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Abstract

Purpose—To design a proof-of-concept study to assess the effect of lacrimal nerve stimulation 

(LNS) with an implantable pulse generator (IPG) to increase aqueous tear production.

Methods—Experimental animal study design of six Dutch Belted rabbits. Ultra high-resolution 

optical coherence tomography (UHR-OCT) quantified tear production by measuring the baseline 

tear volume of each rabbit’s right and left eye. A neurostimulator was implanted adjacent to the 

right lacrimal nerve. After two minutes of LNS (100 μs, 1.6 mAmp, 20 Hz, 5–8 volts), the tear 

volumes were measured with UHR-OCT. The change in tear volume was quantified and compared 

to the non-stimulated left eye. Three rabbits underwent chronic LNS (100 μS, 1.6 mAmp, 10 Hz, 2 

volts) and their lacrimal glands were harvested for histopathologic analysis.

Results—UHR-OCT imaging of the right eyes tear volume showed a 441% average increase in 

tear production after LNS as a percent of baseline. After stimulation, right eyes had statistically 

significant greater increase in tear volumes than left eyes (p=0.028, Wilcoxon test). Post-

stimulation right eye tear volumes were significantly greater compared to baseline (p=0.028, 

Wilcoxon test). Histopathologic examination of the lacrimal glands showed no discernible tissue 

damage from chronic neurostimulation. Additionally, there were no gross adverse effects on the 

general well-beings of the animals due to chronic stimulation.

Conclusions—Lacrimal nerve stimulation with an implantable pulse generator appears to 

increase aqueous tear production. Chronic LNS showed no histopathologic lacrimal gland damage. 

This study suggests LNS is a promising new treatment strategy to increase aqueous tear 

production.

The management of dry eye disease (DED) is a challenge in clinical practice. In United 

States, DED is a leading cause of eye discomfort and morbidity and accounts for 

approximately 30% of patients seeking eye care.1 Approximately 20 million Americans 
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suffer from dry eyes2 and it is estimated that roughly 5 million patients, 50 years and older, 

have moderate to severe disease.3 This multi-factorial process is defined as a tear film 

disorder due to aqueous tear deficiency or excessive evaporation resulting in ocular 

discomfort, visual disturbance, and tear film instability.4 Tear film instability is frequently 

accompanied by increased tear osmolarity and subsequent inflammation of the ocular 

surface.4,5 In severe cases, corneal opacification and vascularization leads to a significant 

loss of vision.

The lacrimal functional unit controls the quality and quantity of aqueous tear secretion. 

Stern et al,6 presented this concept to describe the relationship between the ocular surface 

and lacrimal glands both in normal tear secretion and during inflammation.7 This unit 

comprises the lacrimal glands, ocular surface, and the interconnecting innervation. It is 

postulated that DED is an immune-mediated disorder and tear secretion is controlled by a 

neural reflex arc involving the central nervous system. In a healthy eye, stimulation of free 

nerve endings on the cornea and conjunctiva generate afferent nerve impulses through the 

ophthalmic branch of the trigeminal nerve (V1). These impulses travel to the midbrain 

where they synapse in the pons. The parasympathetic nervous system is largely responsible 

for the efferent branch of this loop. Efferent fibers from the superior salivary nucleus pass 

with the nervus intermedius, synapse in the pterygopalatine ganglion, travel through the 

inferior orbital fissure, and then join the lacrimal nerve to reach the main and accessory 

lacrimal glands.6–8

Disruption of this functional unit at any level can initiate a cascading sequence of 

inflammatory events, involving mitogen-activated protein (MAP) kinases, nuclear factor 

kappa beta (NFkB) signaling pathways, and the generation of inflammatory cytokines and 

matrix metalloproteinase (MMP), which will result in neural feedback inhibition.9 The 

interruption of neural input to the lacrimal gland leads to sensory isolation, T-cell activation, 

release of pro-inflammatory cytokines, and further lacrimal gland damage, neurogenic 

inflammation, and atrophy.10–12 The consequence of this self-perpetuating inflammatory 

cycle is a decrease in the quantity and quality of aqueous tear production.6,7

In the last two decades there has been a paradigm shift in dry eye management from 

lubricating the ocular surface with artificial tears, to strategies directed at inhibiting 

inflammatory factors that adversely influence the ability of glandular epithelia to produce 

tears.8,10 This has led to the development of topical cyclosporine (0.05% ophthalmic 

emulsion), the first FDA approved therapy for chronic dry eye.13 Cyclosporine reduces 

ocular surface inflammation by the inhibition of transcription factors required for cytokine 

production and T cell lymphocyte activation. While this treatment aims to diminish neural 

feedback inhibition by reducing ocular surface inflammation, it has shown only marginal 

efficacy. In a trial involving 1200 people, cyclosporine increased tear production in 15% of 

people; compared to 5% with placebo.14 Topical corticosteroids can also reduce ocular 

inflammation but have an unacceptable side effect profile for chronic use. The principal 

shortcoming of currently available pharmacologic treatments relates to the inherent 

limitation of these therapies to effectively bypass the neuronal inhibition of the lacrimal 

gland and directly stimulate the lacrimal nerve to increase aqueous secretion.
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Neurostimulation is a promising therapeutic field of medicine that has proven effective in a 

wide variety of disorders including; epilepsy, chronic pain, depression, Parkinson’s disease, 

hearing loss, urinary urge incontinence, fecal incontinence, urinary retention and chronic 

headache.15–22 Neurostimulation involves modulation of the nervous system to restore, 

block, or augment nerve input to an effector organ or tissue. Implantable neurostimulators 

are pacemaker-sized devices that send electrical stimulation through an insulated electrode 

implanted near a central or peripheral nerve. They have been used in medicine with 

increasing frequency due to their safety, efficacy, and low risk profile. An implantable pulse 

generator (IPG) can be customized to the patient, reprogrammed telemetrically, and carries a 

low risk of infection. The device is silent, painless and biocompatible with human 

tissues.15–18 The intent of this study is to adopt this technology to override the ocular 

surface neural inhibition perpetuating the dry eye condition by direct lacrimal nerve 

stimulation (LNS) to increase tear secretion.

Methods

This investigation adheres to the guidelines endorsed by the Association for Research in 

Vision and Ophthalmology (ARVO) statement for the Use of Animals in Ophthalmic and 

Vision Research, and the investigators received prior approval from the Institutional Animal 

Care and Use Committee at the University of Miami. Six male Dutch Belted rabbits were 

used in the study. Each rabbit underwent surgical implantation of an implantable pulse 

generator (IPG) adjacent to the right lacrimal nerve. All surgical procedures were performed 

with the rabbits under anesthesia with aseptic technique. Antibiotic ointment was instilled 

over skin incisions after each procedure.

Quantification of Pre-stimulation Tear Volume (Baseline)

A real-time anterior segment ultra high-resolution spectral domain optical coherence 

tomography (UHR-OCT) was used to measure tear volume. The optical coherence 

tomography (OCT) light source was 840 nm with a bandwidth of 100 nm. The optical 

resolution was ~3 μm in the cornea. It was connected to a telecentric optical probe with a 

maximum 15-mm scanning width running at 24k A-scan per second. The telecentric design 

used light that was parallel at any scan spot for a wide scan and was specifically designed to 

capture the real spatial relationship of the tears over the ocular surface. The probe was 

mounted on a standard slit lamp with a digital video system.23–28 The UHR-OCT performed 

vertical 12 mm scans across the central cornea (apex), including the upper and/or lower tear 

menisci of both eyes, to quantify baseline tear volume.

Orbital Implantation of the Neurostimulator

The Advanced Bionics Precision™ Neurostimulator system is a 16-output multi-channel IPG 

with 55 mm (height), 46 mm (width), and 11 mm (thickness) dimensions and a hermetically 

sealed rechargeable battery power source.29 The IPG received radiofrequency (RF) 

programming signals from an external programming system and remote control. The IPG 

decoded the RF signals and delivered stimulation pulses to the lacrimal nerve via insulated 

output electrodes.
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Dissection—After adequate anesthesia was administered with an intramuscular cocktail of 

ketamine 35 mg/kg (Vedco Inc., St. Joseph, MO. 64507), xylazine 5 mg/kg (Akorn, Inc., 

Decatur, IL 62522) and acepromazine 0.75 mg/kg (Vedco Inc., St. Joseph, MO. 64507), a 

small area of skin over the abdomen and right forehead was shaved. The abdomen was 

incised and a subcutaneous pocket was bluntly dissected large enough to house the IPG. 

Communication between the IPG and the external remote control was tested and confirmed. 

A straight stylet was tunneled in a subcutaneous plane to connect an insulated electrode 

from the abdominal IPG to a skin incision placed over the supraorbital border of the frontal 

bone. Blunt dissection was carried through the supraorbital foramina and the periorbita over 

the lacrimal gland. The insulated electrode was then positioned in contact with the posterior 

edge of the lacrimal gland, adjacent to the lacrimal nerve, along the orbital roof. The 

electrode was secured to the subcutaneous fascia with three 5-0-vicryl sutures and the skin 

incisions were closed. The left orbit served as the control.

Neurostimulation Protocol & Quantification of Post-stimulation Tear Volume

Twenty-four to forty-eight hours after implantation of the IPG into the right orbit, the 

baseline tear volumes were measured as previously described. The right lacrimal nerve was 

then stimulated using a remote control that sent RF signals to the IPG. An external 

programming system connected to the remote control was set to deliver stimulation with 

invariable pulse duration of 100 μs, electric current of 1.6 mAmp, a pulse frequency of 20 

Hz, and a variable voltage of 5–8 volts for two minutes. Immediately following stimulation, 

UHR-OCT imaging of the tear meniscus was performed on the right eye. The right lacrimal 

nerve was again stimulated for two minutes at the same parameters and UHR-OCT imaging 

of the tear meniscus was performed on the left eye (control). This process was repeated at 

least three times for both eyes in all rabbits.

UHR-OCT Tear Volume Measurement

Image processing and data analysis were performed using custom software to yield tear 

meniscus variables.23–25,27,28 Six variables were obtained including upper tear meniscus 

curvature (UTMC), height (UTMH), and cross-sectional area (UTMA), and lower tear 

meniscus curvature (LTMC), height (LTMH), and cross-sectional area (LTMA). The upper 

tear meniscus volume (UTMV) was calculated by multiplying the upper lid length (mm) by 

the UTMA (mm2). The lower tear meniscus volume (LTMV) was calculated by multiplying 

the lower lid length (mm) by the LTMA (mm2). To use the two-dimensional image to 

estimate the area of the ocular surface that is curved in the third dimension, a multiplication 

factor of 1.294 was used for the UTMV and LTMV. Additionally, to account for the fact 

that the tear meniscus height is not uniform across the eyelid, both values were adjusted by a 

factor of 0.75.25 The final adjusted values of the UTMV and LTMV were then added 

together to yield the total tear meniscus volume (TTMV) of each eye.

Statistical Analysis

Data analysis was conducted with SPSS version 21 software (IBM Corporation, Armonk 

NY). Data were expressed as the mean (standard deviation); however, statistical 
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comparisons were made with the nonparametric-paired Wilcoxon test due to the variability 

between animal responses. The criterion for statistical significance was P < 0.05.

Chronic Lacrimal Nerve Stimulation and Lacrimal Gland Histopathologic Analysis

Three rabbits underwent chronic stimulation of the right lacrimal nerve to determine if 

chronic stimulation would yield end organ damage to the lacrimal gland or surrounding 

tissues. Stimulation of the right lacrimal nerve occurred Monday through Friday, three times 

a day, with continuous electrical stimulation for a period of 20 minutes each session through 

four consecutive weeks. The external programming system was set to deliver stimulation to 

the lacrimal nerve with invariable pulse duration of 100 μS, electric current of 1.6 mAmp, 

pulse frequency of 10 Hz, and voltage of 2 volts. After four weeks of chronic stimulation, all 

three rabbits were euthanized with intravenous Euthanasia Solution 390 mg/ml, 1-ml/10 lbs. 

of body weight (Virbac Corporation, Fort Worth TX. 76161). The right and left orbits were 

harvested and sent for histopathologic evaluation by the Ophthalmic Pathology Laboratory 

of the Bascom Palmer Eye Institute. The tissue was fixed in 2.0% paraformaldehyde; 2.0% 

gluteraldehyde in 0.1-mmol/l cacodylate solution and embedded in paraffin. Eight-micron 

sections were stained with hematoxylin and eosin to evaluate the stroma and acini of the 

lacrimal gland and surrounding tissues after chronic stimulation.

Results

The total tear meniscus volumes (TTMV) for each rabbit’s right and left eyes before and 

after stimulation are illustrated in Table 1. Ultra high-resolution optical coherence 

tomography (UHR-OCT) of the right eyes showed a 441% average increase in tear 

production after lacrimal nerve stimulation (LNS) as a percentage of baselines. Pre-

stimulation and post-stimulation UHR-OCT tear menisci images of the right eye of rabbits 

1–3 are presented in Figure 1.

Pre-stimulation (Baseline) Tear Volumes of the Right (Experimental) and Left (Control) 
Eyes Compared

A scatter plot graph comparing the baseline tear volumes of the right and left eyes 

demonstrates that all six points fall close to the 1:1 line, indicating that there was little 

difference between the baseline measurements of the right and left eyes (Fig. 2). One of the 

experimental eyes measured 0.7 μl larger than its control and one of the control eyes 

measured 0.8 μl larger than its experimental eye. There was no statistical difference by the 

Wilcoxon non-parametric test (p=0.75).

Pre-stimulation (Baseline) Tear Volumes Compared to Post-stimulation Tear Volumes 
(Right Eyes)

Baseline right eye tear volumes increased from an average of 2.06 (0.98) μl to 12.41 (9.78) 

μl after LNS. These findings were found to be statistically significant by the non-parametric 

Wilcoxon test (p=0.028). A scatter plot graph comparing the pre-stimulation and post-

stimulation tear volumes of the right eyes shows that all points fall significantly above the 

1:1 line, signifying that the post-stimulation tear volumes were notably higher than the pre-
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stimulation tear volumes (Fig. 3). There was no appreciable change in the tear volumes of 

the left eyes after LNS (p=0.12, Wilcoxon test).

Post-stimulation Tear Volume of Right Eyes (Experimental) Versus Left Eyes (Control)

There was a statistically significant increase in the post-stimulation tear volumes of right eye 

compared to the left eye in each rabbit. A scatter plot graph comparing the two eyes shows 

all points resided substantially above the 1:1 line, demonstrating that all six experimental 

eyes had increased tear volumes compared to the control eyes after right LNS (Fig. 4). The 

right eye minus left eye tear volume differences averaged −0.02 (0.50) μl prior to 

stimulation and increased to 9.06 (8.56) μl after stimulation (p=0.028, Wilcoxon test).

Chronic Lacrimal Nerve Stimulation and Histopathologic Analysis

There was no significant difference in body weight change among the three rabbits during 

chronic stimulation, suggesting that repetitive stimulation of the orbital tissues did not alter 

the feeding pattern or behavior of the animals. The overall growth was otherwise normal and 

there were no other demonstrable adverse effects to stimulation. Upon harvesting the 

lacrimal gland, the insulated electrodes were found to be within the right orbit adjacent to 

the lacrimal gland, indicating that little, if any, lead migration had occurred (Fig. 5). 

Histopathologic examination of the three rabbit’s right and left lacrimal glands revealed no 

discernible lymphocytic or inflammatory cell infiltration or atrophy to the stroma or acini of 

the lacrimal gland after repetitive stimulation (Fig. 6). Additionally, exenterated orbital 

tissues of the three rabbits showed normal orbital soft tissue structures without evidence of 

foreign body reaction, inflammation, hemorrhage, fungi, or bacteria.

Discussion

This animal study introduces neurostimulation as a potential new treatment strategy for dry 

eye disease (DED) and demonstrates that direct lacrimal nerve stimulation (LNS) with an 

implantable pulse generator (IPG) can effect a 441% average increase in aqueous tear 

production. Our study design indicates that LNS is anatomically sound, safe, and technically 

feasible to perform with an IPG. The pathophysiologic mechanism is consistent with other 

neurostimulation strategies; similarly, our results suggest that chronic LNS produces no 

discernible deleterious histological evidence of end organ damage. This study also shows 

that ultra-high resolution optical coherence tomography (UHR-OCT) appears to be an 

effective non-contact measurement of tear volume quantification to assess the effect of 

lacrimal nerve stimulation.

Numerous animal models of dry eye have been developed to understand the 

pathophysiological mechanism underpinning both Sjogren and non-Sjogren’s 

keratoconjunctivitis sicca (KCS) and to explore new therapies for dry eye. In a review of 

published animal models, Barabino et al,30 concluded that currently there is no optimal 

model that can adequately reflect the complex pathophysiology of DED.30–31 This barrier is 

due to the various pathophysiologic mechanisms and the inflammatory cycle involved in 

DED. Previous studies to identify new treatments have been directed at interrupting the 

various points of this inflammatory cycle to precipitate disease control;13,14,32–34 however 
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few studies have produced tear secretion with much success. Our animal study does not 

attempt to duplicate a dry eye animal model but is designed to bypass the inflammation 

induced neuronal reflex inhibition loop by targeting the parasympathetic motor innervation 

to the lacrimal gland. By directly stimulating the lacrimal nerve, the terminal link of the 

neuronal loop, the study design attempts to reverse the feedback inhibition input by 

circumventing the complex cascading sequence of events governing the tear production 

neural arc. No previous animal studies have attempted to target dry eye therapy through 

direct neurostimulation. Our data reveal that end neuron stimulation can produce an increase 

in tear secretion and lend support to this novel therapeutic approach.

The anatomical rationale to stimulate the lacrimal nerve for enhanced tear production is 

based on prior anatomical animal studies.35–40 These studies aimed to define the anatomy 

and functional innervation of the lacrimal gland by electrical nerve stimulation. Botelho et 

al,35 achieved stimulation by means of square electrical pulses, which were applied to the 

lacrimal nerve and the sphenopalatine ganglion of cats through chloride silver electrodes. 

They found that the lacrimal nerve as it approaches the lacrimal gland contains secretomotor 

fibers, which pass through the sphenopalatine ganglion, that when electrically stimulated 

produce a change in outflow from the lacrimal gland excretory duct. Arenson et al,40 

determined that the minimum frequency necessary to induce lacrimal secretion in cats 

ranged from 2 to 4 Hz and maximal secretion occurred between 7–15 Hz. Our animals were 

stimulated with and without anesthesia to select parameters that maximized tear volume 

secretion with no apparent evidence of pain or muscle contraction in the rabbit while awake. 

When the voltage of stimulation was above 10 Hz flinching was observed while awake; 

therefore the voltage was kept between 5–8 Hz.

The pathophysiological rationale for LNS to increase tear secretion is based on previous 

animal and clinical studies using sacral and pudendal nerve stimulation to increase bladder 

contraction. Yoo et al,41 demonstrated that pudendal nerve stimulation, in spinal cord 

transected cats, evoked sustained bladder contraction dependent on stimulation frequency. 

Further clinical studies confirmed this finding in patients with urinary retention. In a five-

year prospective, multicenter trial, Van Kerrebroeck et al,42 found that sacral nerve 

stimulation to produce bladder contraction is a safe, effective, and minimally invasive 

method that provides long-term relief for appropriately selected patients with refractory 

urinary retention. Five years after implantation, 71% of patients with urinary retention had 

persistent successful outcomes. These long-term results suggest that chronic stimulation of a 

terminal secretomotor nerve does not lead to end organ damage or atrophy. Our four-week 

chronic LNS trial evinced a similar finding. This was confirmed by histopathologic analysis 

of the lacrimal gland after repetitive stimulation that showed no lymphocytic or 

inflammatory cell infiltration or atrophy of the stroma or acini.

Difficulties in assessing the effectiveness of dry eye treatments lie in the absence of a 

universally accepted method of measuring the quality and quantity of tear production. A 

variety of diagnostic tests are in common clinical usage, but there is no consensus on which 

combination of tests should be used to evaluate tear volume in dry eyes. More commonly 

practiced methods of quantifying tear volume include Schirmer tear tests, Rose Bengal tests, 

slit-lamp measured lower tear meniscus height and tear break up time measurements; 
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however these tests have shown wide variability, low reliability, and poor correlation with 

patients’ subjective symptoms.43–46 Due to the lack of standardization and variability of 

these techniques to accurately measure tear volume, we selected a new method of tear 

volume quantification, UHR-OCT. The current literature on tomographic characterization of 

the tear film and tear menisci indicates that parameters produced by OCT are good 

quantitative indicators of tear volume.23–28,43,47–56 The UHR-OCT imaging modality used 

in this study is a highly reliable tool for imaging the ocular surface tear film and calculating 

the tear volume.25–28,49 The non-contact imaging feature coupled with its reported accuracy 

and reproducibility makes this tool suitable for objective tear volume measurements in our 

animal design.

The putative mechanism of DED is a complex immune mediated inflammatory condition in 

which cytokines disrupt the normal neural control of tearing by interrupting the 

secretomotor nerve impulses to the lacrimal gland. The benefit of LNS is the ability to 

override the feedback loop inhibition of the neural arc. While the neurostimulation strategy 

in this study demonstrates an increase in tear production and no apparent structural damage 

to the lacrimal gland, it is unclear whether repetitive secretomotor impulses to the lacrimal 

gland will lead to suppression of the ocular surface inflammation that initiates the immune 

cascade, thereby restoring the normal neuronal control. Conversely, it is unclear whether 

neurostimulation will lead to a deleterious increase in neurogenic inflammation manifesting 

in a surge of T-cell activation and cytokine release into the tears.

Limitations to this study include the small number of animals examined. However, because 

the increase in tear volume was marked and consistent, the power of the study was sufficient 

to achieve statistical significance. Additionally, our study only assessed the quantity of tears 

produced, not the quality of tears. Qualitative analysis of the stimulation-secreted tears is 

necessary to provide a better understanding of the complex interplay between neuronal 

stimulation and tear physiology. Other limitations include the study duration of four weeks, 

perhaps this short duration is insufficient to assess the effect of repetitive stimulation to the 

lacrimal nerve, gland, and surrounding soft tissues. We were also limited by the orbital 

anatomy of the rabbit, which precludes isolated LNS without simultaneously stimulating the 

body of the lacrimal gland. Due to the variable lacrimal nerve anatomy in the rabbit, we 

elected to place the lead wire adjacent to the posterior lacrimal gland in the superior orbit 

with an electromagnetic field large enough to stimulate the lacrimal nerve at its terminal 

innervation to the lacrimal gland. With this technique, suboptimal lead placement may have 

resulted in unequal distances between the lacrimal nerve and lead wire and could account for 

the high variability of tear production between the rabbits. Finally, the IPG system used is 

bulky, requiring considerable surgical manipulation to expose the lacrimal nerve and is not 

ideal for translation into clinical practice. A miniature implantable unit with external 

wireless control would be more desirable.

The future direction is to employ an implantable electrical stimulation system called a 

microstimulator that contains a wireless, rechargeable pulse generator and electrode together 

in a miniature size, ideal for implantation into the lacrimal gland fossa.16–19 The 

microstimulator will be designed for implantation in the orbit using a minimally invasive 

approach for direct LNS. We will also utilize a tear osmolarity measurement system in 
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conjunction with UHR-OCT tear volume measurements to evaluate the physiologic 

homeostasis of tear composition and accurately assess tear volume. We will incorporate 

other tear volume measurement methods, including Schirmer tests and TBUT, to correlate 

and validate our measurements with the UHR-OCT system. Finally, we need to perform 

long-term stimulation to better evaluate the effect of repetitive stimulation on the lacrimal 

functional unit.

In conclusion, we present a proof-of-concept animal study using an IPG to stimulate the 

lacrimal nerve to induce an increase in aqueous tear volume production. Further studies with 

a microstimulator, enhanced metrics, tear osmolarity measurement, and inflammatory 

biomarker assay are needed to assess this new treatment alternative.
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Figure 1. 
Ultra high-resolution optical coherence tomography (UHR-OCT) tear menisci images of 

rabbits 1–3. A. Pre-stimulation inferior tear meniscus (arrow), B. Post-stimulation inferior 

tear meniscus (arrow).
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Figure 2. 
Scatter plot graph comparing baseline (pre-stimulation) tear volumes of the right and left 

eyes. No statistical difference was demonstrated by the Wilcoxon non-parametric test 

(p=0.75).
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Figure 3. 
Scatter plot graph comparing pre-stimulation and post-stimulation tear volumes of the right 

eye. There was a statistically significant increase in tear volumes after stimulation, 

nonparametric Wilcoxon test (p=0.028).
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Figure 4. 
Scatter plot graph comparing post-stimulation tear volumes of the right and left eyes. There 

was a statistically significant increase in tear volumes of the right eyes compared to the left 

eyes after lacrimal nerve stimulation, nonparametric Wilcoxon test (p=0.028).
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Figure 5. 
A. Insulated electrode adjacent to the right lacrimal nerve (arrow), B. Electrode along orbital 

roof after harvesting the lacrimal gland (arrow).
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Figure 6. 
Histopathology of the lacrimal gland after chronic stimulation, Rabbits 1–3. Specimens 

exhibit no discernable inflammatory cell infiltration or atrophy of the lacrimal gland stroma 

or acini. A. Right (experimental) lacrimal gland with normal acinar units (arrow), B. Left 

(control) lacrimal gland with normal acinar units (arrow).
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Table 1

Pre-stimulation and post-stimulation Total Tear Meniscus Volumes (TTMV) for all rabbits. OD= Right eye, 

OS= Left eye

Pre-stimulation TTMV (μl) Post-stimulation TTMV (μl)

Rabbit 1 TTMV OD 1.203 4.328

Rabbit 1 TTMV OS 0.964 1.165

Rabbit 2 TTMV OD 3.668 16.013

Rabbit 2 TTMV OS 4.483 2.358

Rabbit 3 TTMV OD 2.649 30.328

Rabbit 3 TTMV OS 2.756 5.881

Rabbit 4 TTMV OD 1.600 11.260

Rabbit 4 TTMV OS 0.899 4.619

Rabbit 5 TTMV OD 1.087 7.061

Rabbit 5 TTMV OS 1.153 3.511

Rabbit 6 TTMV OD 2.125 5.447

Rabbit 6 TTMV OS 2.220 2.536
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