0.80 0.60–0.80

Median chest compression segment length (seconds) 60–150 <20

Mean chest compression pauses (n per minute) <1 2–4

Chest compression patterns were classified as continuous or 30:2 chest compressions it the pattern fulfilled two of the three criteria. Patterns 
fulfilling neither (or both) criteria were classified as indeterminate.
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Table 4

Inter-rater Agreement of Chest Compression Pattern Classifications

Cardiac Monitor Manufacturer

Inter-rater Agreement
Physio-Control
(n = 13) Philips (n = 6) Zoll (n = 11) All Cases

Agreement between manual classifications, kappa
 (95% CI)

0.61 (0.36–0.78) 0.59 (0.29–0.91) 0.64 (0.44–0.83) 0.62 (0.49–0.74)

Agreement between [criterion standard manual
 classification] and [automated classification],
 kappa (95% CI)

0.88 (0.65–1.00) 0.70 (0.00–1.00)* 0.85 (0.60–1.00) 0.84 (0.59–0.95)

CIs determined by bootstrapping with 100 repetitions.

*
The bootstrapped 95% CI is wide because of small sample size despite near complete concordance (only one disagreement among six cases) 

between criterion standard manual and automated classification.
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