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Recent technical advances, such as chromatin immunoprecipitation combined with DNA microarrays (ChIp-chip) and 
chromatin immunoprecipitation–sequencing (ChIP-seq), have generated large quantities of high-throughput data. Considering 
that epigenomic datasets are arranged over chromosomes, their analysis must account for spatial or temporal characteristics. 
In that sense, simple clustering or classification methodologies are inadequate for the analysis of multi-track ChIP-chip or 
ChIP-seq data. Approaches that are based on hidden Markov models (HMMs) can integrate dependencies between directly 
adjacent measurements in the genome. Here, we review three HMM-based studies that have contributed to epigenetic 
research, from a computational perspective. We also give a brief tutorial on HMM modelling–targeted at bioinformaticians 
who are new to the field.
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Introduction

 Many researchers have shown that formal language 
theory is an appropriate tool in analyzing various biological 
sequences [1, 2]. The hidden Markov model (HMM) is most 
closely related to regular grammars, because an n-gram is a 
subsequence of n items from a given sequence, and language 
models that are built from n-grams are actually (n-1)-order 
Markov models. However, the research of modeling biological 
sequences has usually focused on nucleotide or amino acid 
sequences that encode RNA or interact with proteins [3-12]. 
On the other hand, noncoding DNA regions, which occupy 
approximately 98% of human DNA, have not been considered 
for HMM-based analysis. The reason is partially due to the 
fact that a large proportion of noncoding DNA has been 
believed to have no known biological functions.

However, recent technical advances, such as chromatin 
immunoprecipitation sequencing (ChIP-seq), DNase I 
hypersensitive sites sequencing (DNase-seq), formaldehyde- 

assisted isolation of regulatory elements (FAIRE) [13, 14], 
and computational epigenetics, have started to convert 
unannotated noncoding DNA into highly annotated functional 
areas [15, 16]. The work is analogous to dissecting the 
region that constitutes the noncoding DNA and under-
standing the type of meaning each element contains. For this 
reason, the field of epigenetics has received a boost of 
attention and is currently among the fastest moving areas in 
molecular biology. However, epigenetic mechanisms are 
highly interwoven in a complex network of interactions. 
Disentangling this network is an important goal of epigenetic 
research. Thus, various bioinformatic challenges arise from 
the analysis of epigenetic data, and HMMs have played a 
significant role in solving important epigenetic problems, as 
HMMs are well suited to the task of discovering unobserved 
‘hidden’ states from ‘observed’ sequences in their spatial 
genomic context.

In this paper, we give a tutorial review of the design of 
HMMs and their applications to solve various computational 
epigenetic problems. We selected three representative works 
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Fig. 1. A sample sequence, divided in 10-bp bins, annotated with
two hidden states: M and U.

Fig. 2. A Toy hidden Markov model 
(HMM) and its 5 parameters. (A) An 
ergodic model of a toy HMM. (B) An 
equivalent left-to-right version of the 
HMM in Fig. 2A (picture adapted from 
the cs262 class slides by S. Batzoglou
with permission).

to compare different designs of HMMs for various compu-
tational epigenetic problems: the Li et al. [17] two-hidden- 
state HMM to determine transcription factor binding sites, 
the Xu et al. [18] three-hidden-state HMM to compare 
histone modification sites, and the Ernst and Kellis [19] 
multi-state multivariate HMM to analyze systematic state 
dynamics of human cells. We want to clarify the fact that this 
review is by no means exhaustive and that there exist many 
other types of HMMs for computational epigenetic problems.

HMMs and Their Design Issues

An HMM is a statistical model that can be used to describe 
observable events that depend on hidden factors. An HMM 
consists of two stochastic processes: an invisible process of 
hidden states based on a Markov chain and a visible process 
of observable symbols. A first-order HMM can be defined 
formally as a quintuple (S,  ,  , a, e), where S = {1, 2, . . . 
, n} is a finite set of hidden states;   is vector of size n 
defining the starting probability distribution;   = 1, 2, . . . 
, m is a finite set of output symbols; aij is a two-dimensional 
matrix of transition probabilities of moving from state i to 
state j; and ei(x) is an n × m matrix of emission probabilities 
of generating symbol x in state i. The key property of a 
Markov chain is that the probability of each symbol xi 
depends only on the value of the preceding symbol xi−1 [i.e., 
P(xi |xi−1)], not on the entire previous sequence [i.e., P(xi |xi

−1, . . . , x1)].

In the bioinformatics context, a nucleic one for genes, 
genomes, amino acids, or RNA is a sequence. And sequences 
can represent functional regions in the genome. Whereas 
previous studies of coding DNAs and promoters usually 
modeled their HMMs using nucleotide or amino acid 
sequences as their output symbols, recent HMM studies that 
are related to epigenomics tend to model their HMMs using 
chromatin marks in bins of equal length as output symbols, 
replacing the traditional nucleotide or amino acid sequences. 

To explain the difference, let us consider a simple exa-
mple. Suppose that adjacent regions of genomic sequences 
are divided into multiple 10-bp bins (though unrealistic), as 
in Fig. 1, in which some kinds of chromatin marks or 
methylation profiles are annotated. Suppose also that we 
define two imaginary methylated states, ‘M’ (in green color) 
and ‘U’ (in orange color), based on some kinds of epigenetic 
profiles.

Let us consider a toy HMM for Fig. 1. Given random 
training data, we try to determine five parameters of the 
HMM. An HMM is usually visualized as a directed graph 
with vertices corresponding to the states and the edges 
representing pairs of states with transition probability aij and 
emission probability ei(j), as in Fig. 2. The graph defines the 
topology of the model, while the emission and the transition 
probabilities define the parameters of the model. The given 
HMM tries to capture the statistical differences in the two 
hidden states of ‘M’ and ‘U.’ The transition probability 
represents the change of the methylation state in the 
underlying Markov chain. According to Fig. 2A, there is a 
20% chance of moving from state ‘M’ to state ‘U’ (aMU), an 
80% chance of staying in state ‘M’ (aMM), a 10% chance of 
moving from state ‘U’ to state ‘M’ (aUM), and a 90% chance 
of staying in ‘U’ (aUU). The probability of starting from M and 
U is 60% and 40%, respectively. M and U use different sets of 
emission probabilities to reflect the symbol statistics. In 
epigenetic studies, emission symbols are not nucleotide or 
amino acid sequences. Rather, emission symbols are usually 
defined as a value or even a vector of chromatin marks.

Fig. 2A is an ergodic HMM. An ergodic HMM is one for 
which the underlying Markov chain is irreducible and admits 
a unique stationary distribution. In contrast, a left-to-right 
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Table 1. Five parameters of two-, three-, and multi-state hidden Markov models (HMMs) [17-19]

Two-hidden-state HMMs [17] Three-hidden-state HMMs [18] Multistate multivariate HMMs [19]

S
(set of states)

ChIP-enriched state
ChIP-nonenriched state

α0: nondifferential site 
α1: L1 enriched DHMS
α2: L2 enriched DHMS 

51 distinct chromatin states

π
(starting 

probability)

J/K for ChIP-enriched state, 
1 − J/K for nonenriched state

α0 NA


(output 
symbols)

Probe measurements (x1,αi, x2,αi) Combinations of multivariate symbols of 
41 chromatin marks

A
(transition 

probabilities)

J/K for transition to a different state, 
1J/K for staying in the same state

Transition probability table is 
trained by the Baum-Welch algo-
rithm [21], based on a subset 
randomly selected from the puta-
tive histone modification regions. 
The interbin correlation was 
modeled as a first-order Markov 
chain

Transition probability vector encoding 
spatial relationships between neighbor-
ing positions in the genome, associated 
with the spreading of chromatin marks, 
or functional transition

E
(emission 

probabilities)

Distribution of probe i in single dataset: 
N(μi ＋ 2σi, (1.5σi)2) for ChIP-enriched 
state, N(μi, σi) for non-enriched state 
[20]

P(x1,α0, x2,α0 |Sα0)
P(x1,α1, x2,α1 |Sα1)
P(x1,α2, x2,α2 |Sα2)

An entry in an emission matrix indicates 
the emission probability under the 
model that the mark will be detected 
in that state, corresponding to the fre-
quency with which the mark is observed 
in that state 

ChIP, chromatin immunoprecipitation; DHMS, differential histone modification site; NA, not acquired.

version of an instantiated HMM in Fig. 2B is an HMM with a 
Markov chain that starts in a particular initial state, traverses 
intermediate states, and terminates in a final state. Each 
circle shape represents a hidden state. The random variable 
xt is the hidden state at time t. The variables ‘M’ and ‘U’ are 
the observations at time t (with St ∈ {M, U}). The arrows in 
the diagram denote conditional dependencies. Unlike an 
ergodic HMM, the chain may not go backwards while 
traversing the trellis.

Different HMM Designs for Identifying DNA 
Methylation Patterns

Genome-wide mapping of epigenetic information follows 
a basic three-stage design process [13]: conversion of the 
epigenetic information into genetic information, application 
of standard DNA techniques, and computational analysis to 
infer the epigenetic information. All experimental methods 
for epigenomic annotation generate large amounts of data 
and require efficient ways of processing the data. In the 
remainder of this review, we show how HMMs have 
contributed to answering important epigenetic questions by 
summarizing HMM-based bioinformatic works, from a 
computational perspective. Table 1 summarizes the HMM 
parameters of the three studies that will be reviewed in this 
paper, in the order of the hidden state complexity.

Two-State HMMs to Differentiate Non-Enriched 
Genomic Regions from Enriched Ones

Li et al. [17] developed a method to determine tra-
nscription factor binding sites from chromatin immun-
oprecipitation combined with DNA microarrays (ChIP-chip) 
experiments on an Affymetrix tiling array of chromosomes 
21 and 22. Owing to the Affymetrix array characteristics and 
genome sequence similarity, probes with the same 25-mer 
sequence tend to be spotted at different locations on the 
chips. Two-stage procedures were employed to filter out 
short-range repetitive probe measurements prior to 
downstream analysis. Then, tiling array data from various 
experiments were gathered to normalize and model the 
behavior of each individual probe, where the behavior of 
each probe was modeled as a normal distribution. Finally, a 
two-hidden-state (ChIP-enriched state and nonenriched 
state) HMM was built to estimate the probability of 
enrichment at each probe location. 

Given J potential binding sites along chromosomes 
covered by K total probes, the initial probabilities and 
transition probabilities of HMM were characterized, as in 
Fig. 3. Initial probabilities were set to J/K for the ChIP- 
enriched state and to 1 − J/K for the nonenriched state. 
Transition probabilities were set to J/K for transition to a 
different state and 1 − J/K for staying in the same state. The 
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Fig. 3. A Two-state hidden Markov model (HMM) [17].

Fig. 4. A three-state hidden Markov model (HMM) [18].

emission probability distribution of probe in a single dataset 
was set to N(μi + 2σi, (1.5σi)2) for the ChIP-enriched state 
and N(μi, σi

2) for the nonenriched state (where μi and σi 
are the mean and standard deviation, respectively, of probe 
i). The parameters were based on previous results with the 
Affymetrix SNP arrays [20].

Other methods that are based on two-state HMMs for the 
identification of methylated regions were proposed [22-25]. 
A common characteristic of these studies is the modeling of 
two different populations of measurements to differentiate 
nonenriched regions from enriched ones. Ji and Wong [22] 
suggested TileMap, which is an effective statistical tool to 
identify genomic loci that show transcriptional or protein 
binding patterns of interest. Martin-Magniette et al. [23] 
proposed ChIP-mix, which is a statistical method based on 
the mixture of regression to classify probes in ChIP-chip 
experiments. Johannes et al. [24] presented a parametric 
classification method for genomewide comparisons of 
chromatin profiles between multiple ChIP samples. In 
Moghaddam et al. [25], they showed that H3K4me2 and 
H3K27me3 distribution patterns were similar overall in 
various Arabidopsis thaliana accessions and remained 
largely unchanged in their F1 progeny [25].

Three-State HMMs for ChIP Analysis

One general limitation of the methods in the previous 
section is that they only enable binary classification. For this 
reason, a three-state HMM has been proposed for the 
analysis of so-called differential histone modification sites 
(DHMSs) of H3K27me3 by Xu et al. [18]. To capture the 
histone modifications on the whole-genome scale, Xu et al. 
[18] proposed a qualitative analysis for the genome-wide 
comparison of histone modification sites by computationally 
comparing two ChIP-seq libraries generated from different 
cell types or experimental conditions. To do that, the whole 
genome was partitioned into 1-kb bins, and the number of 
centers of ChIP fragments was counted and normalized in 
each bin, generating a profile of ChIP fragment counts. 

Based on the observations of ChIP fragment counts, Fig. 4 
shows an HMM to infer the states of histone modification 
changes at each genomic location. The HMM is characterized 
by three features: the prior probability of the start state, the 
emission probability, and the transmission probability. A 
DHMS was defined as a bin in which the ratio of intensities 
between two profiles (L1 and L2) is larger than τ (L1-enriched 
DHMSs) or smaller than 1/τ (L2-enriched DHMSs), where 
τ is a predetermined threshold [19]. Based on the definition 
of a DHMS, the state Si takes one of the following three 
values: α0 if 1/τ ≤ p(1,i)/p(2,i) ≤ τ; α1 if p(1,i)/p(2,i) ＞ τ; 
and α2 if p(1,i)/p(2,i) ＜ 1/τ. (For a region of k bins, the 
notation x1,i, x2,i was used for the ChIP fragment counts in L1 
and L2, and the notation p1,i, p2,i was used for the intensity in 
L1 and L2, respectively, at the ith bin in that region.) The 
initial state is fixed to take the value of α0, since the region 
is assumed to start from the genomic locations where the 
histone modification is depleted in both libraries. The 
emission probability P(x1,i, x2,i |si) was calculated as in Fig. 4 
by integrating p1,i and p2,i over all possible values constrained 
by si. The transmission probability table was trained using 
the Baum-Welch algorithm [21]. 

Other methods of three-state HMMs for the identification 
of methylated regions have been proposed. Seifert et al. [26] 
also proposed a three-state HMM specifically designed for 
the analysis of Arabidopsis MeDIP-chip data to differentiate 
between unmethylated (‘U’), methylated (‘M’), and highly 
methylated regions (‘I’). They utilized a three- state HMM 
with state-specific multivariate Gaussian emission densities 
to analyze methylation levels of chromosomal regions in 
methylation profiles. Arand et al. [27] suggested a four-state 
HMM (fully methylated, not methylated on both sides, 
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Fig. 5. A multivariate, multi-state 
hidden Markov model (HMM) [19]. (A)
Genomic profiling. To apply the model,
the genome was divided into 200- 
base-pair nonoverlapping intervals, 
within which each of the count of 41
marks that mapped to the interval was
annotated. (B) Binarization. For each 
200-bp interval, the input ChIP-Seq 
sequence tag count is processed into 
a binary presence/absence call. (C) 
Learning. Each model was scored 
based on the log-likelihood of the 
model minus a penalization on the 
model complexity, determined by the
Bayesian Information Criterion (BIC). 
(D) Annotation and analysis. The vector
of 41 numerical values was assigned, 
each representing the result of a 
different biochemical assay, and each 
of the 200-base-pair intervals was 
assigned to its most likely state under
the model (picture adapted from the 
cs262 class slides by S. Batzoglou with
permission).

methylated only on the lower strand, and methylated only on 
the upper strand) to determine the methylation status of 
both DNA strands.

Multiple-State and Multivariate HMMs for 
Analyzing Systematic State Dynamics of 
Human Cells

High-dimensional multivariate datasets occur in a large 
number of problem domains. In many cases, these datasets 
have either a sequential or temporal structure. To uncover 
which combinations of histone modifications are biologically 
meaningful, Ernst and Kellis [19] took a drastically different 
approach from others, particularly in two aspects: automatic 
determination of hidden states and usage of a massive 
amount of multivariate data as observed sequences. They 
applied unsupervised learning methodologies, converting 
the ChIP-seq dataset from the Broad Histone track into 
discrete annotation maps of 51 chromatin elements across the 
human genome. Fig. 5 summarizes their approach: genomic 
profiling, binarization, model learning, and annotation.

Fig. 5A shows that the profiles are represented as X1 
={x1,1, x1,2, ..., x1,m}, where xi,j is the fragment count at the jth 
bin in Li and m is the number of bins. As input, it receives a 
list of aligned reads for each chromatin mark, which are 
automatically converted into presence or absence calls for 
each mark across the genome. Fig. 5B shows that the profile 
data were binarized separately at 200-base-pair resolution, 

based on a Poisson background model. The chromatin states 
were learned from the binarized data using a multivariate 
HMM. Fig. 5C shows a two-stage nested initialization 
procedure of hidden states. Ernst and Kellis [19] used an 
iterative learning expectation-maximization approach to 
infer state emission and transition parameters, with the best 
Bayesian Information Criterion (BIC). Fig. 5D shows that 
each 200-base-pair interval was then assigned to its most 
likely state under the model. The model assumes a fixed 
number of 51 distinct hidden states, including promoter- 
associated, transcription-associated, active intergenic, large- 
scale repressed, and repeat-associated states. 

Originally, Jaschek and Tanay [28] discussed the necessity 
of automatic determination of hidden states in designing 
HMMs. Ernst et al. [29] later proposed a more stable 15-state 
model that showed distinct biological enrichments [19].

Conclusion

In this paper, we reviewed three different types of HMMs 
and their applications in order of the complexity of the 
hidden states, from a purely computational perspective. 
HMMs provide a sound mathematical framework for 
modeling and analyzing epigenetic data. The appropriate 
method for the analysis of DNA methylation depends upon 
the goals of the study. Researchers can design the most 
appropriate HMMs for their specific research needs and 
continued improvements in analysis methods make the 
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study of DNA methylation more accessible.
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