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Abstract

Aims—Alcohol problems (AP) contribute substantially to the global disease burden. Twin and 

family studies suggest that AP are genetically influenced, though few studies have identified 

variants or genes that are robustly associated with risk. This study identifies genetic and genomic 

influences on AP during young adulthood, which is often when drinking habits are established.

Design—We conducted a genome-wide association study of AP. We further conducted gene-

based tests, gene ontology analyses, and functional genomic enrichment analyses to assess 

genomic factors beyond single variants that are relevant to AP.

Setting—The Avon Longitudinal Study of Parents and Children, a large population-based study 

of a UK birth cohort.

Participants—Genetic and phenotypic data were available for 4304 participants.

Measurements—The AP phenotype was a factor score derived from items from the Alcohol 

Use Disorders Identification Test, symptoms of DSM-IV alcohol dependence, and three additional 

problem-related items.

Findings—One variant met genome-wide significance criteria. Four out of 22,880 genes 

subjected to gene-based analyses survived a stringent significance threshold (q< .05); none of 

these have been previously implicated in alcohol-related phenotypes. Several biologically 
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plausible gene ontologies were statistically over-represented among implicated SNPs. SNPs on the 

Illumina 550K SNP chip accounted for ~5% of the phenotypic variance in AP.

Conclusions—Genetic and genomic factors appear to play a role in alcohol problems in young 

adults. Genes involved in nervous system-related processes, such as signal transduction and 

neurogenesis, potentially contribute to liability to alcohol problems, as do genes expressed in non-

brain tissues.
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Introduction

Alcohol problems (AP) represent a significant public health concern with immense personal, 

social, and economic costs [1]. Twin and family studies have consistently suggested that 

alcohol-related phenotypes are genetically influenced, with heritability estimates for alcohol 

abuse and dependence estimated at ~50–60% [2–4]; estimates for other alcohol-related 

phenotypes are sometimes lower [5–7]. The heritability of alcohol use typically increases 

beyond adolescence [8, 9]. Alcohol-related phenotypes are complex genetic traits [10, 11], 

influenced by hundreds to thousands of genetic variants, each of small effect; these genetic 

factors are likely to interact with each other and the environment to impact risk, and to be 

heterogeneous [2], with phenotypically similar individuals harboring genetic risk variants 

with potentially little overlap.

Though linkage and candidate gene studies have identified genomic regions and genetic 

variants associated with liability to AP, these findings have been inconsistently replicated, 

with the exception of variants in ADH and ALDH genes [12, 13]. More recently, numerous 

genome-wide association studies (GWAS) have been conducted on alcohol-related 

phenotypes (e.g., [14–25]). Single nucleotide polymorphisms (SNPs) that meet stringent 

genome-wide significance criteria are seldom identified in these studies. Although small 

sample sizes almost certainly contribute to the paucity of “significant” results, the complex 

genomic nature of alcohol-related phenotypes likely also plays a role.

Thus, studies that adopt a more comprehensive approach, considering not just significant 

SNP-level findings but also suggestive evidence for a role of individual genes or enrichment 

for gene ontologies, could be critical in furthering our understanding of the etiology of AP. 

Rather than focusing on individual SNPs, SNP-level data can be used to conduct gene-based 

tests [26], which combine evidence across multiple SNPs; test for enrichment of gene 

ontologies; and investigate whether genes expressed in different tissue types are of particular 

relevance to AP. These approaches can be complemented by analyses of the aggregate 

effects of risk variants.

Here, we apply a comprehensive approach to the investigation of genomic influences on AP 

in a population-based sample of emerging adults in the United Kingdom. This is a critical 

time frame for the establishment of drinking behaviors [27] and the development of alcohol 

use disorders [28]. We use GWAS results to identify genes and gene ontologies likely to 
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play a role in the etiology of AP. We further test whether the implicated SNPs map to 

hypothesized regions of regulatory significance across a variety of tissues. Finally, we 

examine the aggregate effects of common variants.

Materials and Methods

Sample

The Avon Longitudinal Study of Parents and Children (ALSPAC) total sample included 

15,247 pregnancies from women residing in Avon, UK with expected due dates between 

April 1991 and December 1992, resulting in 15,458 fetuses. Of this total sample, 14,775 

were live births and 14,701 were alive at 1 year of age. Additional details are available from 

[29]. Please note that the study website contains details of all the data that is available 

through a fully searchable data dictionary (http://www.bris.ac.uk/alspac/researchers/data-

access/data-dictionary/). Ethical approval for the study was obtained from the ALSPAC 

Ethics and Law Committee, Bristol University, and Virginia Commonwealth University.

Phenotype

Using data collected at the age 17y9mo clinic assessment (referred to as age 18 hereafter), 

we derived an alcohol problems factor score, as previously described [30]. Briefly, 

participants were administered (via computer) 10 items from the Alcohol Use Disorders 

Identification Test [31] along with 7 items aimed at assessing DSM-IV [32] symptoms of 

alcohol dependence. Three additional measures (getting into fights, police involvement, and 

drinking to alleviate withdrawal symptoms) were also included. To improve sample size, we 

used IVEware [33] to impute age 18 alcohol problems data for participants who completed 

the AUDIT at age 16y6mo, but not the age 18 assessment (N=1993). See Supplementary 

Material for additional information. Frequency and correlation checks after imputation 

showed that all imputations kept similar frequency distributions and that imputed and 

original variables were closely correlated. Factor scores were created for 5952 participants 

after imputation, using Mplus 6.11 [34]. Of these, genetic data were available for 4304 

individuals after quality control screens were applied (see below).

Genotyping

Samples were genotyped using the Illumina HumanHap550 quad genome-wide SNP 

genotyping platform as previously described [35]. Individuals were excluded from analyses 

on the basis of excessive or minimal heterozygosity, gender mismatch, individual 

missingness (3%), cryptic relatedness as measured by identity by descent (genome-wide 

IBD 10%) and sample duplication. Individuals were assessed for population stratification 

using multi-dimensional scaling modeling seeded with HapMap Phase II release 22 

reference populations, and those of non-European ancestry were excluded from further 

analysis [35]. SNPs with a final call rate of <95%, minor allele frequency <1% and evidence 

of departure from Hardy–Weinberg equilibrium (p<5 × 10−7) were also excluded from 

analyses. Individuals were imputed to 1000 Genomes Phase 1 Version 3, using MACH for 

phasing and Minimac for imputation. Imputed polymorphisms with an r-square imputation 

quality metric of <.5 were excluded from further analyses. The genome-wide association 

analysis was conducted using MACH2QTL [36], including sex as a covariate. After quality 
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controls were applied, genetic data were available for 4304 of the individuals with 

phenotypic data (42.9% male).

Gene-based analyses

We used KGG 2.5 [37, 38] to conduct gene-based tests of GWAS results. We used publicly 

available 1000 Genomes Phase 1 Version 3 (European subsample) linkage disequilibrium 

(LD) files to build the “analysis genome” by position, for autosomes only. We included 

extended gene lengths of 5kb at the 5’ and 3’ ends. SNPs in high LD (r2>.9) were 

considered connected; those in low LD (r2<.02) were considered independent. We used the 

HYST test option. A Benjamini and Hochberg [39] false discovery rate (FDR) of 0.05 was 

used, and q-values are reported where appropriate.

Gene set enrichment analyses

We used i-GSEA4GWAS [40] to assess enrichment across canonical pathways (defined in 

[40]) and gene ontologies, using only measured SNPs; of those submitted, 235,574 variants 

mapped to within 5kb of 16,296 genes and were included in the analysis. We set the 

minimum number of genes per category to 3, and the maximum to 200.

Epigenetic enrichment analyses

We utilized publicly available data generated by the ENCODE Project [41] to identify SNPs 

overlapping regulatory DNA as denoted by the presence of a DNase I hypersensitivity site 

(DHS) or H3K4me4 histone modification (see Supplemental Material). We examined 

whether SNPs with lower p-values were more likely to localize within these regulatory 

regions by performing an enrichment analysis using an increasingly selective inclusion 

criterion based on association p-value.

Additional genomic analyses

We ran Genome-wide Complex Trait Analysis (GCTA, [42]) to estimate the amount of 

variance tagged by SNPs on the Illumina 550K platform in the total sample. In addition, we 

assessed the predictive utility of polygenic risk scores by splitting the sample in half, and 

using one half as the discovery sample and the other half as the replication sample. These 

analyses utilized the polygenic risk score method available in Plink [43, 44], employing p-

value cutoffs of 0.1- 0.5 in increments of 0.1.

Results

Alcohol problems factor score

The Eigenvalues for the first three factors from the alcohol problems factor analysis 

exceeded 1 (6.78, 1.69, and 1.29), and the scree plot and fit statistics indicated that a one-

factor model provided an adequate fit to the data. We then ran a confirmatory factor analysis 

to calculate factor scores for use in subsequent analyses. Resulting alcohol problems factor 

scores (n = 5952) ranged from −0.45 to 4.18 (Figure S1) and were positively skewed 

(skewness=2.82).
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Genome-wide association analysis

After data cleaning, results were obtained for 8,458,542 polymorphisms (Figure 1). The 

marker rs193135937 on chromosome 4 had a p-value of 1.28 × 10−8, surpassing the 

genome-wide significance threshold (3.06 × 10−8 for imputed data [45]). The q-value for 

rs193135937 was 0.11. This intergenic SNP is >500kb downstream from the pseudogene 

LOC100288337. No surrounding markers approached this significance level. No other 

markers achieved genome-wide significance. The QQ-plot is depicted in Figure 2. The 

genomic inflation value was λ=1.015 (SE=3.031 × 10−6).

Gene-based analyses

Results were available for 22,880 genes. Four genes survived the Benjamini and Hochberg 

FDR (q<0.05). The gene with the most significant p-value (p=6.24 × 10−6) encodes the 

NLRP12 protein, which is involved in the regulation of various immune responses and 

signal transduction. The signal is localized to the 3’ region of the gene (Figure 3). It is 

expressed across many tissues, with highest levels of expression in the blood 

(www.genecards.org). The next most significant gene (p=6.44 × 10−6) encodes the glucose 

transporter SLC2A2, which is involved in carbohydrate metabolism, and has been 

implicated in noninsulin dependent diabetes mellitus. It is preferentially expressed in the 

liver and the blood. Multiple SNPs with modest p-values are distributed across SLC2A2, and 

in the downstream gene EIF5A2 (gene-based p<0.001). The gene EFCAB4B (p=7.14 × 

10−6) encodes a calcium ion binding protein and is broadly expressed. The strongest signal 

(from rs182211455, p=1.89 × 10−5) is intronic. SNPs 5’ to that marker have similar p-

values; they are in relatively low LD (r2<0.2) with rs182211455 and therefore may represent 

independent signals. Finally, TBCE (p=8.52 × 10−6) is also widely expressed; it is involved 

in the folding of beta-tubulin. The signals in TBCE are distributed widely across the gene, 

but are of modest significance (largely p~0.01). To our knowledge, none of these genes have 

been previously associated with alcohol-related outcomes; of these four genes, only TBCE 

exhibited a trend toward significance in an independent sample (p=0.09; see Supplementary 

Material). A complete list of gene-based results is available in Table S1; the genes with 

q<0.10 are listed in Table 1.

Gene set enrichment analyses

The 21 categories with q<0.25 in the i-GSEA4GWAS analysis are presented in Table 2; 

complete results are available in Table S3. The top gene set, alpha-linolenic acid 

metabolism, included 8 genes (of 15 in the gene set) that span variants nominally associated 

with the alcohol problems factor score. Ontologies related to immune function/inflammation 

response (e.g., negative regulation of cytokine biosynthetic process, interferon gamma 

pathway) were also implicated in these analyses. Multiple ontologies related to nervous 

system development or function were over-represented, with modest overlap in the gene 

members across these categories.

Epigenetic enrichment analyses

We examined whether SNPs with lower p-values were more likely to localize to regions of 

potential regulatory significance in the genome (DHS or the H3K4me3 histone mark). When 

Edwards et al. Page 5

Addiction. Author manuscript; available in PMC 2016 March 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



collapsing all cell types together, there was a clear trend toward general enrichment (Figure 

4): as the p-value threshold becomes more stringent, variants were more likely to be located 

in DHS or H3K4me3 sites. When tissue types were examined separately, the most 

pronounced evidence of enrichment for DHS was in monocytes; for H3K4me3 histone 

marks, the strongest enrichment was in spinal cord cell lines derived from astrocytes. The 

second-highest degree of enrichment among nervous system-related tissue types was for 

DHS in cerebellar tissue. Complete results are available in Table S4.

Additional genomic analyses

GCTA indicated that the measured variants explained a low proportion of variance of the 

alcohol factor score (h2=0.052, SE=0.093, p=0.3). We next tested whether genetic risk 

variants identified in one half of the sample predicted alcohol problem factor scores in the 

other half of the sample. We applied a series of p-value cutoffs, as described by Purcell and 

colleagues [44]. Polygenic risk scores derived from Plink accounted for a very small 

proportion of the variance – up to r2=0.6% (p’s>0.05) – with markers meeting a p<0.10 

threshold providing the highest estimate. This estimate did not differ significantly from 0, 

and varied widely depending on which subsample was used for discovery versus replication.

Discussion

These analyses evaluated genomic influences on alcohol problems in ALSPAC, a 

population-based sample of emerging adults. Results from GCTA suggest that such 

influences are modest in this sample, accounting for ~5% of the variance in an alcohol 

problems factor score. Although only one individual polymorphism met genome-wide 

significance criteria, several genes surpassed a stringent multiple testing threshold, two of 

which (NLRP12 and SLC2A2) have putative roles in immune function. Furthermore, gene 

ontologies related to immune and nervous system processes were statistically over-

represented, along with categories that warrant further consideration. Bioinformatic analyses 

suggest that SNPs meeting increasingly stringent p-value thresholds are generally more 

likely than is expected by chance to map to regulatory regions; tissue derived from 

monocytes and spinal cord exhibited the most striking evidence of such enrichment. Our 

findings provide potential insight into the biological context of genomic influences on this 

complex behavior, and suggest that environmental factors remain strongly influential on 

liability to alcohol problems in this sample.

As is true of the current results, few previous studies of alcohol related phenotypes have 

identified replicable individual polymorphisms that meet genome-wide significance criteria. 

This is consistent with our understanding of the highly polygenic nature of alcohol 

problems: it is unlikely that individual common variants (MAF≥0.01) would have a large 

effect on the phenotype. Rather, hundreds if not thousands of variants influence risk. Risk 

variants are hypothesized to act in concert with one another in an additive or multiplicative 

fashion, and to be differentially influential in the context of environmental risk or protective 

factors.

Multiple gene ontology categories with q<0.25 are biologically plausible candidates for 

influencing alcohol-related phenotypes. The top gene ontology category, alpha-linolenic 
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acid metabolism, is of interest given the role of polyunsaturated fatty acids in brain 

composition and function [46]. Alpha-linolenic acid is the precursor to omega-3 fatty acids, 

which have been associated with beneficial outcomes on several immune disorders [47]. 

Furthermore, studies in animal models have demonstrated a relationship between ethanol 

consumption and levels of polyunsaturated fatty acids in the liver [48–51].

Additional evidence for a role of the immune system in alcohol problems comes from the 

implication of the gene ontologies negative regulation of cytokine biosynthetic process, 

detection of abiotic stimulus, and interferon gamma pathway, all with q ≤ 0.14. Despite 

some degree of functional overlap among the categories related to immune function – for 

example, interferons are a type of cytokine – there is no overlap in the genes driving 

“significance” across these top categories. This suggests that each represents a relatively 

independent implication of immune-related processes. Cytokines may be biomarkers of 

alcohol consumption/problems [52]: elevated levels of some cytokines have been observed 

in individuals with alcoholic liver disease [53], and patients with cirrhosis who are actively 

consuming alcohol have low levels of cytokines compared to abstinent patients with 

cirrhosis [54].

These links raise the possibility that variation in genes with roles in fatty acid metabolism or 

immune function could contribute to liability to alcohol problems. This possibility is 

bolstered by the preliminary evidence for enrichment of localization to DHS sites in 

monocytes: those results indicate that genes relevant to alcohol problems are actively 

transcribed in certain blood cells, which again suggests a role of immune response. The 

mechanism(s) through which these genes/variants might exert their effects is beyond the 

scope of the current study, though given the nature of the identified systems, one might 

speculate that the physiological response to ethanol exposure would be involved. Though 

previous research provides evidence that immune function and fatty acids are related to 

alcohol-related medical problems, which are typically a consequence of problem drinking, 

the current study raises the possibility that these systems are associated with problem 

drinking itself. Alcohol consumption impacts the immune system in myriad ways, with 

distinct effects in different tissues [55, 56]. Additional work is needed to determine whether 

variation in immune-related loci is causally related to alcohol consumption or impacts 

downstream processes (e.g., physiological responses that might increase liability to misuse).

The gene ontology results are suggestive of multiple processes impacting genetic liability to 

alcohol problems. As described above, immune functioning and fatty acid metabolism are 

implicated, suggesting that the physiological response to/processing of ethanol is related to 

alcohol problems. Those findings are complemented by enrichment of ontologies directly 

related to nervous system functioning, which are more likely to be related to behavioral or 

cognitive characteristics and processes related to the misuse of alcohol. Additional studies 

could derive physiology-specific and behavior/cognitive-specific alcohol-related phenotypes 

for genome-wide studies, the results of which could be compared to determine the extent to 

which genetic liability overlaps across these processes. Here, the highest factor loadings for 

the alcohol problems factor score were related to frequency and quantity of alcohol use, but 

factor loadings onto items related to loss of control and experiencing negative consequences 
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of drinking were also substantial. Thus, our factor score phenotype is capturing risk that is 

unlikely to be limited to the physiological response to ethanol exposure.

The genetic variance accounted for by non-imputed variants did not differ significantly from 

zero; however, we do not interpret this result as indicating that genetic factors are not 

relevant for alcohol problems. First, the current results are consistent with twin studies 

demonstrating that environmental factors remain strongly influential on alcohol-related 

phenotypes into early adulthood [9]. Genetic influences remain relevant but account for less 

of the variance. Second, previous studies that have derived heritabilities based on measured 

genetic factors have also reported lower estimates than those derived from biometric 

structural equation modeling [57–59], inspiring the term “missing heritability” [10]. Our 

prediction of 0.5–0.6% of the variance in the split-sample analyses is comparable to the r2 

estimate reported by Kos et al. [60], who used common alleles to predict risk for alcohol 

dependence in a European-American sample. Unmeasured common and rare variants likely 

contribute to missing heritability in the current and previous studies.

Adding further evidence to the relevance of genetic factors identified in the current study are 

the results of our replication efforts. First, we examined genes with q<0.05 in an 

independent sample consisting of Finnish twins assessed for alcohol problems at age 14, and 

found a trend toward significance for TBCE. Furthermore, as reported by Salvatore and 

colleagues [30], polygenic risk scores derived using SNP weights from the ALSPAC sample 

were significantly correlated with alcohol problems in the Finnish sample. Thus, we are 

confident that despite the small magnitude of effects, we are capturing some degree of “true” 

genetic risk.

Limitations

The current results are not without limitations. First, individuals in the ALSPAC sample 

were, on average, only around 18 years old when they reported on alcohol-related problems. 

This is a relatively early stage of one’s drinking “career” and participants are not yet through 

the risk period for the development of alcohol problems, which stretches well into 

adulthood. In addition, the age of participants could be related to the rather low estimates of 

heritability, as previous studies have demonstrated that the heritability of alcohol-related 

phenotypes typically increases from adolescence into adulthood [9]. These changes are 

typically thought to be due to greater autonomy in adulthood, enabling individuals’ genetic 

liability to develop to a greater degree than is possible in the context of the social controls 

often present during adolescence. It is possible that genetic effects could play a more 

substantial role in risk for alcohol problems later in participants’ lives, and that alcohol 

problems may be more pronounced among the unobserved sample.

Although our sample size is substantial relative to others that have been the subject of 

alcohol-related GWAS (e.g., [14, 15, 21, 22]), a subset of the data was imputed which could 

have introduced error into the alcohol problems phenotype. It is evident that quite large 

sample sizes are necessary to detect the small effect sizes expected for variants influencing 

complex traits. Thus, it is critical that the current findings be replicated in additional, and 

larger, samples. In addition, the findings presented here reflect a particular socio-cultural 

context of a predominantly white sample in southwest England, and these results might not 
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generalize to other ethnicities or cultures. Although our use of a continuous phenotype is 

more statistically powerful than a dichotomous phenotype, the factor score is comprised of 

heterogeneous components (e.g., social consequences of drinking, development of tolerance, 

frequency of drinking, etc.), making it potentially less powerful than a homogeneous 

phenotype. We note that the number of SNPs for which data were available for some cell 

lines/tissue types limited our analyses examining the localization of implicated SNPs to 

genomic regions of regulatory relevance. In addition, previous work suggests that there is 

substantial overlap in regulatory regions across tissues [41], so “tissue-specific” findings 

should be interpreted with caution. Finally, the exploration of epistatic interactions, gene-

environment interactions, or main effects of environmental risk factors on alcohol problems 

were beyond the scope of this study.

Summary

In conclusion, we present here preliminary but converging evidence across genes, gene 

ontologies, and other bioinformatic approaches, that liability to alcohol problems is 

influenced by genomic variation related to immune function. We observed evidence of 

enrichment in gene ontologies related to nervous system processes, which was 

complemented by findings that SNPs with lower p-values were enriched for localization to 

regulatory regions in nervous system tissues. Common genetic variants accounted for a 

small proportion of the phenotypic variance in alcohol problems in this population-based 

sample of emerging UK adults. The sample could be underpowered to detect variants of 

small effect; however, genes and gene ontologies meeting both suggestive and more 

stringent p-value thresholds provide insight to the etiology of alcohol use problems in this 

sample.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Manhattan plot of primary GWAS results. Only SNPs with p ≤ 0.01 are depicted. The top 

horizontal line represents the genome-wide significance cut-off (3.06 × 10−8 for imputed 

data [45]). The lower horizontal line represents the threshold for suggestive SNPs (1 × 

10−5).
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Figure 2. 
QQ-plot of primary GWAS results. Diagonal line represents the null expectation.

Shaded areas represent 95% confidence intervals.
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Figure 3. 
Map of SNPs falling within 10 kilobases of NLRP12. Figure was constructed using 

LocusZoom (Pruim et al., 2010). rs10403709 represents the SNP with the lowest p-value. 

Other SNPs are color-coded according to their pairwise r2 with rs10403709 (indicated by the 

legend in the upper right corner). The solid blue line represents the regional recombination 

rate (see right-side y-axis) based on the 1000 Genomes hg19 CEU reference panel.
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Figure 4. 
Enrichment scores (y-axis) for SNPs meeting increasingly stringent significance thresholds 

(x-axis) across all tissue types. Results are presented separately for DHS (left panel) and 

H3K4me3 histone marks (right panel). For ease of presentation, SNPs at each –log10 p-value 

cut-off are distributed horizontally slightly beyond the defined cut-off. The solid line 

represents the mean enrichment; shaded areas represent 95% confidence intervals.
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Table 1

Genes with q<0.10 in gene-based analyses.

Gene p-value q-value

NLRP12 6.24e-6 4.87e-2

SLC2A2 6.44e-6 4.87e-2

EFCAB4B 7.14e-6 4.87e-2

TBCE 8.52e-6 4.87e-2

ZP2 1.27e-5 5.79e-2

LRP1B 1.89e-5 5.88e-2

SP8 1.95e-5 5.88e-2

MCTP1 2.05e-5 5.88e-2

GMNN 3.37e-5 8.50e-2

RANBP1 4.90e-5 8.50e-2

MIR371A 5.20e-51 8.50e-2

MIR371B 5.20e-51 8.50e-2

MIR373 5.20e-51 8.50e-2

MIR372 5.20e-51 8.50e-2

C20orf26 6.17e-5 9.27e-2

CPM 6.48e-5 9.27e-2

NKAPP1 7.43e-5 9.70e-2

GLYATL2 7.95e-5 9.70e-2

GRID1 8.05e-5 9.70e-2

DEFA3 8.54e-5 9.77e-2

B3GALNT2 9.10e-5 9.92e-2

1
These microRNA-encoding genes are located 3’ to NLRP12; given the structure of microRNA transcripts, the SNPs to which this signal is 

attributable are more likely to be relevant to NLRP12 than to the microRNA genes (see Figure 3).
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Table 2

Gene set categories with q<0.25 prior to rounding.

Gene Set Name Gene Set q-value

Alpha linolenic acid metabolism 0.05

Integrator complex 0.05

Negative regulation of cytokine biosynthetic process 0.06

Sensory organ development 0.07

Secretin like receptor activity 0.07

Caffeine metabolism 0.07

Ribonuclease activity 0.08

Synapse part 0.10

Structural constituent of ribosome 0.10

Detection of abiotic stimulus 0.11

Homophilic cell adhesion 0.12

Hydrogen ion transmembrane transporter activity 0.12

Regulation of neurogenesis 0.13

Interferon gamma pathway 0.14

Phagocytosis 0.14

Heterophilic cell adhesion 0.16

Negative regulation of signal transduction 0.19

Regulation of neuron apoptosis 0.20

Regulation of axonogenesis 0.22

Ribosome 0.25

Endoribonuclease activity 0.25

Addiction. Author manuscript; available in PMC 2016 March 01.


