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Abstract

Objective—HAART largely decreases morbidity and mortality in chronic HIV-1-infected 

patients, but immune nonresponders (INRs) with full viral suppression still fail to reverse the 

immune deficiency. This study evaluated the safety and immunological responses of human 

umbilical cord mesenchymal stem cell (MSC) therapy in HIV-1-infected INRs.

Design and Methods—A total of 13 HIV-1-infected INRs were enrolled in this pilot 

prospectively open-labeled controlled clinical trial. Seven patients were administered three 

umbilical cord-MSC transfusions at 1-month interval during 12-months of follow-up, whereas six 

control patients were treated with saline in parallel. Immunological parameters were monitored in 

these patients throughout the trial.

Results—All patients tolerated the umbilical cord-MSC transfusions well throughout the trial. 

The umbilical cord-MSC transfusions preferentially increased circulating naive and central 

memory CD4 T-cell counts and restored HIV-1-specific IFN-γ and IL-2 production in the INRs. 

These enhancements in immune reconstitution were also associated with the reduction of systemic 

immune activation and inflammation in vivo.

Conclusions—umbilical cord-MSC transfusions are well tolerated and can efficiently improve 

host immune reconstitution in INRs, suggesting that such treatments may be used as a novel 

immunotherapeutic approach to reversing immune deficiency in HIV-1-infected INRs 

(ClinicalTrials.gov identifier: NCT01213186).
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Introduction

Chronic HIV-1 infection is generally characterized by progressive CD4 T-cell depletion 

associated with increased immune activation and risk of opportunistic infections. HAART 

effectively suppresses viral replication, leading to a significant immune recovery and a 

dramatic reduction in the incidence of AIDS-defining events [1,2]. However, approximately 

20% of individuals who exhibit stable viral suppression by HAART still fail to achieve 

sufficient immune reconstitution [3–5] and are considered immune nonresponders (INRs). 

These INRs often experience an increased risk of opportunistic infections [6,7] and shorter 

life expectancy compared with matched immune responders [8]. Therefore, efficiently 

treating these INR patients has become one of the most difficult challenges in the clinic.

The mechanism of immunopathogenesis in INRs remains unclear. It is generally believed 

that persistent viral replication, generalized immune overactivation and/or inflammation as 

well as the reduced thymic output [9], are the major factors leading to the failure of immune 

reconstitution. This paradoxical immune overactivation in the immune-deficient individuals 

generally includes elevated activation markers on immune cells [10], as well as elevated 

levels of serum proinflammatory cytokines [11], chemokines and bacterial products such as 

lipopolysaccharides (LPS) translocated from the gut [12]. Although these markers can be 

significantly reduced in these INR patients by HAART, they remain abnormal compared 

with healthy individuals [12], suggesting that immune reconstitution cannot be efficiently 

obtained by HAART alone in INR patients even with full viral suppression [10,13]. Indeed, 

no consensus has been reached regarding when or how to treat INR patients. Immune-based 

therapy such as interleukin (IL)-2 has been shown to increase CD4 T-cell counts but yielded 

no clinical benefit in a large randomized study [14]. IL-7 is also being tested, but its 

therapeutic effect is currently unclear [15,16]. Chloroquine treatment following HAART 

may decrease immune activation [17,18], but it was shown to significantly increase immune 

activation and viral load in HAART-naive HIV-1-infected patients [19]. Therefore, 

development of novel interventions to reduce immune overactivation/inflammation and 

enhance immune reconstitution in INRs is a high priority.

Mesenchymal stem cells (MSCs) can interact with multiple immune cells and suppress their 

activation, functions and release of proinflammatory cytokines in vitro and in vivo [20]. 

These properties have been used in clinical trials for graft-versus-host-disease [21] and 

appear effective in modulating the immune response in settings such as tissue injury, 

transplantation, autoimmunity and liver diseases [20]. Here, we postulate that MSC 

transfusions can potentially reduce HIV-1-induced immune overactivation and persistent 

inflammation and further enhance immune reconstitution in INR patients. We, therefore, 

conducted a pilot study specifically to assess the safety and efficacy of umbilical cord-MSC 

transfusions in INR patients. These results indicate that umbilical cord-MSC transfusions 
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may provide a novel approach for attenuating aberrant activation of the immune system that 

can be used in combination with an efficient HAART for treating HIV-1-infected INRs.

Materials and methods

Patients and umbilical cord-mesenchymal stem cell transfusions

This prospective, open-labeled and controlled study was registered at ClinicalTrial.gov of 

the National Institutes of Health (NIH, Bethesda, Maryland, USA, registration number 

NCT01213186) and also authorized by the General Logistic Ministry of Health, China 

[registration number 2009(126)] and the Ethics Committee of Beijing 302 Hospital, Beijing, 

China. This study enrolled a total of 13 eligible HIV-1-infected adults who had CD4 T-cell 

counts less than 250 cells/µl and plasma HIV RNA loads less than 50 copies/ml for at least 6 

month while receiving HAART for at least 12 months. The exclusion criteria included: a 

history of autoimmune disease, any malignancy, opportunistic infections and AIDS-defining 

tumors, pregnancy, and concomitant or previous treatment with interferons, anti-HIV 

vaccines, steroids or any other immunomodulators within the previous 12 months. Each 

patient provided written informed consent in accordance with the Institutional Review Board 

guidelines for the protection of humans. The 13 enrolled patients were randomized into the 

treated group with umbilical cord- MSC transfusions (n = 7) or control group receiving 

saline (n = 6) in parallel. The baseline clinical parameters were matched between the two 

groups (Table 1).

Maternal donors of fresh human umbilical cords after delivery also provided written 

consent. All of the donors were screened for the standard infectious agents including 

hepatitis B virus, hepatitis C virus, HIV and some other common infectious agents such as 

fungi, bacteria, mycoplasma and chlamydia. If tested positive for any of these infections, the 

umbilical cords from the donors were excluded from clinical usage. Umbilical cord-MSCs 

were prepared according to our previously described protocols [22]. In brief, the umbilical 

cord vessels were removed, and the mesenchymal tissue in Wharton’s jelly was diced into 

cubes, washed and finally seeded into a tissue culture flask. After 12–15 days of culture, the 

remnants of the cord fragments were removed, and the adherent cells were cultured 

generated and collected between the third and fourth passages. The collected umbilical cord-

MSCs were resuspended and transfused intravenously (i.v.) into the patients at a dose of 0.5 

× 106/kg body weight. Before use in transfusions, umbilical cord-MSCs were subjected to 

quality control tests, including evaluation of phenotypes, cytokine-producing profiles and 

the capacity for osteogenesis and adipogenesis. Additionally, umbilical cord-MSCs were 

tested for pathogens at every passage and prior to injection [22].

Safety and efficacy assessments

Umbilical cord-MSC or saline transfusions were administered three times to each individual 

on day 0, month 1 and month 2 (treatment period). The patients received follow-up for 12 

months from the beginning of the study. During the treatment and follow-up period, all 

patients continued to receive HAART (unchanged regimen for each patient) (Supplemental 

Figure 1, http://links.lww.com/QAD/A320). The clinical safety in these enrolled individuals 

was assessed via an interim medical history and physical examination through the reporting 
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of adverse events, such as the presence of fever, peripheral edema, rash, nausea and 

vomiting, as well as occurrence of opportunistic infections and tumors. All patients were 

regularly checked (month 3, 6, 9 and 12 during follow-up) for liver function, routine blood 

tests and virological and immunological parameters. Our primary aim was to evaluate the 

events related to safety as mentioned above and the changes from baseline in CD4 T-cell 

counts.

Antibodies and reagents

All antibodies were purchased from commercial sources as listed in Supplemental Table 1, 

http://links.lww.com/QAD/A320. Three PE-conjugated major histocompatibility complex 

class I pentamer complexes loaded with the HIV-1 gag p17 (77–85, SLYNTVATL; 

restricted by HLA-A0201), HIV-1 nef (RL9, RYLKDQQLL; restricted by HLA-A2402) or 

cytomegalovirus (CMV, pp65 495–503; NLVPMVATV, NV9; restricted by HLA-A0201) 

epitope (ProImmune, Oxford, UK) were used to stain for HIV-1-specific or CMV-specific T 

cells.

Flow cytometric analysis of immune parameters

CD3, CD4 and CD8 T-cell counts of fresh whole blood were performed by using BD 

Trucount Tubes (Cat No: 340334; BD Biosciences, San Jose, California, USA) on a 

FACSCalibur. The PBMCs were isolated and cryopreserved from an additional 10 ml of 

peripheral blood from these patients. At the end of the follow-up, PBMCs preserved at 

various time-points from the same patient were thawed simultaneously to perform more 

detailed immunological assays. The samples were immunostained and analyzed using a 

four-color FACSCalibur cytometer (BD Biosciences) and FlowJo software (SarsTree; 

Supplemental Table 13, http://links.lww.com/QAD/A320). In brief, the percentages of B 

cells (defined as CD19+ cells), myeloid dendritic cell (mDC, defined as Lin-1−CD11c+ 

HLA-DR+ cells) and plasmacytoid dendritic cell (pDC, defined as Lin-1−CD123+HLA-DR+ 

cells) subsets, regulatory T cells (defined as CD3+CD4+CD25+ CD127− cells), NK cells 

(defined as CD3−CD56+ cells), NK T cells (defined as CD3+CD56+) and γδT cells (defined 

as CD3+γδTCR+ cells) were detected. In addition, expression of PD-1 and B and T-

lymphocyte-associated antigen (BTLA) (costimulatory molecules), CD38 and HLA-DR 

(activation markers), Ki67 (proliferation marker), CD31 (thymic newly-out-produced 

marker), CD57 (replicative senescence marker) and CD45RA and CD27 (memory markers; 

naive T cells, CD27+CD45RA+; central memory T cells, CD27+CD45RA−; effector 

memory T cells, CD27−CD45RA−; terminally differentiated effector T cells, 

CD27−CD45RA+) on T cells were comprehensively characterized using a combination of 

conjugated monoclonal antibodies. PD-1 and CD38 expression on HIV-1 and CMV-specific 

pentamer+ cells were also analyzed. The absolute numbers for each cell population were 

generated by multiplying the proportion of the subset by the absolute number of 

lymphocytes or T cells.

Enzyme-linked immunospot assays

Enzyme-linked immunospot (ELISpot) assays were performed precisely as outlined in the 

manufacturer’s protocol. Briefly, the 96-well plate was incubated with coating antibody 

overnight at 4–8°C. PBMCs were then added at a concentration of 200 000 cells/well (for 
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IFN-γ assay) or 500 000 cells/well (for IL-2 assay) in the plates. HIV-1 gag-1, gag-2 and nef 

peptide pools and CMV pp65 peptide pool (NIH, AIDS Research and Reference Reagents 

Program) were added directly to the wells at a final concentration of 1 µg/ml. 

Phytohemagglutinin stimulation served as a positive control, and unstimulated cells were 

negative controls. After incubation for 16–18 h at 37°C, 5% CO2, the plates were washed, 

labeled with 1 µg/ml biotin-labeled anti-IFN-γ (Cat No. 3420–2H) or anti-IL-2 (Cat No, 

3440–2H; MabTech, Nacka Strand, Sweden), and then developed by incubation with 

streptavidin-HRP, followed by the substrate solution. Responses were considered positive if 

the number of spots per well minus the background was at least 50 SFC/106 PBMCs with a 

background of fewer than 15 SFC/106 PBMCs. All HIV-1-specific responses ex vivo were 

evaluated at least in duplicate.

Luminex and ELISA

The plasma C-reactive protein (CRP), D-dimer, cystanin, LPS and total IgG were detected 

using ELISA. Other cytokines were detected using a Luminex Bio-Plex ProTm Human 

Cytokine Standard Group I 27-Plex (Cat No: 5021099, including IL-1β, IL-1ra, IL-2, IL-4, 

IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17, eotaxin, basic FGF, G-

CSF, GM-CSF, IFN-γ, IP-10, MCP-1, MIP-1α, MIP-1β, PDGF-BB, regulated upon 

activation normal T-cell expressed and secreted (RANTES), TNF-α and VEGF) and IFN-α2 

on the Luminex 100 System (BioRad, Hercules, California, USA) according to the 

manufacturer’s protocol.

Statistical analysis

All data were analyzed using SPSS 13.0 for Windows software (SPSS Inc., Chicago, 

Illinois, USA). Multiple comparisons were made among the different groups using the 

Kruskal–Wallis test for nonparametric data. Comparisons between various individuals were 

performed using the Mann–Whitney U test. Comparisons between parameters in the same 

individual were performed using the Wilcoxon matched pairs t test. For all tests, two-sided 

P values less than 0.05 were considered to be significant.

Results

Safety and tolerability of umbilical cord-mesenchymal stem cell transfusions in HIV-1-
infected patients

For patients receiving umbilical cord-MSC treatment in the study, no short-term clinical 

adverse effects, including pain, pruritus (skin rash), infection, coma or shock were observed. 

Only one patient developed a self-limiting fever (37–38°C) within 4 h after the umbilical 

cord-MSC transfusion. No HIV-1 load rebound or significant rises in liver function 

enzymes, granulocytes and red blood cells were observed throughout the study 

(Supplemental Table 2, http://links.lww.com/QAD/A320). In addition, no opportunistic 

infections or AIDS-defining tumors were observed in patients with umbilical cord-MSC 

treatment throughout the trial period. Antiretroviral regimens or compliance issues with 

antiretroviral drugs were not changed for these patients during our clinical trial. These 

observations indicate that umbilical cord-MSC transfusions were clinically and biologically 

well tolerated in HIV-1-infected patients.
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Umbilical cord-mesenchymal stem cell transfusions induce a significant increase of CD4 T 
cells in immune nonresponders

Through a comprehensive analysis of CD4 T-cell counts, we found that long-term HAART 

(>12 months) only slightly increased or maintained CD4 T-cell counts at low levels in the 13 

INR patients. After umbilical cord-MSC transfusions, six patients (Pt1–Pt6) displayed a 

sharp increase in CD4 T-cell counts (Fig. 1a). Further analysis indicated that these six 

patients had a more than 50% increase of CD4 T-cell counts at months 9 and 12 after 

starting umbilical cord-MSC therapy compared with baseline values. By contrast, no control 

patients displayed such an increase in CD4 T-cell counts during the observation period (Fig. 

1a and b). Thus, the umbilical cord-MSC treatment significantly increased CD4 T-cell 

counts and CD4/CD8 ratio after 6 month of treatment compared with the individual baseline 

data as well as with controls (Supplemental Figure 2B and 2D, http://links.lww.com/QAD/

A320). Meanwhile, no significant alterations in counts of CD3 and CD8 T cells 

(Supplemental Figure 2A and 2C, http://links.lww.com/QAD/A320), CD19+ B cells, 

CD3−CD56+ NK cells, CD3+CD56+NK T cells, Lin-1−HLA-DR+CD11c+ mDCs, 

Lin-1−HLA-DR+CD123+ pDCs and γδT cells (Supplemental Figure 3, http://links.lww.-

com/QAD/A320) were observed in the treatment and control patients throughout the study 

period.

Naive and central memory CD4 T-cell populations are preferentially increased in patients 
with umbilical cord-mesenchymal stem cell treatment

We further analyzed changes in naive (Tnaive), central memory (Tcm), effector memory 

(Tem) and terminally differentiated effector (TemRA) T-cell subsets using CD45RA and 

CD27 markers and found that the percentages of Tnaive and Tcm subsets were gradually 

increased, whereas the Tem and TemRA subsets were gradually decreased by umbilical cord-

MSC treatment (Fig. 2a). The pooled data also confirmed these observations (Fig. 2b, top). 

Accordingly, umbilical cord-MSC therapy preferentially expanded CD4 Tnaive and Tcm cell 

counts but not Tem and TemRA subsets as compared with baseline (P < 0.05 at months 6, 9 

and 12) and control patients (P < 0.05 at months 9 and 12; Fig. 2b, bottom).

We also investigated the dynamics of CD127 (IL-7Rα) expression on expanded CD4 T cells 

throughout the study, as the decrease of CD127 expression is closely associated with T-cell 

apoptosis and disease progression in HIV-1 infection [23,24]. Umbilical cord-MSC-treated 

patients were found to exhibit a two-fold increase in circulating CD127+ CD4 T cells at 

months 9 and 12 after starting umbilical cord-MSC transfusion therapy (both P < 0.01 vs. 

baseline, Fig. 2c). Additionally, the counts of CD4+CD25+CD127− regulatory T cells, 

CD31+ CD4 T cells (new thymic emigrants) and CD57+ CD4 T cells were also significantly 

increased at months 9 and 12 in umbilical cord-MSC-treated patients compared with 

baseline data and control patients (Fig. 2d and e). In contrast, control patients exhibited no 

significant alterations of these T-cell subsets throughout the study (Fig. 2d–f).

Umbilical cord-mesenchymal stem cell therapy increases T-cell function in immune 
nonresponder patients

We also evaluated IFN-γ and IL-2 production of CD4 T cells in response to HIV-1 antigen 

stimulation in vitro using ELISpot assays. As shown in Fig. 3a and b, in response to peptide 

Zhang et al. Page 6

AIDS. Author manuscript; available in PMC 2015 February 16.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://links.lww.com/QAD/A320
http://links.lww.com/QAD/A320
http://links.lww.com/QAD/A320
http://links.lww.-com/QAD/A320
http://links.lww.-com/QAD/A320


pools of HIV-1 gag-1, gag-2 and CMV pp65, IFN-γ and IL-2 spot-forming cells (SFCs) 

were significantly increased in patient PBMCs at month 6 and/or 12 after umbilical cord-

MSC transfusions. In contrast, these SFCs were not increased in control patient PBMCs. 

Notably, the numbers of IFN-γ SFCs were significantly higher for umbilical cord-MSC-

treated patients than for control patients at the 6–12 month time-points in response to the 

peptide pools (Fig. 3a).

Effects of umbilical cord-mesenchymal stem cell therapy on expression and immune 
activation of coinhibitory molecules

The upregulation of programmed cell death 1 (PD-1) [25] and the downregulation of BTLA 

[26] have been associated with HIV-specific T-cell exhaustion and T-cell immune 

overactivation in HIV-1 infection, respectively. Significantly decreased PD-1 expression on 

total CD4, CD8 T cells and on HIV-1-specific pentamer+ CD8 T cells at months 6, 9 and 12 

(P < 0.05, Fig. 4a), and significantly increased BTLA expression levels on total CD4 and 

CD8 T cells were at months 9 and 12 (P < 0.05, Fig. 4b) were found after starting umbilical 

cord-MSC transfusions as compared with baseline and control patients. No significant 

change in PD-1 and BTLA expression was observed in control patients.

Residual immune overactivation still persists in HIV-1-infected INRs despite control of viral 

load under HAART [10,11]. We, therefore, evaluated the effect of umbilical cord-MSC 

transfusions on CD8 T-cell activation markers such as CD38 and HLA-DR (Fig. 4c). 

Significant decrease in the percentages of CD38+ and CD38+HLA-DR+ CD8 T cells as well 

as HIV-1-specific CD38+pentamer+ CD8 T cells were observed at months 6, 9 and 12 after 

the start of umbilical cord-MSC treatment. Percentages of these activated CD8 T cells did 

not change significantly in control patients (Fig. 4c). Consistent with reduced immune 

activation, the Ki67 expression on CD4 and CD8 T cells, which also reflect immune 

overactivation during HIV-1 infection, was also significantly reduced by the umbilical cord-

MSC transfusions (Fig. 4d). These data suggest that umbilical cord-MSC treatment may 

rectify the biased T-cell expression of coinhibitory molecules and significantly reduces the 

residual immune activation levels of T cells in INR patients.

Effects of umbilical cord-mesenchymal stem cell transfusions on systematic inflammation

We investigated the impact of umbilical cord-MSC transfusions on the systemic 

inflammatory components such as plasma inflammatory proteins, cytokines and 

chemokines, which are usually elevated due to long-term immune activation during chronic 

HIV-1 infection [12]. Umbilical cord-MSC treatment was found to have significantly 

decreased plasma CRP levels and LPS levels at months 6 and 12 after initiating therapy as 

compared with the control group (P < 0.05). Meanwhile, levels of plasma D-dimer, cystatin 

and total IgG, which have been identified as markers of immune overactivation and 

inflammation in HIV-1-infected patients [11,27], were maintained at stable levels 

throughout the study in these INR patients (Supplemental Figure 4A, http://

links.lww.com/QAD/A320).

Umbilical cord-MSC therapy also significantly reduced plasma levels of proinflammatory 

cytokines IFN-α2 (month 6), TNF-α (month 6), IL-1ra (month 6 and 12), IL-12 p70 (month 
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6 and 12), IL-6 (month 6 and 12), IFN-γ (month 6), IL-9 (month 6) (Supplemental Figure 

4B, http://links.lww.com/QAD/A320), as well as chemokines MIP-1β (month 6 and 12), 

IP-10 (month 6 and 12), IL-8 (month 6 and 12), MCP-1 (month 6 and 12) and RANTES 

(month 6 and 12) (Supplemental Figure 4C, http://links.lww.com/QAD/A320) and growth 

factors G-CSF (month 6 and 12), PDGF-BB (month 6) and VEGF (month 6 and 12) levels 

(Supplemental Figure 4D, http://links.lww.com/QAD/A320) in these INR patients. No 

significant changes of the aforementioned markers were observed in the control patients 

throughout the study.

Discussion

In HAART-treated HIV-1-infected patients, long-term full viral suppression is not always 

associated with immune reconstitution and reversion of immune overactivation [10–13], 

suggesting that the development of complementary approaches to temper immune 

overactivation may enhance immune reconstitution. This prospective study demonstrates, 

for the first time, that intravenous umbilical cord-MSC transfusions are well tolerated and 

have the potential to reduce inflammation and immune overactivation, as well as to restore 

functional T cells in these INR patients.

The present study provides the following lines of evidences to support the notion that 

umbilical cord-MSC transfusions can inhibit the systematic immune overactivation and/or 

inflammation in INR patients: the umbilical cord-MSC treatment significantly reduced the 

proportion of total activated CD8 T cells expressing CD38, HLA-DR or Ki67 in the INR 

patients; the expression of BTLA on T cells, a marker associated with T-cell immune 

overactivation in HIV-1 infection [26], was significantly restored in patients treated with 

umbilical cord-MSC; the systemic inflammatory indicators, such as high levels of 

proinflammatory cytokines (IFN-α2, IL-12p70, IL-6, IL-1ra and TNF-α), chemokines 

(MIP-1β, IP-10, IL-8, RANTES and MCP-1) and growth factors (G-CSF and VEGF), were 

decreased by umbilical cord-MSC therapy in these INR patients. Thus, umbilical cord-MSC 

treatment may efficiently resolve the difficult-to-treat challenges such as persistent immune 

overactivation and/or inflammation in INR patients.

The mechanisms of umbilical cord-MSC treatment decreasing immune overactivation and/or 

inflammation are unclear, but it may involve increased regulatory T cells and reduced 

microbial translocation. As the depletion or inactivation of regulatory T cells may result in 

immune overactivation during chronic HIV-1 infection [28,29], their increase by umbilical 

cord-MSC therapy is likely to reduce immune overactivation in the INR patients. This 

finding is similar to a previous report in lupus patients who also showed elevated circulating 

regulatory T cells after bone marrow MSC treatment [30]. In addition, chronic HIV-1 

infection often increases gut mucosal permeability and microbial translocation from the gut, 

as reflected by the increased LPS levels in plasma [31]. Notably, the umbilical cord-MSC 

transfusions also significantly decreased PD-1 expression and plasma LPS levels in the INR 

patients, suggesting that it may improve the gut mucosa permeability through reducing 

hyperactivation and microbial translocation [32]. In addition, MSC-derived IL-7 [22] may 

also be involved in the immune reconstitution [15,16]. Future studies should address 
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whether umbilical cord-MSC can repair the damaged mucosa and further reduce immune 

overactivation or selectively induce the apoptosis of activated T cells [33] in treated patients.

An important outcome of the reduction of immune overactivation achieved by umbilical 

cord-MSC transfusions herein is a significant increase of circulating CD4 T-cell counts in 

INR patients. Importantly, the increase of CD4 T-cell counts is also likely aided by the 

restoration of a thymopoietic pathway of T-cell regeneration in INR patients treated with 

umbilical cord-MSCs. Our findings support this concept in that the umbilical cord-MSC 

treatment preferentially increased naive and central memory CD4 T-cell counts as well as 

CD127+ early memory T cells, which are usually functionally exhausted during HIV-1 

infection [34], and significantly expanded recent thymic emigrants CD31+ CD4 T cells [35]. 

These observations, in line with other studies in patients with multiple sclerosis receiving 

autologous stem cell transplantation [36] and an animal model accepting hematopoietic stem 

cells [37], suggest that increased thymopoiesis after stem cell transplantation can correct the 

preexisting deficiency and normalize naive T-cell homeostasis. These changes may also 

represent a restoration in the regenerative potential of the immune system during umbilical 

cord-MSC therapy.

Interestingly, the CD4 T cells expanded in the INR patients by umbilical cord-MSC 

transfusion displayed functional improvement in HIV-1-specific IFN-γ and IL-2 production 

in vitro. This functional recovery of T cells is possibly associated with PD-1 

downregulation, as the upregulation of PD-1 has been demonstrated to contribute to HIV-1-

specific T-cell exhaustion [38–40]. Future studies should define the expression profiles of 

other coinhibitory molecules on T cells such as CTLA-4 and Tim-3, as well as their 

influences on T-cell functions after umbilical cord-MSC transfusion.

Finally, the study shows that umbilical cord-MSC transfusions are well tolerated and 

feasible in HIV-1-infected patients. No significant side effects or complications were found 

throughout the trial. Plasma HIV-1 RNA levels were not noted to rebound throughout the 

follow-up period. These findings, therefore, demonstrate that umbilical cord-MSC 

transfusions can be safely used in the clinic for enhancing immune reconstitution in INR 

patients. It should be noted that the localization of the infused umbilical cord-MSC and the 

histological alterations of lymph nodes and gut mucosa in the studied patients were not 

analyzed here, since this exploratory trial was primarily aimed towards testing the safety and 

initial efficacy of umbilical cord-MSC transfusions in HIV-1-infected patients. Notably, the 

enhanced immune reconstitution in these patients with three times of MSC infusions could 

be obtained and still maintained throughout a more than 150-week follow-up check period 

(unpublished data). Meanwhile, we did not find that there was a significantly transitory 

increase in peripheral CD4 T-cell counts within 1–2 weeks since the onset of each MSC 

infusion. More important, umbilical cord-MSCs were found to be with a potential to produce 

IL-7 and TGF-β in vitro and in vivo [33] and preferentially expand CD4 T-cell response in 

the recipients. Therefore, our findings may support the notion that the observed immune 

reconstitution is mainly dependent on the immune modulation of the infused MSCs during 

repeated infusions of MSCs. However, whether the MSC transfusions in treated patients 

induce an allogenetic effect or production of associated antibodies in vivo remains unclear in 

the present study, Thus, future study is needed to examine these important issues.
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In conclusion, umbilical cord-MSC treatment is safe and can significantly decrease systemic 

immune overactivation and improve immune reconstitution in INR patients, thus providing a 

promising novel therapeutic approach for INR patients in combination with HAART. Future 

large-scale randomized controlled studies should focus not only on perfecting the umbilical 

cord-MSC treatment regimen, including dose and treatment intervals and times, but also on 

uncovering the relevant mechanisms of host immune reconstitution for the disease.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Longitudinal changes of peripheral CD4 T-cell counts in 13 enrolled patients before and 
after treatment
(a) CD4 T-cell counts. (b) Fold-increase in CD4 T-cell counts relative to baseline value at 

months 9 and 12. umbilical cord-mesenchymal stem cell (MSC) transfusions were initiated 

at month 0. Arrows in panel (a) indicate time-points of umbilical cord-MSC transfusions.
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Fig. 2. Preferential increases of specific CD4 T-cell subsets in INR patients undergoing umbilical 
cord mesenchymal stem cell therapy
(a) Representative dot plots show the alteration of memory CD4 T-cell populations 

throughout the study in an INR patient receiving umbilical cord-mesenchymal stem cell 

(MSC) transfusions. Numbers within the plots indicate the percentage of each T-cell 

population: naive (Tnaive, CD45RA+CD27+), central memory (Tcm; CD45RA−CD27+), 

effector memory (Tem, CD45RACD27−), terminally differentiated effector (TemRA; 

CD45RA+CD27−). (b) Pooled data of percentages and absolute counts of memory CD4 T-

cell subsets in treatment and control patients. (c–f) Pooled data of absolute counts of 
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CD127+ CD4 T cells (c), CD25+CD127− regulatory CD4 T cells (d), CD31+ CD4 T cells or 

recent thymic emigrants (e) and CD57+ senescent CD4 T cells (f) over time in umbilical 

cord-MSC-treated patients (dots) and control patients (circles). Means ± SD for each cohort 

are shown. *P < 0.05 vs. baseline data, Wilcoxon paired t test. #P < 0.05 vs. control; Mann–

Whitney U test. umbilical cord-MSC transfusions were initiated at month 0.
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Fig. 3. Effects of umbilical cord-mesenchymal stem cell therapy on HIV-1-specific T-cell 
functions
Pooled data of the counts of IFN-γ (a) and IL-2 (b) SFCs per million peripheral blood 

mononuclear cells upon stimulation with HIV-1 gag1, gag2, nef and CMVpp65 peptide 

pools in seven umbilical cord-mesenchymal stem cell (MSC)-treated patients (dots) and six 

control patients (circles). *P < 0.05 vs. baseline data in treated patients, Wilcoxon paired t 

test. #P < 0.05 vs. control, Mann-Whitney U test. umbilical cord-MSC transfusions were 

initiated at month 0.
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Fig. 4. Effects of umbilical cord mesenchymal stem cell therapy on co-inhibitory molecules and 
activation markers on CD8 T cells
umbilical cord-mesenchymal stem cell (MSC) transfusions significantly downregulated 

PD-1 expression (a), upregulated BTLA expression (b), and reduced CD38 and HLA-DR (c) 

and Ki67 (d) expression on total CD4 and CD8 T cells as well as HIV-1-specific pentamer+ 

CD8 T cells in umbilical cord-MSC-treated patients (dots) and control patients (circles). 

Means ± SD for each cohort are shown. *P < 0.05 vs. baseline data, Wilcoxon paired t 
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test. #P < 0.05 vs. control, Mann–Whitney U test. Umbilical cord-MSC transfusions were 

initiated at month 0.
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