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Decoding the pathophysiological mechanisms that underlie RNA dysregulation in
neurodegenerative disorders: a review of the current state of the art

Altered RNA metabolism is a key pathophysiological com-
ponent causing several neurodegenerative diseases.
Genetic mutations causing neurodegeneration occur in
coding and noncoding regions of seemingly unrelated
genes whose products do not always contribute to the gene
expression process. Several pathogenic mechanisms may
coexist within a single neuronal cell, including RNA/
protein toxic gain-of-function and/or protein loss-of-
function. Genetic mutations that cause neurodegenerative
disorders disrupt healthy gene expression at diverse levels,
from chromatin remodelling, transcription, splicing,
through to axonal transport and repeat-associated non-
ATG (RAN) translation. We address neurodegeneration
in repeat expansion disorders [Huntington's disease,
spinocerebellar ataxias, C9ORF72-related amyotrophic

lateral sclerosis (ALS)] and in diseases caused by deletions
or point mutations (spinal muscular atrophy, most sub-
types of familial ALS). Some neurodegenerative disorders
exhibit broad dysregulation of gene expression with the
synthesis of hundreds to thousands of abnormal messen-
ger RNA (mRNA) molecules. However, the number and
identity of aberrant mRNAs that are translated into pro-
teins — and how these lead to neurodegeneration — remain
unknown. The field of RNA biology research faces the
challenge of identifying pathophysiological events of
dysregulated gene expression. In conclusion, we discuss
current research limitations and future directions to
improve our characterization of pathological mechanisms
that trigger disease onset and progression.
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Introduction

RNA-mediated neurodegeneration is implicated in the
causes of Huntington’s disease (HD), spinocerebellar
ataxias (SCAs), spinal muscular atrophy (SMA) and major
subtypes of amyotrophic lateral sclerosis (ALS). In con-
trast, the current neuropathological classification of
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Parkinson's disease (PD), Alzheimer’s disease (AD) and
prion disease relates to the abnormal accumulation
of misfolded and aggregated proteins in the brain
(synucleinopathies, tauopathies and prion protein accu-
mulation, respectively).

HD is a fatal disease initiated by selective death of
neurons in the striatum before neurodegeneration spreads
to other cerebral regions. Startlingly, some post mortem HD
brains may have lost up to 25% of their weight. HD
usually develops in patients aged 35—45 years, although
onset can occur from childhood to old age. Caucasian
populations have a high and likely underestimated preva-
lence (5-7 cases in 100 000 individuals). The disease
progressively affects movement (chorea, particularly
impaired swallowing/speech), behaviour and cognitive
functions. Neuropsychiatric problems worsen over time
and ultimately lead to dementia [1]. HD is caused
by an autosomal-dominant glutamine-encoding CAG
trinucleotide expansion in the polymorphic exon 1 of the
huntingtin gene (HTT). Unaffected individuals normally
carry 11-34 CAG repeats while HD patients have >36—
250 CAG repeats [2,3].

The SCAs form a large heterogeneous group of
autosomal-dominant diseases with typical onset at 30-50
years old. They are caused by repeat expansions in both
coding and noncoding regions of multiple genes. Repeat
expansions are formed by CAG repeat sequences in most
cases; however, some subtypes are characterized by the
presence of trinucleotide (CTG), pentanucleotide (ATTCT,
TGGAA) or hexanucleotide (GGCCTG) repeats. SCAs are
slowly progressive diseases involving neurodegeneration
of the cerebellum and spinal cord. They are associated
with dysarthria, poor coordination of gait and fine move-
ments, but with retention of cognitive function [4]. They
often remain undiagnosed.

SMA is the second most common genetic cause of
infant mortality after cystic fibrosis (approximately 1 in
10 000 newborns). Lower motor neurons in the anterior
horns of the spinal cord progressively degenerate, leading
to muscle atrophy, paralysis and often fatal respiratory
failure [5]. Babies affected by aggressive forms of SMA
(type O and I) never sit and have a very short life expec-
tancy (<2 years). Intermediate SMA type II children sit but
do not stand. Types III and IV SMA have impaired gait and
mobility; however, their disease does not affect life
expectancy. Mental abilities remain unaffected and may
be higher than average. This
neurodegenerative disease is due to homozygous disrup-

autosomal-recessive
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tion of the survival of motor neuron 1 (SMN1) gene [6]
which results in reduced levels of the ubiquitous SMN
protein. The greater the reduction in SMN level, the
greater severity of disease.

ALS is characterized by relentless degeneration of upper
and lower motor neurons, which leads to progressive
paralysis and death usually within 3-5 years from
symptom onset. ALS is generally an adult disease with age
of onset peaking at around 55-60 years of age. It is the
most common form of motor neurodegenerative disease
and has a prevalence of 6—10 cases per 100 000 individu-
als, with a lifetime risk of 1 in 400 [7]. Approximately 5%
of ALS cases are inherited, usually in an autosomal domi-
nant manner (familial ALS — fALS) while the majority of
cases, approximately 95%, occur sporadically (sALS) [8].
ALS is a multifactorial disease in which mutations in mul-
tiple genes cause a direct disruption of mRNA metabolism
[9-11].

Here, we review the molecular mechanisms by which
genetic mutations can alter normal gene expression in
neurodegenerative diseases. We also discuss research limi-
tations and future strategies to better understand the
functional cellular consequences of widespread RNA
dysregulation.

Eukaryotic expression of genes

Eukaryotic gene expression is tightly regulated and inte-
grates activating and repressive mechanisms [12],
directionality [13], RNA surveillance [14] and regulated
protein degradation [15]. Normal eukaryotic gene expres-
sion depends on a very large number of protein-coding
mRNAs, protein factors and noncoding RNAs (ribosomal,
transfer, small nuclear RNA and regulatory micro-RNAs).
RNA molecules associate with RNA-binding proteins to
form ribonucleoprotein particles (RNPs). The composition
of RNPs dictates the function and fate of the RNA mol-
ecules [16]. Most eukaryotic genomes encode hundreds of
RNA-binding proteins with diverse biological activities
[17]. Mutations that disrupt RNPs are prone to cause
disease, whether they affect a particular protein or RNA
molecule. In particular, several neurological disorders are
associated with transcription and pre-mRNA splicing
alterations [18,19], as well as with dysregulation of
protein synthesis [20].

Biogenesis/processing of mRNA is orchestrated in sepa-
rate, but extensively coupled steps within the nucleus
[21], including transcription, mRNA processing events
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(capping, splicing, cleavage/poly-adenylation) and
nuclear export [22]. RNA-polymerase II transcribes pre-
mRNASs from the genomic DNA [23]. Nascent mRNA tran-
scripts are co-transcriptionally capped at their 5’-end [24].
The spliceosome removes introns and stitches together
coding exons in a process called splicing [25]. Alternative
splicing allows differential linking of various exons,
increasing the repertoire of encoded proteins from a single
gene. Finally, processing mRNAs are cleaved and poly-
adenylated at the 3’-end [26,27]. Mature mRNAs that
have been processed are licensed for nuclear export [28—
30]. Cytoplasmic mRNAs are circularized before being
translated into proteins by the ribosome [31,32]; however,
they can also be transported through the axon of
neuronal cells [33] to allow localized translation of pro-
teins within the axonal compartment. Figure 1 illustrates
the mechanistic steps involved in the neuronal expression
of protein-coding genes.

HD

The HTT gene encodes a very large protein huntingtin
(HTT) of over 3000 amino acids (approximately 350 kDa)
which is essential for embryonic development and brain
function [34]. The domain structure of HTT does not
resemble any known proteins and its precise molecular
function still remains unclear.

Poly-glutamine (poly-Q) amino-terminal truncations of
HTT, generated through aberrant splicing of HTT in HD
[35], inappropriately accumulate within the nucleus
through altered interactions with the nuclear pore protein
translocated promoter region (Tpr) [36], and form
ubiquitinated neuronal intranuclear inclusions in human
[37] and mouse [38] HD brains. a-synuclein, a compo-
nent of Lewy bodies in PD brains, was found in HTT inclu-
sions and independently in cytoplasmic filaments in
human and mice HD neurons. Interestingly, the number
of HTT inclusions is dependent on o-synuclein expression
levels [39], and formation of inclusion bodies was shown
to be associated with improved survival rather than death
upon live cell imaging [40]. HD pathophysiology is
complex, and there are several pathophysiological mecha-
nisms that lead to broadly dysregulated gene expression
[41]. Approximately 200 mRNAs are dysregulated in HD
brains, and the level of dysregulation correlates with
disease severity in the affected brain regions [42—44].
Poly-Q expansions trigger both HTT protein loss-of-
function and toxic gain-of-function effects [45]. Figure 2
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Figure 1. Neuronal expression of protein-coding genes. Diagram
highlighting mRNA biogenesis and processing, nuclear export,
axonal transport and mRNA translation. (1) Chromatin
remodelling; (2) RNA polymerase I (RNA Pol. II) dependent
transcription; (3) co-transcriptional processing: 5’-end capping,
splicing/alternative spicing, 3’-end cleavage and poly-adenylation;
(4) nuclear export of mRNAs; (5) axonal transport of mRNAs; and
(6) translation of mRNAs for the biosynthesis of proteins.

generally illustrates these mechanisms. In addition, the
CAG expansion may also contribute to HD pathogenesis
via RNA toxic gain-of-function through RNA foci forma-
tion and/or partial sequestration of the muscleblind
(MBNL1) splicing factor [46] and nucleolin (NCL) [47].
Panels A and B of Figure 3 depict in general these
paradigms/mechanisms. NCL sequestration leads to
down-regulation of rRNA transcription and nucleolar
stress. The CAG-expanded RNA is furthermore thought to
cause toxicity by altering miRNA biogenesis [48].

Loss of HTT protein function plays a critical role in HD.
HTT is involved in various cellular functions [49], particu-
larly system. It protects against
excitotoxicity [50] and apoptosis by promoting mitotic
spindle formation during neurogenesis [51]. It regulates

in the nervous
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Figure 2. Mechanisms conferring protein loss and toxic
gain-of-function effects. The diagram illustrates pathogenic
mutations (repeat expansions, deletions, point mutations) that may
occur either in noncoding or coding regions of the genome (left
and right sides, respectively). (A) Protein loss-of-function.
Haploinsufficiency can occur when the level of a particular mRNA
is down-regulated due to mutations in noncoding regions of genes
such as in promoters/introns, or if the promoter is subjected to
histone/DNA modifications (transcriptional repression), but also if
mutations in 5" or 3’ untranslated regions (UTRs) decrease mRNA
stability. Protein loss-of-function can also occur when mutations in
coding regions alter directly the activity of the mutated protein
(misfolding, alteration of the active site). (B) Protein toxic
gain-of-functions are caused by mutations in coding regions that
either promote abnormal interactions, increase the interaction of
the mutated protein with its natural binders and/or promote
misfolding/aggregation.

the axonal transport of vesicles, regulating in turn synap-
tic transmission [52]. It contributes to miRNA biogenesis
[53]. Furthermore, HTT sequesters repressor element 1
silencing transcription (REST) in the cytoplasm of
neurons, leading to the transcriptional activation of
REST-repressed genes involved in neuronal differentiation
and survival [54]. Loss of functional cytoplasmic HTT in
HD leads to nuclear accumulation of REST and subse-
quent down-regulation of REST-regulated neuronal genes
[54]. These include brain-derived neurotrophic factor
(BDNF) which encodes a cortical pro-survival factor
essential for striatal neuron survival [55] and several
neuronal miRNAs [56] that regulate the plasticity of the
neuronal transcriptome [57,58].
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Figure 3. RNA toxic gain-of-function mechanisms. (A) Protein
sequestration of RNA-binding proteins that avidly interact with the
repeat expanded pre-mRNA/mRNA. (B) Formation of RNA foci. (C)
Repeat-associated non-ATG (RNA) translation. (D) RAN translation
leads to the formation of repeat-peptide proteins that usually
aggregate.

On the other hand, the poly-Q expansions in HTT also
trigger several toxic gain-of-functions described below.
HTT has the ability to interact with over 100 proteins
involved in various cellular functions [49]. Poly-Q
expansions either disrupt or cause abnormal HTT: protein
interactions, thus affecting many cellular pathways
[59,60].

e Poly-Q HTT aberrantly interacts and may sequester
several transcription factors (TFs) which disrupt tran-
scription and widely affect gene expression. Several TFs
have been found in nuclear HTT inclusions, including
the general transcription factor TATA box binding
protein (TBP) and co-transcriptional activators such as
CREB-binding protein (CBP) and specificity protein 1
(SP1) [59,61] which contribute to the establishment of
neuronal identity.

Poly-Q HTT directly binds to the promoter of peroxisome
gamma coactivator

proliferator-activated receptor
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1-alpha (PPARGCI1A), as well as its protein product
PGC-1a, a transcriptional master co-regulator that
regulates energy homeostasis, mitochondrial biogenesis
and antioxidant defences. Reduced PPARGCIA tran-
scription and disrupted PGC-1oafunction are likely to
contribute to the mitochondrial dysfunction observed
in HD [62], a key pathophysiological component in
combination with
mitochondrial DNA damage [63]. Interestingly, oxida-
tive stress promotes DNA triplet expansion in HTT [64],
highlighting the potential pathophysiological role of
DNA damage/repair during neurogenesis. In addition,
rescuing PGC-1a function attenuates HD in mice, alle-
viating both oxidative stress and HTT aggregation
proteotoxicity [65].

* Poly-Q HTT also binds the acetyltransferase domains of
the histone acetyltranferases (HATs) CBP and P/CAF.
Post-translational modifications of histones control the

increased oxidative stress and

accessibility of the chromatin to the transcriptional
machineries. Alteration of chromatin remodelling in
HD leads to widespread dysregulation of gene tran-
scription in large genomic regions [43]. This occurs
through reduction of histone H3/H4 acetylation [66],
reduction of histone H3 phosphorylation at the
PGC-1o. promoter [67] and decreased interaction
with the human polycomb-repressive complex 1-like
(hPRC1L) E3 ubiquitin ligase complex that promotes
mono-ubiquitination of histone H2A [68].

* The expanded HTT RNA [48] and protein [53] have fur-
thermore a direct role in the alteration of miRNA
biogenesis.

 Finally, CBP dysregulation also results in reduced
acetylation of the rRNA-specific upstream binding
factor 1 (UBF1) which dysregulates rRNA transcription
and leads to nucleolar stress [69].

SCAs

There are 36 SCA subtypes identified to date, with a com-
bined prevalence of 5-7 cases per 100 000 people [70-
72]. Most SCA subtypes are caused by repeat expansion
mutations that occur in over 20 known genes. SCAs can
be sporadic, or have autosomal recessive or autosomal
dominant inheritance dependent on the subtype. The
most widely characterized genetic subset are the
autosomal dominant cerebellar ataxias (ADCAs), which
are subdivided into three broad types based on their clini-

cal presentation [73].
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Many of the ADCAs (SCA1-3, SCA6, SCA7,SCA17) are
caused by the presence of expanded CAG repeats within
exonic regions of genes. These repeats are reminiscent of
those found in HD and have led to these SCAs being clas-
sified as poly-Q diseases [74]. Misfolded poly-Q-containing
proteins or soluble glutamine-rich peptides (created by
their cleavage) are thought to cause neuronal toxicity
through toxic gain-of-functions, abnormal interactions
and/or protein aggregation [75] (Figure 2). The SCA
poly-Q proteins are proposed to disrupt the ubiquitin-
proteasome system [76,77], alter calcium homeostasis
[78] and dysregulate transcription [79-81].

Other SCA subtypes such as SCA10, SCA31 and SCA36
are caused by a variety of different noncoding repeat
expansions, which have the potential to cause RNA toxic-
ity important in disease pathogenesis [82] (Figure 3A—C).
An ATTCT pentanucleotide repeat expansion in intron 9
of ATXN10 causes SCA10 [83]. Affected individuals have
between 800 and 4500 repeats. Intron 9 is spliced out of
the ATXN10 pre-mRNA, but the expanded AUUCU RNA is
resistant to degradation and aggregates in nuclear and
cytoplasmic foci of SCA10 cells and transgenic mouse
brain. The expanded AUUCU RNA binds the splicing factor
heterogeneous nuclear ribonucleoprotein K (hnRNPK),
resulting in hnRNPK sequestration and loss of function.
As a result, protein kinase C 6 (PKC8) accumulates in the
mitochondria of SCA10 cells, leading to caspase-3 medi-
ated apoptosis [84]. SCA31 is caused by a TGGAA
pentameric repeat expansion located within the intron of
both brain-expressed associated with NEDD4 (BEAN) and
thymidine kinase 2 (TK2), genes that are transcribed in
the opposite direction. Affected individuals have over 250
repeats. The expanded UGGAA RNA binds and sequesters
the serine arginine-rich splicing factor (SRSF) SRSF1 and
SRSF9 in vitro [85]. If these splicing factors are seques-
tered in vivo, pre-mRNA processing and stability are likely
to be disrupted. SCA36 is intriguing because it exhibits
similarities with C9ORF72-related ALS. SCA36 patients
initially develop cerebellar ataxia and frontal lobe atrophy.
However, symptoms typical of ALS follow, with upper and
lower motor neuron involvement, including tongue
atrophy, skeletal muscular atrophy and fasciculation
[86,87]. SCA36 is caused by a GGCCTG hexanucleotide
repeat within the first intron of nucleolar protein 56
(NOP56) [88], while C9ORF72-related ALS is caused by
an expanded GGGGCC hexanucleotide repeat within
intron 1 of C9ORF72[89,90]. C9ORF72-related ALS and
SCA36 are linked not only because of motor neuron dys-
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function, but also because both intronic XGGGCC repeat
expansions (where X is G or T respectively) interact with
SRSF2 and form RNA foci [88,91,92]. The expanded
GGCCTG repeat also leads to reduced expression of the
neighbouring miR-1292 gene [88].

In some other SCAs, there are contributions from both
protein gain-of-function and RNA toxicity. The expanded
CAG repeat in SCA3 not only produces poly-Q proteins,
but also produces expanded CAG repeat RNA that poten-
tially binds and sequesters RNA-binding proteins. The
dysregulated transcription and splicing could contribute
to neurodegeneration [93,94]. In addition, SCAS8 is
caused by contribution from a CTG repeat expansion in
ataxin (ATXN) ATXNS8OS and a CAG repeat expansion in
ATXNS, genes which are transcribed in opposite directions
[95]. ATXNSOS is transcribed from the sense strand, and
the transcript contains an untranslated CUG repeat, while
the CAG repeat expansion within ATXNS on the antisense
strand is translated into an almost pure poly-Q protein.
The CUG repeat-containing RNA forms nuclear foci which
sequesters the RNA processing factor MBNL1 [96].
MBNL1 sequestration has adverse effects on RNA splicing
and other processing events, and is well studied in
myotonic dystrophies 1 and 2. Additionally, the CAG
repeats are translated into poly-Q proteins, and in a differ-
ent frame into polyalanine proteins via unconventional
repeat-associated non-ATG (RAN) translation in SCAS8
mouse model and post mortem human central nervous
system (CNS) tissue [97].

SMA

SMA is caused by a drastic reduction of SMN protein
levels. The chromosomal 5q13 SMA locus is a duplicated
region carrying two inverted copies of almost identical
SMN genes that encode the same 294-residue protein. The
majority of SMA cases show homozygous deletions, rear-
rangements or large truncations of the telomeric SMN1
gene copy. However, other cases are caused by short
deletions/mutations in the splice sites of SMN1 introns 6
and 7. The SMN1 gene differs from the centromeric SMN2
copy by a few silent base changes [6]. Exon-7 is correctly
spliced in only 10-20% of SMN2 transcripts, leaving the
vast majority of SMN2 mRNAs as defective transcripts
lacking exon-7 [6,98] which are eventually translated
into unstable and inactive SMN protein [99,100]. Signifi-
cantly, SMN2 alterations are not associated with clinical
pathology. Healthy motor neurons naturally express lower
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amounts of fully spliced SMN2 mRNA which may
account for the higher vulnerability of motor neurons to
SMN1 mRNA loss [101]. Because SMN protein levels are
directly linked to disease severity, it is critical to identify the
mechanisms that regulate inclusion/exclusion of SMN2
exon-7 for the development of therapeutic approaches. As
described below, the intricate regulation of exon-7 splicing
involves binding of multiple RNA recognition motif
(RRM) containing proteins such as SRSFs and hnRNPs
that act directly on binding exon-7 and flanking introns as
well as through direct protein : protein interactions.

SRSF1 [98], polypyrimidine tract-binding protein-
associated splicing factor (PSF) [102] and hnRNPM [103]
interact with exonic splice enhancer (ESE) sequences that
promote the inclusion of exon-7 in SMN1, while hnRNPM
further stimulates the recruitment of the splicing factor
U2AF65 to the flanking intron-7 [103] (Figure 4A). In
contrast, several base changes in SMN2 exon-7 and flank-
ing introns inhibit exon-7 inclusion. They alter the +6 ESE
sequence leading to reduced interaction with SRSF1
[98,104,105], and form composite exonic splice silencer
(ESS) sequences that bind splicing inhibitors hnRNPA 1
[106,107] and Sam68 [108], as well as intronic splice
silencer (ISS) sequences that interact with a 33 kDa
protein p33 [110], hnRNPA1 [112], hnRNPA2 and
hnRNPB1 [111]. Inclusion of SMN2 exon-7 is stimulated
by ESE-binding of hnRNPQ1 [109], PSF [102], hnRNPM
[103] and hTra2-B1 [113], together with hTra2-B1-
associated alternative splicing factors Srp30c [114],
hnRNPG and RNA binding motif protein chromosome X
or Y (RBMX/Y) [115]. Interestingly, a mutation in SMA
patients with a mild clinical phenotype provides an ESE for
SRSF1 [116] while disrupting an ESS for hnRNPA1 [117]
which promote in turn the splicing of exon-7. A schematic
of the complex regulation of SMN2 exon-7 splicing is pro-
vided in Figure 4B. Notably, SMA patients develop respira-
tory impairment in the late stages of disease. Hypoxia was
reported to induce both hnRNPA1 and Sam68 protein
levels, promoting SMN2 exon-7 skipping and further
reduction of SMN protein levels. SMA SMNA7 mice
housed in hyperoxia conditions, in contrast, displayed
increased splicing of exon-7 and improved motor function
[118].

SMN proteins form part of a large oligomeric SMN
complex of nine core-proteins composed of SMN
(Geminl), Gemins 2—8 and Unrip in mammals. This
complex is found in the nucleus in Gemini of coiled (GEMs)
bodies often associated with Cajal bodies where it is
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Figure 4. Model for regulation of exon-7 splicing in SMN1 and SMNZ2. Schematic representation of positive and negative effectors that

regulate exon-7 splicing in SMN1 (A) and SMN2 (B) genes. The acronym ASF was used for alternative splicing factors. Exons 7 of SMN1 or
SMN2 are represented in boxes that include the DNA sequences of the ESE/ESS motifs. ISS sequences are located in introns flanking exon 7
of SMIN2. Arrows represent binding of ASF to the highlighted DNA elements or proteins. Factors that promote or inhibit the inclusion of
exon-7 are respectively labelled above or below SMN exons/introns. T lines represent binding inhibition/inhibitory effect of ASF. (A) SRSF1
recognizes a +6 ESE sequence in SMN1 exon-7 promoting inclusion of exon-7. A downstream AG-rich ESE in exon-7 promotes exon-7
inclusion through binding of PSF [102] and hnRNPM [103], which in turn stimulates the recruitment of the splicing factor U2AF65 to the
flanking intron-7. (B) The ESE sequence altered by a C/T transition at position +6 in SMN2 exon-7 was initially suggested to reduce exon-7
splicing because of a decreased interaction with SRSF1 [98,104,105]. However, the C/T transition also forms a composite ESS that promotes
exon-7 skipping by interaction with the alternative splicing inhibitors hnRNPA1 [106,107] and Sam68 [108]. Furthermore, the activities of
both hnRNPQ2 and Q3 antagonize the positive exon-7 splicing role of hnRNPQ1 bound to the +6 ESE [109]. Several base changes in SMN2
introns 6 and 7 also promote SMN2 exon-7 exclusion: (i) an ISS Element 1 in intron-6 (—75 to —89) through binding of p33 [110]; (ii) an
ISS-N1 site located in intron-7 (+10 to +24) that provides binding sites for hnRNPA2 and B1 [111]; (iii) an ISS in intron-7 (A/G transition at
position +100) that binds hnRNPA1 and inhibits splicing of exon-7 cooperatively with the binding of the same protein to the exon-7 ESS site
[112]. In contrast, SMN2 exon-7 inclusion is promoted via two ESE sites: (i) the composite +6 ESE which provides interaction for hnRNPQ1
[109]; and (ii) the AG-rich ESE that provides overlapping binding sites for the splicing factors PSF [102], hnRNPM [103] and hTra2-1
[113]. The direct interactions of hTra2-B1 with the alternative splicing factors SRp30c [114], hnRNPG and RBMX/Y [115] increase the
splicing activity of ESE-bound hTra2-B1, stimulating in turn exon-7 inclusion. Interestingly, a silent C/G transition identified in AG-rich ESE
at position +27 (codon Gly287) in some SMA II or III patients which present mild clinical phenotypes, creates an ESE for SRSF1, which in
turn promotes exon-7 splicing and the production of full-length SMN2 mRNAs [116]. However, this transition also disrupts a
splicing-inhibitory hnRNPA1 binding site indirectly promoting SMN2 exon-7 inclusion [117].

thought to play a role in RNA polymerase I dependent splicing of Ul2-intron-containing genes, including

transcription and/or pre-mRNA splicing. The SMN
complex is required in the cytoplasm for the assembly of
uridine-rich small nuclear RNPs (U snRNPs) that compose
the spliceosome, providing a binding-platform for the Sm
core-domain and the targeted recruitment of snRNA
[119,120]. The integrity of the spliceosome is indeed
altered in SMA [121], and alternative splicing of several
pre-mRNAs is affected in the disease [122]. SMN depletion
affects snRNA stoichiometry and promotes widespread
pre-mRNA splicing defects [123] altering the alternative
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Stasimon (CG8408) [124] and Neurexin2a (Nrxn2a)
[125] which are involved in neuromuscular junction
transmission and synapse assembly/synaptic transmis-
sion, respectively. The SMN complex also plays a key role in
axonal mRNP assembly and transport [126] where SMN-
containing granules interact with hnRNPR, which in turn
binds to the 3’UTR of B-actin mRNA [127], and with
Hu-antigen D (HuD) that interacts with the candidate
plasticity gene 15 (¢pgl5) mRNA in neuronal processes
[128]. Over 200 neuronal mRNAs are associated with

NAN 2015; 41: 109-134



116 M. ]. Walsh et al.

SMN complexes, and approximately one third co-localize
in axons and neurites [129]. SMN also binds methylated
lysine 79 of histone 3 (H3K79), a post-translational modi-
fication marker associated with splicing, suggesting that
epigenetic dysregulation may also occur in SMA [130]. In
addition, mice deficient for miRNA processing in spinal
motor neurons exhibit features of SMA, indicating that
miRNA processing plays an essential role in the develop-
ment and integrity of spinal motor neurons [131].

In SMA, reduction in SMN levels also induces down-
regulation of Gemins 2/3, hnRNPQ, hTra2-B1 [132], and
promotes SMN2 exon-7 skipping [133], thereby exacer-
bating the SMA phenotype. In summary, SMA is primarily
caused by SMN protein-loss-of function (Figure 2A) that
results in broad splicing and axonal mRNP trafficking
defects.

ALS

ALS is a multifactorial disease caused by mutations in
one of over 20 genes encoding proteins with a variety of
functions [11]. Until recently, most understanding of the
mechanisms of motor neuron injury emerged from the
study of SODI mutations in experimental models and
human biosamples. In the presence
superoxide dismutase 1 (SOD1) and in sporadic cases of
ALS, multiple interacting factors contribute to the
neurodegenerative process, including oxidative stress,
excitotoxicity, mitochondrial dysfunction, disruption of
the cytoskeleton/axonal transport, protein aggregation
and altered glial-motor neuron cross-talk [134]. More
recently, alteration of mRNA metabolism was identified
as a major dysregulated pathway in most common sub-
types of ALS. In 2006, the nuclear loss and aggregation
of altered forms of the RNA-processing TAR DNA-
binding protein 43 (TDP-43) observed in neuronal and
glial cells of ALS patients focused attention on altered
RNA processing [135,136]. TDP-43 proteinopathy was
found to form the hallmark of most familial and sporadic
ALS cases. Ubiquitinated, phosphorylated TDP-43 wild
type or mutant protein and carboxyl-terminal degrada-

of mutant

tion products constitute major components of
intranuclear and cytoplasmic neuronal inclusions that
are observed in the majority of ALS variants except for
those caused by SOD1 mutations, highlighting alteration
of mRNA-processing [137] and mRNA-binding [138] as
one of the critical pathophysiological disease mecha-

nisms [10]. Interestingly, oculomotor neurons that are
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relatively spared during the course of neurodegeneration
in ALS show a specific transcriptome profile with
decreased susceptibility to excitotoxicity [139], suggest-
ing that selective neuronal death is induced by an inabil-
ity of affected neurons to cope with increased stress in
relation to ALS mutations, environmental factors and/or
ageing [140].

The most common genetic causes of familial ALS
involve autosomal-dominant mutations in the following
four genes: C9ORF72 (uncharacterized) in 40-50% cases
[89,90], also most commonly mutated in frontotemporal
dementia (FTD), SOD1 [141] in 20% [142], TARDBP
(encoding the TDP-43 protein) [143] and FUS (fused in
sarcoma) [144,145] in 4% [146] of fALS cases, respec-
tively. These mutations can also be found in a varying
sporadic  ALS Widespread
dysregulation of gene expression was observed in these

proportion  of cases.
ALS subtypes as well as some other less common genetic
variants described below.

C90RF72-related ALS

In contrast to TDP-43 and FUS, the C9ORF72 protein
does not display homology to RNA-binding proteins and
is not thought to play a direct role in mRNA metabolism.
C90RF72 encodes a protein of uncharacterized function
which might belong to the family of DENN-containing
proteins, GDP-GTP exchange factors (GEFs) for Rab
GTPases domain involved in the regulation of membrane
trafficking [147]. ALS mutations are associated with
pathological intronic hexanucleotide GGGGCC repeat
expansions [89,90] containing from >30 up to several
thousand repeats [148,149] in the first intron of the
C90RF72 gene. The C9ORF72 RNA repeat expansions
form stable parallel uni and multimeric G-quadruplex
[150-152] which are well known for
avidly interacting with RNA-processing factors. Both
sense [89,91,153-155] and anti-sense [152,155-157]
intraneuronal RNA foci have been observed in associa-

structures

tion with the C9ORF72 hexanucleotide expansion and
form a pathological hallmark of C9ORF72-related
ALS.

Three potential molecular mechanisms of gene expres-
sion alteration and neuronal injury have been proposed
and may coexist simultaneously: (i) haploinsufficiency
due to decreased expression from the altered C9ORF72
allele(s) [89,158-162] (Figure 2A); (ii) RNA mediated
gain-of-function toxicity by the GGGGCC-expanded intron
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that prevents aberrantly bound/sequestered RNA-
processing factors from functioning normally in the
nucleus [91,92,153-155,163,164]; and (iii) protein
gain-of-function toxicity by dipeptide repeat proteins
(DPRs) aberrantly generated from RAN translation of the
expanded intron-containing mRNA [156,165,166]
(Figure 3A—C).

Haploinsufficiency was reported by several groups
[158,159,161,162] and in a zebrafish model of
C90ORF72-related ALS [160]. However, decreased mRNA
expression was not observed in induced pluripotent stem
cell (iPSC)-derived neurons [154]. Similarly, we [167]
and others [161] have also reported that C9ORF72
mRNA steady-state levels are not altered in ALS cases
with small GGGGCC repeat lengths. In addition, not a
single mutation has been identified in the C9ORF72
coding sequence, suggesting that pathogenicity due to
loss-of-function is less likely [168]. On the other hand, a
body of evidence is accumulating for RNA gain-of-
function toxicity. Antisense oligonucleotides have been
shown to rescue the GGGGCC-expanded C9ORF72-
mediated RNA toxicity [153,154,156]. We [92] and
others [91,153-155,163,164] are proposing RNA medi-
ated gain-of-function toxicity as one contributing mecha-
nism operating to prevent aberrantly bound/sequestered
RNA-processing factors from functioning normally in the
nucleus, which in turn leads to broad alteration of gene
expression in C9ORF72-related ALS. On the other
hand, DPRs are abundant in extra-motor areas of the
CNS such as the cerebellum and account for the charac-
teristic pathology of p62-positive, TDP-43-negative
inclusions seen in the CNS of C9ORF72-related ALS
patients. DPRs were recently shown to in vitro alter RNA
biogenesis and Kkill cells [169], as well as causing
neurodegeneration in drosophila [170]. However, DPRs
seem to be most abundant in areas of the CNS outside
the motor system, which is responsible for the key
disease-related clinical features, raising also the possibil-
ity of a potential beneficial/neuroprotective role of DPR
generation.

SOD1-related ALS

SOD1 encodes a ubiquitously expressed free radical scav-
enging enzyme. ALS SOD1 mutations [141] lead to
increased oxidative stress and neurodegeneration associ-
ated with mitochondrial dysfunction [140,171]. SOD1 is
not thought to play a direct role in RNA metabolism.
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However, biomarkers of RNA oxidation are detectable in
human ALS and as an early indicator of oxidative stress
in mutant Sodl mice. The transcriptomes of dissected
spinal cord motor neurons from SODI-related ALS
models [172] were further shown to be significantly
altered with up- and down- regulation of over 1000
transcripts whose products are involved in various meta-
bolic pathways, including those controlling neuronal
survival and death. In particular, in motor neurons that
survived the disease process in human SODI-related
ALS, anti-apoptotic phosphatidylinositol 3-kinase and
protein kinase B (AKT3) were up-regulated with a con-
comitant reduction in the level of phosphatase and
tensin homologue (PTEN) which inhibits the pro-survival
AKT pathway, suggesting a mechanism for how these
intact motor neurons survived the neurodegenerative
process. Therapeutic modulation of this pathway is now
being developed as a potential neuroprotective approach.

More than 170 missense mutations of SOD1 have been
reported in ALS cases (ALSoD Consortium; http://
alsod.iop.kcl.ac.uk/). They are distributed over the full
length of the 154 amino acids of the human SOD1
protein, suggesting that loss-of-function mutations are
unlikely. Furthermore, knock down of Sodl does not
trigger ALS in mice, and several SOD1 mutants, including
A4V and G93A, retain virtually normal superoxide
dismutase activity. The pathophysiological mechanisms of
SOD1 mutations are thought to involve protein toxic gain-
of-function (Figure 2B) due to protein misfolding and for-
mation of ubiquitinated intracytoplasmic neuronal and
astrocytic inclusions in the CNS of SODI1-related ALS
patients and mice [173,174].

TDP-43 and FUS-related ALS

TARDBP and FUS encode ubiquitously expressed DNA/
RNA-binding proteins implicated in multiple aspects of
gene expression regulation, including transcriptional
control, alternative splicing of mRNA [175,176], axonal
transport of mRNA [177] and biogenesis of miRNA
[178,179]. More recently, TDP-43 was also shown to
play additional roles in translation control [180,181].
Several thousand TDP-43 and FUS RNA-binding sites
have been characterized on pre-mRNA molecules,
including those involved in splicing functions of long pre-
mRNAs essential to neuronal development and integrity
[176,182,183]. Alternative splicing of pre-mRNAs was
found to be broadly altered in TDP-43 and FUS-related
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ALS, leading to the dysregulation of normal neuronal
gene expression with the synthesis of thousands of
aberrantly spliced mRNA molecules [182,184-189]. In
particular, these recent transcriptome studies highlighted
an alteration of levels and/or splicing of genes involved
in RNA processing, synthesis of neurotrophic factors and
synaptic function. Up to one-third of the transcriptome is
altered in TDP-43 transgenic mouse models with specific
alterations due to the Q331K ALS mutation [186].
Overexpression of FUS in mice also causes ALS, with pro-
gressive loss of motor neurons in an age- and dose-
dependent response [190]. On the other hand, FUS
interacts directly with the SMN complex [191] that asso-
ciates with GEMs for the biogenesis of sSnRNPs. GEMs are
significantly reduced in SMA, in patient fibroblasts
expressing TDP-43 or FUS mutations [191] and in motor
[192]. ALS-
associated TDP-43 mutations increase interaction with

neurons of TDP-43 transgenic mice

FUS [193], and spliceosome integrity was found to be
affected in TDP-43-related ALS [121]. TDP-43 interacts
also with GEMs via SMN [194]. These observations
suggest shared defective RNA splicing mechanisms
between SMA and TDP-43/FUS related ALS [121,191].

FUS and TDP-43 are hnRNP proteins which shuttle
between the nucleus and the cytoplasm. They are com-
posed, respectively, of one and two RRM domains flanked
by carboxyl-terminal arginine/glycine (RG)-rich regions,
also called the prion-domain because these unstructured
regions have a propensity for aggregation. FUS also
exhibits an RG-rich region in its amino-terminus. The
vast majority of ALS mutations cluster in the RG-rich
regions in exon 6 of TDP-43 and in exons 3—6 or 12-15
of FUS. These mutations disrupt protein : protein interac-
tions, including those of TDP-43 with the splicing
hnRNPs A1, A2/B1, C1/C2 and A3 [195]. ALS muta-
tions of TDP-43 and FUS also alter the transportin-
mediated nuclear localization import, resulting in
predominantly cytoplasmic mislocalization and the for-
[196,197].
unknown whether motor neuron injury is caused by loss

mation of stress granules It remains
of normal nuclear functions of TDP-43/FUS (disrupting
transcriptional regulation, pre-mRNA splicing, sorting to
distinct cytoplasmic compartments or processing of
noncoding RNAs) and/or whether additional toxic
gain(s) of function, such as cytoplasmic mislocalization
in soluble or aggregated forms, are responsible for disease
(Figure 2A,B). However, toxicity does not seem to depend
on nuclear localization of mutant TDP-43 or on the for-
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mation of intracytoplasmic inclusions, but rather on the
increased cytoplasmic mislocalization of soluble ALS-
linked TDP-43 mutant proteins [198,199]. Also, the
alteration of the axonal mRNA transport is likely to con-
tribute to motor neuron dysfunction in TDP-43 related
ALS [200].

Minor subtypes of ALS that exhibit RNA
dysregulation

Further evidence of dysfunctional RNA metabolism has
been provided by autosomal-dominant mutations in
genes encoding senataxin [201] and angiogenin
[202,203], two other RNA-binding proteins, involved in
rare juvenile familial and adult onset forms of ALS,
respectively. The DNA/RNA helicase senataxin (SETX) is
predicted to play roles in several steps of gene expression,
including functions associated with RNA processing and
the maintenance of genome integrity. Angiogenin
(ANG), the expression of which is increased during
hypoxia to promote angiogenesis, is a tRNA-specific
RNase that also regulates the transcription of ribosomal
RNA. ALS mutations of ANG are likely to act through a
loss of function, as overexpression extends the lifespan of
ALS SOD1 mutant mice. The mechanism(s) by which
mutations in SETX and ANG cause ALS remains to be
determined.

Additional genetic mutations were more recently
identified in elongator protein 3 (ELP3) [204], TAF15
[205,206] and Ewing’s sarcoma breakpoint region 1
(EWSR1I) [207]. Products from these genes are also
involved in regulating RNA metabolism. The histone
H3/H4 acetyl transferase ELP3 comprises one subunit of
the elongator complex that regulates transcription elon-
gation by the RNA Polymerase I10, post-transcriptional
processing of tRNA, as well as acetylation of o-tubulin in
microtubules. TAF15 and EWRS1 proteins are function-
ally and structurally related to FUS. They form the FET
family of proteins (FUS-EWS-TAF15) and play a regula-
tory role in transcription and alternative splicing. Also,
poly-Q expansions described in the coding sequence of
Ataxin-2 (ATXN2), a gene product involved in the trans-
lation control of the circadian rhythm [208,209], were
shown to be significant susceptibility factors associated
with ALS [210]. ATXN2 localizes with stress granules
and TDP-43 in neurons. Products of genes that modulate
stress granules are potent modifiers of TDP-43 toxicity in
Saccharomyces cerevisiae and Drosophila melanogaster, and
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TDP-43 interacts with the polyA-binding protein (PABP)
[211]. Mutations in the RNA/DNA-binding protein
Matrin 3 (MATR3) that also interact with TDP-43 were
shown to cause ALS [212]. Furthermore, a mutation
causing ALS was found in the prion domain like of
hnRNPA1 [213]. The precise
neurodegeneration triggered by mutations in genes
encoding these various RNA-processing factors remain
poorly understood.

mechanisms  of

RNA-mediated mechanisms of
neurodegeneration

Expression level alteration and/or sequestration of pro-
teins involved in the process of gene expression are
common mechanisms implicated in neurodegeneration;
however, they usually diverge in the targets identified so
far across the various RNA-mediated neurodegenerative
diseases. Comprehensive transcriptome studies have
recently been reviewed in HD [214], SCA [215], SMA
[216] and ALS [9,217]. Here, Tables 1 and 2, respec-
tively, focus on the recent transcriptome analysis of
pathogenic variants in the nonmotor (HD, SCA) and
motor (SMA, ALS) neurodegenerative diseases that are
the focus of this review. In common, transcriptome
studies of pathogenic mutations found in HTT, ATXN2,
ATXN7, SMN, TARDBP/TDP-43, FUS and C9ORF72 all
suggest that most changes alter the expression of genes
associated with neuronal specificity, plasticity and
synaptic function. This provides, in turn, an attractive
hypothesis explaining why neurons are preferentially
more sensitive than other cell types to the pathogenic
mutations.

However, it still remains unclear whether widespread
gene expression changes are the result of an exclusive
alteration of mRNA biogenesis/processing, an indirect
effect due to DNA/RNA/protein damage via oxidative
stress/mitochondrial dysfunction, or a combination of
these exhibiting in turn both loss-of-function effects and
toxic gain-of functions via the formation of RNA foci
and/or protein aggregates. The apparent lack of conver-
gence in the altered RNA/protein targets does not neces-
sarily imply that there are not common mechanisms
involved. The large number of dysregulated gene expres-
sion events identified so far and the involvement of
redundant pathways, either up- or down-regulated, com-
plicate the interpretation of observations. For example,
energy/lipid pathways are similarly dysregulated by
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either poly-Q HTT expansions or HTT knockdown, but
the particular genes whose expression is altered are dif-
ferent [218]. Also, TDP-43 and FUS were shown to bind
distinct RNA sites, but their functions overlap in the
alternative splicing of pre-mRNAs with long introns,
many of which encode genes associated with neuronal
integrity [176,182,183].

Expanded pre/mRNA in repeat disorders were reported
to form RNA foci and avidly bind/sequester splicing
factors such as SRSF1 in SCA31/C90ORF72-related ALS
[85,91,92], SRSF2 in SCA36/C90ORF72-related ALS
[88,91,92] and MBNLI1 in HD/SCAS [46,96]. Disruption
of GEMs is observed in both SMA and TDP-4 3/FUS-related
ALS [191,192], and concordantly, the integrity of
spliceosomes was found to be altered in both diseases
[121]. Expression level alteration/sequestration of RNA-
processing factors such as RRM-containing splicing
factors (hnRNPs, SRSFs) further leads to large splicing
alterations in SMA [123-125], TDP-43/FUS-related ALS
[182,184-189] and C9ORF72-related ALS [153,154].

RAN translation has been observed in SCA8 [97] and
C90RF72-related ALS [156,165,166]. However, how
repeat-expanded pre-mRNAs are exported into the cyto-
plasm remains unknown. Increased binding of mRNA
export adaptors (ALYREF, SRSF1, SRSF3, SRSF7) on
GGGGCC-expanded C9ORF72 pre-mRNAs [92] may over-
ride normal nuclear retention and inappropriately license
repeat-expanded pre-mRNAs for nuclear export [28,238],
thus allowing RAN translation to occur. On the other
hand, repeated sequence expansions such as those
observed in HD, SCA and C9ORF72-related ALS are likely
to generate transcriptional stress with the formation of
R-loops that are more susceptible to DNA damage and
may result in increased genome instability (for a recent
review, see Skourti-Stathaki & Proudfoot [239]). Interest-
ingly, the ALYREF/THOC4 (THO complex subunit 4)
subunit of the TREX complex that links transcription elon-
gation to mRNA nuclear export and genome stability was
found to be sequestered by pathogenic C9ORF72 RNA
hexanucleotide repeat expansions [92]. Dysregulation of
miRNA biogenesis was also reported to play an important
role in HD [48,53,56], in SMA [131] and in FUS-related
ALS [240].

Whether RNA-mediated neurodegeneration and its
various clinical presentations are driven by distinct
mechanisms specific to each affected type of neuron or by
a common pathophysiological core of dysregulated
targets remains to be determined.
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Current challenges: identifying altered
levels/sequences of RNA molecules and
proteins causing neurodegeneration

As described earlier, RNA-mediated neurodegenerative
diseases exhibit widespread dysregulation of gene expres-
sion with alteration of most RNA classes (mMRNA, miRNA,
rRNA and tRNA) and disruption of multiple RNA-
processing steps. Accordingly, transcriptome studies have
revealed dysregulation of hundreds to thousands of RNA
molecules in the presence of disease-causing mutations
[217].

Transcriptomics as a research methodology has contrib-
uted greatly to our understanding of the mechanisms of
neuronal cell death [241]. However, there are clear limita-
tions inherent within traditional transcriptomics studies
due to both the measurement of steady-state levels and the
nature of available samples from which RNA is obtained
(i.e. cell/animal models and post mortem tissues enriched
for neurons that survived the neurodegenerative process)
[242,243]. Identifying events causing neurodegeneration
is also challenging because of the widespread and varied
components of RNA dysregulation. For example, the large
number of reported splicing anomalies constitutes a major
hurdle in separating causal molecular events leading to
neurodegeneration from those that are downstream con-
sequences of the initial perturbations of gene expression.
Another problem lies in the fact that very often, the expres-
sion level of a given mRNA transcript is not necessarily
representative of the level of its corresponding protein.
Counter-intuitively, an increase in the steady-state level of
a particular mRNA is often associated with a decrease in
the corresponding protein level as the cell tries to counter-
act the down-regulation of the protein by increasing
synthesis/stability of the mRNA [244]. Practically, it is also
difficult for researchers to determine which altered RNAs
should be considered more or less important in a given
biological context. It would be tempting to assume that the
RNAs with the greatest relative fold changes would have
the highest chance of being pathophysiologically relevant
but, as we have seen with the previous example, a signifi-
cant increase in mRNA level could be misleading, particu-
larly as in most cases, it is the protein product that is more
likely to influence cellular health. Additional complexity
comes from the fact that intronic repeat sequences such as
GGGGCC expansions in C9ORF72 can be translated into
toxic proteins[156,165,166,169,170,245] which further
extends the repertoire of altered gene expression that

© 2014 The Authors. Neuropathology and Applied Neurobiology published by John Wiley & Sons Ltd

on behalf of British Neuropathological Society

can be implicated in neurodegeneration. Furthermore,
biomarkers of RNA oxidation are also detectable in human
CNS samples from cases with neurodegenerative disorders.
Oxidation of RNA molecules triggers a reduction in trans-
lation and simultaneously increases translational errors
potentially leading to the synthesis of aberrant proteins
and mitochondrial dysfunction [140,246]. Lastly, adeno-
sine to inosine editing of miRNA and mRNA molecules by
adenosine deaminase act on RNA (ADAR) enzymes is
broadly affected during neurodegeneration (ALS, HD, PD,
AD), leading in particular to regulatory and translational
alterations of edited mRNAs [247]. Like many of the afore-
mentioned changes, these alterationsin RNA sequence are
difficult to predict in advance and would therefore be
unlikely to be accounted for in traditional microarray-
based transcriptomics experiments, meaning that ulti-
mately these important changes would be missed.

Concluding remarks and future directions

As yet, the functional consequences of RNA dysregulation
for the processes that trigger age-related and selective pro-
gression of neuronal cell death remain very poorly under-
stood. The levels, frequency and identity of aberrantly
spliced mRNA isoforms that undergo nuclear export and
are subsequently translated into aberrant proteins are still
largely uncharacterized. These aberrant proteins, many of
which are likely to have essential enzymatic or structural
activities that impinge upon a multitude of cellular path-
ways, may have either lost their wild-type biological func-
tion or will have acquired new deleterious functions [180].
This complicates the interpretation of dysregulation
events as aberrant proteins may in turn trigger cascades of
further dysregulation. Given that proteins are ultimately
involved in controlling cell fate, identifying altered cyto-
plasmic levels/sequences of mRNA and the corresponding
proteome is becoming crucial for understanding the
molecular causes of neurodegeneration. These approaches
to OMICS studies therefore represent an essential step in
the development of novel neuroprotective therapeutic
strategies.

Reliable subcellular fractionation of cytoplasmic RNA,
as well as purification of ribosomes for the extraction and
next-generation sequencing of actively translating mRNA
(i.e. the ‘translatome’) will become essential methodolo-
gies that will enable dissection of the molecular events
that contribute to neurodegeneration. We anticipate that
emerging methodologies investigating gene expression

NAN 2015; 41: 109-134



dysregulation at the level of active protein synthesis
rather than at RNA/protein steady-state levels will yield
biological results of higher relevance to the understand-
ing of disease pathophysiology. Also, the specific
sequences of mRNAs undergoing translation would
provide rich information on the nature of mutations
and/or aberrant splicing variations that are acquired
during mRNA processing, and then subsequently trans-
lated into aberrant protein expression. Recent advances in
molecular biology systems have also allowed the engineer-
ing of stable
neurodegeneration. In these models, cellular insults, such
as disease-mutated protein or expanded nucleotide repeat
expression, can be turned on as required. Such systems

inducible neuronal cell models of

will allow investigators to observe early events in gene
expression dysregulation that are more likely to be an
upstream cause rather than a consequence of disease.
Furthermore, these systems allow for the tracking of the
progression of this dysregulation at multiple time points,
meaning that it may be possible to define the upstream
pathways in the pathophysiology of neuronal injury. Sig-
nificantly, these types of analysis are prohibitively difficult
to perform in animal models and impossible in human post
mortem CNS tissue. Single-cell next-generation RNA
sequencing [248] on neurons derived from induced
pluripotent stem cells (iPScs) produced from patient fibro-
blasts (which bear the exact genetic makeup that caused
disease in an individual) also holds great promise for
investigating the functional consequences of RNA
dysregulation in primary cells that are directly relevant to
the disease being studied.

Widespread dysregulation of RNA metabolism is now
clearly recognized as a pathophysiological component
triggering neurodegeneration in the neurodegenerative
diseases that are the focus of this review. It is very likely
that other neurodegenerative diseases involve widespread
dysregulation of gene expression. For example, excessive
phosphorylation of the ribosomal RPS15 subunit by the
PD mutated LRRK2 G2019S kinase was recently shown to
trigger a toxic burst in global protein synthesis [249].
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