Published online 26 November 2014

Nucleic Acids Research, 2015, Vol. 43, No. 3  el6
doi: 10.1093/narlgkul 197

HiTSelect: a comprehensive tool for
high-complexity-pooled screen analysis

Aaron A. Diaz'231, Han Qin?%°%1, Miguel Ramalho-Santos®*5" and Jun S. Song'-23"

'Institute for Human Genetics, University of California, San Francisco, CA, USA, 2The Eli and Edythe Broad Center of
Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA, USA, 3Department of
Epidemiology and Biostatistics, University of California, San Francisco, CA, USA, “Departments of Obstetrics and
Gynecology and Pathology and Center for Reproductive Sciences, University of California, San Francisco, CA, USA
and ®Diabetes Center, University of California, San Francisco, CA, USA

Received July 24, 2014; Revised October 14, 2014; Accepted November 04, 2014

ABSTRACT

Genetic screens of an unprecedented scale have re-
cently been made possible by the availability of high-
complexity libraries of synthetic oligonucleotides de-
signed to mediate either gene knockdown or gene
knockout, coupled with next-generation sequencing.
However, several sources of random noise and sta-
tistical biases complicate the interpretation of the
resulting high-throughput data. We developed HiT-
Select, a comprehensive analysis pipeline for rigor-
ously selecting screen hits and identifying function-
ally relevant genes and pathways by addressing off-
target effects, controlling for variance in both gene si-
lencing efficiency and sequencing depth of coverage
and integrating relevant metadata. We document the
superior performance of HiTSelect using data from
both genome-wide RNAi and CRISPR/Cas9 screens.
HiTSelect is implemented as an open-source pack-
age, with a user-friendly interface for data visual-
ization and pathway exploration. Binary executa-
bles are available at http://sourceforge.net/projects/
hitselect/, and the source code is available at https:
/lgithub.com/diazlab/HiTSelect.

INTRODUCTION

RNA interference (RNAI) provides a powerful technique
for gene knockdown by exploiting a cell’s endogenous ma-
chinery for mRNA degradation. RNA-induced silencing
complexes target mRNAs via short oligonucleotide guide
strands excised from short-hairpin RNA (shRNA). Loss-
of-function analysis via high-complexity shRNA screening
has successfully identified pathways associated with can-
cer (1-4), modulators of ricin susceptibility (5), regulators

of protein degradation (6) and barriers to cellular repro-
gramming (7). Additionally, the clustered regularly inter-
spaced palindromic repeats (CRISPR) pathway has been
adapted from the bacterial and archaeal immune systems
for gene knockout in eukaryotic cells via synthetic single
guide-RNA (sgRNA). CRISPR-based screening in human
cells has been shown to scale genome-wide effectively (8,9).

A typical approach is to use barcoded lentiviral vectors
to express genome-wide libraries of oligonucleotide guide-
RNA (shRNA or sgRNA). Cells are infected in a pooled
fashion. Subsequently, cells exhibiting a phenotype of inter-
est (often in response to a treatment) are identified and iso-
lated. Barcodes are recovered from both phenotype-positive
and phenotype-negative cells via polymerase chain reaction
(PCR) amplification and quantified via next-generation se-
quencing (NGS). The relative abundance of guide-RNA
in the phenotype-positive population, as measured by the
abundance of reads mapping to the corresponding barcode,
allows one to infer the effect of inhibiting the targeted gene
on phenotype.

Despite the power of genome-wide screens, off-target
effects, variance in gene silencing efficiency and variance
in sequencing depth of coverage can be significant, mak-
ing it difficult to distinguish knockdowns/knockouts that
truly regulate a given phenotype from background noise
(10). Moreover, identifying relevant genes and pathways
not only requires rigorous statistical methods for hit se-
lection but also meta-analysis of relevant, secondary ge-
nomic data such as gene expression, chromatin state, known
physical interactions and functional annotations. Thus, the
enormous potential of pooled genome-wide screens is cur-
rently hampered by limitations in the methodologies for
analysis. To address this roadblock, we developed a com-
putational pipeline for analyzing pooled, high-complexity
screens and implemented it into a user-friendly software
package called HiTSelect (Supplementary Software). The
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Figure 1. Flowchart for the HiTSelect de-convolution method. Screen de-
convolution begins with loading screen readout and proceeds to hit selec-
tion. HiTSelect’s hit selection module estimates and controls for variances
in intra-library knockdown efficiency and sequencing depth-of-coverage.
HiTSelect users may then iterate between rounds of (i) functional analysis
and clustering, (ii) gene interaction and gene network-centrality estima-
tion, (iii) interactive data visualization of gene ontology and gene interac-
tion (via Cytoscape) data and (iv) searching, curating and comparing gene
sets generated from their analyses.

HiTSelect pipeline includes comprehensive modules for
screen hit selection based on robust statistics, a module for
the integration of gene expression data, a module for func-
tional annotation analysis, a module for genetic interac-
tion analysis and a module for gene network visualization
(Figure 1). We illustrate the power of HiTSelect using the
data from our recent screen for genes that function as bar-
riers to reprogramming somatic cells to induced pluripotent
stem (iPS) cells, as well as another recently published data
set from a screen for growth factors in ovarian carcinoma
(4,7). We compare the gene-ranking module of HiTSelect
to both the RNAi1 Gene Enrichment Ranking (RIGER) and
the Redundant siRNA Activity (RSA) algorithms (11,12).
We show that HiTSelect’s ranking algorithm is both more
sensitive and more specific, HiTSelect’s predictions corre-
late better with secondary validation assays and HiTSe-
lect is less prone to off-target effects than RSA or RIGER.
While RSA and RIGER were designed for multi-well plate-
based screens, and/or pooled screens with microarray read-
out, HiTSelect is specifically designed for high-complexity
shRNA and CRISPR screens with NGS readout. In ad-
dition, HiTSelect provides tools for metadata integration,
analysis and visualization that are not available in any other
software.

MATERIALS AND METHODS
HiTSelect’s gene ranking algorithms and statistics

Our hit selection method was developed with two con-
cerns in mind: dealing with off-target effects and han-
dling variances in sequencing depth-of-coverage and in
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knockdown/knockout efficiency across guide-RNA, which
can be either shRNA in RNAIi screens or sgRNA in
CRISPR screens. To address the former, we use multi-
objective optimization to identify genes with multiple highly
active guide-RNA. To address the latter, we utilize a ran-
dom effects model to assess sampling variance in the esti-
mation of gene effect size. We focus on a two-group problem
and assume that guide-RNA read counts have been tabu-
lated from a phenotype positive sample ST and a phenotype
negative control sample S~. Let N* and N~ denote the total
numbers of sequenced reads from each population, respec-
tively. For clarity, we use Greek letters to index guide-RNA
and Roman letters to index genes.

To avoid division by zero in the following formulae, we
add a pseudo-count of 1 read to each count. Let r; de-
note the read count of the o™ guide-RNA in S*. Let r;, de-
note the read count in S~ normalized by sequencing depth
NT/N~. If the user selects the option to normalize by a
user-provided list of control sequences, then we instead nor-
malize by the ratio M/ M~, where M and M~ are the me-
dian read counts for the control sequences from S* and S™,
respectively. We model the activity level of the oM guide-
RNA in the positive population by the read count log odds
ratio (log-odds) X, that we estimate by the sample log-odds
X, =In [—5:((11:%] Here p, =r} /Nt and g, =r, /NT are
the (normalized) frequencies of reads in St and S—, respec-
tively. In the case of normalization by user-defined con-
trol sequences p, =rJ/N* and g, =ry / (N-M"/M").
We designate a guide-RNA as “active’ if X, > 0 and ri >
m, where m = the sample median absolute deviation of the
read counts in S*. The latter criterion eliminates underse-
quenced guide-RNA. We call a guide-RNA active if it has
greater odds of being sequenced in the treatment population
relative to control. Given a gene G; targeted by n distinct
guide-RNA {A,};,_, withlog-odds { X, }/,_,, we wish to com-
bine them into a single measure of gene effect size. If /1, had
perfect efficiency in its knockdown/knockout of G, reads
mapping to /1, would occur in S* with some log-odds ¥;
determined solely by G,’s effect on phenotype. In practice,
there will be less than perfect efficiency and reads will occur
with log-odds X, = Y; + Z,, for some Z, to be determined.
Thus, var(Z) gives the variance in knockdown/knockout
efficiency across guide-RNA targeting G ;. The Q-statistic
(13) of the residuals X, allows us to assess the homogeneity
of knockdown/knockout efficiency across {/},_; as well

as compute an estimator of var(Z). Given that X,’s stan-
dard error (SE) is s, = \/% + N%_}; + % + Nﬂ_r; by nor-
mal approximation (in the case of sequencing depth nor-
malization; for control sequence normalization, replace this

1 1 1
vor ot aran o We

have Q=3 uy (X, — X)z where X =Y ugXy/ . ug
a=1 a=1 a=1

and u, = 1/s2. Notice that the formula for the log-odds

standard error is a decreasing function of increasing depth-

of-coverage. From Q, DerSimonian and Laird (14) derive

; ; 2 _ O—k+1
estimators of var(Z), given by A° = ST SENTYD S

formula with s, = r% +
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and Y}, given by Y; = Z « = A

N

L
and SE (Y;) (Z > . Thus, we model the effect

size for gene G, _by the summary log-odds Y; that we
estimate via ¥;. This model accounts for variance in

knockdown/knockout efficiency across guide-RNA via A”
and variance in the sequencing depth of individual guide-
RNA via s2. We now describe how both the estimate of gene

effect size ¥; and its variance estimate SE*(¥;) are used to
formulate a probabilistic ranking scheme.

If we denote the number of active guide-RNA targeting
gene G; as t;, then the pair (#;, ¥;) characterizes the evi-
dence for G; being a hit. We want to preferentially rank
genes whose knockdown/knockout exhibits a large effect
(f’j is high) and for which that effect is reproducible (;
is high). To this end we developed a multi-objective opti-
mization algorithm to maximize both quantities simulta-
neously. Our method for gene ranking uses the concept of
Pareto dominance. A k-tuple 4 = (A, ..., A4i) of real num-
bers measuring k criteria for ranking is said to dominate an-
other k-tuple B= (B, ..., By)if: (i) forall /, B, < A4;, and
(i1) there exists at least one / € {1, ..., k} such that B, < A4,.
If these conditions hold, then we write B < A. Since this
relationship defines only a partial ordering on the set of k-
tuples, it is possible that neither 4 < Bnor B < 4. We will
write A= B in the case that 4 and B are not comparable.
The gist of our algorithm will be to allow genes to com-
pete for Pareto dominance in the multi-objective criterion
(tj7 }7])

A Pareto dominant gene is a superior candidate for a hit,
since it shows an increase in summary guide-RNA log-odds,
in the number of distinct active guide-RNA, or both. We
therefore score genes by the number of other genes that they
dominate. In the absence of uncertainty, our method would
be to give each gene 1 point for every gene it dominates and
1/2 point for every gene to which it is not comparable. We
then rank genes by the number of points they have. In this
way, genes compete for dominance in the ranked list. This
algorithm can be summarized as:

ALGORITHM 1: Deterministic multi-objective ranking

(i) For each gene G:
(a) Setscore; =0
(b) Foreach gene G; € R;i # j:
(1) If (#, ;) < (¢;, Y;), then score;
(2) If (&, ) = (¢, Y)), then score;
(ii) Rank genes based on their scores.

score; + 1
score; + 0.5

To make our method more robust, we incorporated un-
certainty in the estimation of (¢;, ¥;), using a probabilistic
version of this algorithm. For the independent random vari-
ables A= (4,,..., Ay)and B = (By, ..., By), we can define

k
p(B < A =[] p(E[B] < E[Alla, b;), where a; and b; are
=1
sampled values of 4; and By, respectively. In order to be able
to compute p(E[B;] < E[A4]|a;, b;), we need to make addi-
tional assumptions about how 4; and B; are distributed. In
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the case of normal distributions with unknown means and
known variance 03 and o, it can be shown (15) that

p(E[B] < E[A]lla;, b)) =

ez”%/ dy | dp.

1 —(q—n)" u) 1

00
f e 207 % f
—00 o‘AI/\/ 2 bj—n oV 27

Hughes (16) demonstrates that this formula can be fur-
ther reduced to p(E[B] < E[A]la;, by) = 3[1 + erf(Z5)].
a;—b;
/O'i/JrO',ng ’
We can use the above formulas to estimate p(G; < G;) =
p(E[Y] < E[Y, ] 1Y, J) p(E[t;] < E[t;]1, 1;) for the gene
pair G; and G ;. We can compute p (E[¥] < E[ Y]1%, %)
i,
SEX(B)+SE(¥)
tive guide-RNA, ¢;, as Poisson distributed, modeling the
binary activities of guide-RNAs targeting a given gene j
as independent identically distributed Bernoulli random
variables (17). Thus, to compute p (E[1] < E [t;] 15, I;) we
need to compute the probability that 7; is drawn from a Pois-
son distribution with mean less than the mean of the Pois-
son distribution from which 7; was drawn. The test statis-

o0

Here m = and erf(x) denotes the error function.

by setting m = We treat the number of ac-

tic m’ ’[—jrft is asymptotically standard normal under
iTlj
the null hypothesis of equal Poisson means (18) and has
been shown to be more powerful than an exact test in de-
termining whether two samples were drawn from Poisson
distributions with the same rate (19). Thus, we replace m
above with m/ when we compute p (E[5] < E[t;] 7. 1)).
In general, guide-RNA pools targeting different genes will
have different complexities, both in the original viral library
and in the initial population of infected cells. We apply the
Anscombe transform (x — 2,/x + 3/8) to ; and 7;, before
computing mv, to stabilize variance in sampling across genes
targeted by guide-RNA pools of varying degrees of com-
plexity (20). This has the practical effect of producing a
more uniform Pareto dominance estimate for small differ-
ences in the number of observed active guide-RNA (Sup-
plementary Figure S1). Note that once we define p(G; <
G;) we can immediately define the probability of non-
comparability: p(G; = G;)=1-p(G; < G;) — p(G; <
G;). Let Rdenote the set of all genes that have at least one
active guide-RNA. We compute all pairwise Pareto domi-
nance probabilities between genes in R and assign a score
to gene G, via the formula score; = Y. p(G; < G;) +
ieRi#j
0.5 Y p(G; = G;). We then rank genes by their score.
IERIF#]

Our algorithm, as implemented in HiTSelect, can be sum-
marized as follows.

ALGORITHM 2: STOCHASTIC MULTI-OBJECTIVE
RANKING

(i) Foreach gene G; € R:
(a) Setscore; =0
(b) For each gene G; € R;i # j:
(1) score; = score; + p(G; < G;)
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(2) score; = score; + 0.5p(G; = G;)
(i1) Rank genes based on their scores.

Joint-spectral network centrality for gene interaction net-
works

k
Given a set of genes of interest {G; } , we wish to sum-

marize multiple lines of evidence for thelr interaction into
a single metric of a gene’s influence. HiTSelect interfaces
with GeneMANIA (http://genemania.org) to aggregate ge-
netic interaction (the perturbation of one gene causing a
change in expression of a second gene), physical interaction
(protein—protein interaction) and co-localization (genes ex-
pressed in the same tissue) experimental data. Suppose we
have r total types of interaction, and for each interaction
type, we have a measurement of the interaction strength
xl’;’ e,m=1,...,r, between genes G; and G; for the m'
interaction type. We want to summarize these r interac-
tion networks. HitSelect computes the interaction strengths,
x. using GeneMANIA. We then replace each x; with its

ij>
network-wide quantile aj, i.e. its quantile estlmated from

ij

action strength estimates can be made comparable across

networks. In matrix notation we write 4, = [a;7]. We for-

mulate a statistic on the set of graphs with common nodes
k

labeled by the genes {G./}/=1’ and vertex sets that have the

{ Ay}, as their adjacency matrices. We refer to this ensem-
ble of networks as the joint network.

Bonacich first identified the components of the domi-
nant eigenvector of a connected network’s adjacency ma-
trix as a measure of network centrality for the correspond-
ing nodes (21). This eigenvector solves A,,x = A,,x, where
Am 18 the largest eigenvalue of A4,, in absolute value. We can
extend network centrality to an estimate of joint-network
centrality by solving the following optimization problem:

r

the set of numbers {xm} L . This is done so that inter-
ij=

miny Y || 4;x — A;x|l2 + |1 — ||x]l2]. The first term assuresx
i=1

is an approximate eigenvector for each of the r networks.
The second term, |1 — || x||2|, assures convergence of itera-
tive solution algorithms to a non-trivial solution by keep-
ing iterates on the unit sphere and away from the origin.
In the absence of this regularization term, the origin would
be a basin of attraction. This restriction is acceptable, since
we are only interested in the relative importance of genes
to a particular pathway. HiTSelect solves this optimiza-
tion problem using a sequential-quadratic program, with
the centroid of the dominant eigenvectors of { 4,,},,_, (nor-
malized to unit length) as a starting value. As a termina-
tion criterion, HiTSelect uses the criterion that the objec-
tive function is < 107 or the algorithm has performed more
than 400 iterations.

Comparison of HiTSelect to the RIGER and RSA methods

We compared the gene-ranking module of HiTSelect to
RIGER and RSA on readout from two independent high-
complexity shRNA screens: (i) Tan ez al. screened mes-
enchymal (HeyAS8) and stem-like (Stem-A) ovarian carci-
noma cell subpopulations for genes responsible for growth
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and proliferation (4). Pooled libraries of 80 000 clones tar-
geting 16 000 genes were introduced in the HeyA8 and
Stem-A subpopulations separately. After 14 days, siRNA
copy numbers were quantified in each population via NGS.
The authors used the Stem-A population as a control to as-
sess enrichment in the HeyA8 population. We here refer to
HeyAS as the treatment population. (ii) We co-infected hu-
man fibroblasts with lentivirus expressing a genome-wide
high-coverage (600 000 shRNAs with ~30 shRNA/gene)
shRNA library along with SOX2, KLF4, OCT4 and c-
MYC reprogramming factors and an shRNA targeting P53
(7). Following the appearance of colonies with iPS cell
characteristics 28 days post induction, the transduced cells
were FACS-purified for TRA-1-81, a marker of fully repro-
grammed cells. Then, shRNAs recovered from the TRA-
1-81 positive (TRA-1-81+) and TRA-1-81 negative (TRA-
1-81—) populations were sequenced (Supplementary Table
S1). Using the TRA-1-81— population as a control, siRNA
enrichment in the TRA-1-81+ population (which we call
the treatment population) was determined. We chose these
two screens as test data sets, because both used genome-
wide high-complexity libraries, used NGS as readout and
performed extensive screen validation assays that we can
use to estimate the sensitivity and specificity of hit se-
lection algorithms. RIGER analysis was performed using
the RIGER jar Java archive downloaded from the GENE-
E website (http://www.broadinstitute.org/cancer/software/
GENE-E/extensions.html). As originally described by Luo
et al. (12), this implementation uses a Kolmogorov—
Smirnov test for significance assessment. RSA was de-
signed for well-based screens (22), and codes for RSA anal-
ysis are available (http://carrier.gnf.org/publications/RSA/).
However, the algorithm itself can be adapted to NGS screen
readout by replacing well activity level with barcode read
count odds ratio. We implemented RSA for NGS readout
in MATLAB, using an odds ratio of 1 for the lower-bound
parameter and 2 as an upper-bound parameter.

Following their primary screen, Tan et al. (4) validated
135 genes using short interfering RNA (siRNA). Tan et al.,
having identified ovarian carcinoma subtypes via microar-
ray and clinicopathological parameters, chose these genes
with the intention of specifically targeting pathways en-
riched in the Stem-A subtype. One siRNA was transfected
per well in a 96-well plate format. After 96 h of incubation,
a colorimetric cell-proliferation assay was performed to
quantify siRNA effect on growth. The assay was performed
in quadruplicate, and there were two negative-control wells
per plate. We compared siRNA-well to control-well pro-
liferation ratios (obtained from the authors) between the
HeyAS8 and Stem-A populations using single-tailed #-tests,
corrected for multiple-hypothesis testing via the Benjamini—
Hochberg method (23). We found 65 genes in HeyAS cells
and 47 genes in Stem-A cells with differential negative ef-
fect on cell growth at a z-test P-value cutoff of P = 0.05.
We then tabulated true-positive (TP), true-negative (TN),
false-positive (FP) and false-negative (FN) gene-hit calls for
HiTSelect, RIGER and RSA. Hit calls were tabulated in
the following fashion: we consider a gene TP if it is ranked
within the top 5% of genes in the primary screen of HeyA8
and, in the validation assay, has a mean proliferation ra-
tio which is higher in HeyAS8 at a ¢-test P < 0.05; we call a
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gene FP if it is enriched in the HeyAS8 primary screen but
not in the validation assay (P > 0.05). Similarly, if a gene is
ranked within the top 5% in the screen of Stem-A and has
a higher proliferation ratio in the Stem-A validation with
P < 0.05, then it is a TN. If it is enriched in Stem-A’s pri-
mary screen but fails to validate (P > 0.05), then we call it
an FN. Sample sizes were unbalanced in the validation as-
say (65 genes down in HeyAS8 cells versus 47 genes down
in Stem-A). We chose the Matthews correlation coefficient
as an estimator of an algorithm’s predictive value, since it
is generally considered to be the most robust estimator of a
classifier’s success for unbalanced sample sizes (24). We also
chose balanced accuracy (BA) as a second measurement of
these algorithms’ performance as classifiers. Balanced ac-
curacy (BA = T%iTFI;I + Toﬁfzgp) is a renormalized accuracy
that avoids overestimation of classifier performance arising
when the sample is imbalanced (25).

Lastly, we assembled lists of negative-control genes and
positive-control genes for our iPS cell screen and com-
pared their rank distributions between algorithms. In the
iPS cell screen, we screened for barriers to reprogramming,
i.e. genes whose knockdown enhances reprogramming effi-
ciency. As negative controls, we used the validated targets
of known tumor suppressor micro-RNA (miRNA) miR-
218 (26), a random gene list and explicit negative-control
sequences. As positive control genes, we used a list of 26
barrier genes whose knockdown has been already shown
to enhance reprogramming efficiency (Supplementary Ta-
ble S2). Additionally, we used the experimentally validated
targets of miR-17 (whose targets include the tumor sup-
pressor P21) and miR-200 (an inhibitor of the epithelial-to-
mesenchymal transition) as positive controls. Both of these
miRNA have been shown to enhance reprogramming effi-
ciency (27,28). We also found that HiTSelect outperformed
RSA and RIGER on simulated data by computing a Re-
ceiver Operating Characteristic curve shown in Supplemen-
tary Figure S2.

Single-gene knockdown validation

BJ fibroblasts were seeded on a 6-well plate and infected
with lentivirus expressing sShRNA the following day. Each
shRNA was cloned into a separate pSicoR-CMV-Puro-
T2A-GFP lentiviral vector. To make lentivirus, 293T cells
at 60-70% confluency were transfected in 10-cm plates with
4 g of the lentiviral vectors together with 1 g each of
the packaging plasmids VSV-G, MDL-RRE and RSVr us-
ing Fugene 6 from Roche. After 72 h, viral supernatants
were harvested, filtered, titered and stored at —80°C. Five
days after infection, fibroblasts were harvested, and RNA
was isolated using the RNeasy Mini RNA Isolation kit
(Qiagen) and reverse-transcribed using the High-Capacity
cDNA Reverse Transcription kit (Applied BioSystems).
The ¢cDNA reaction was diluted 1:5 in TE (10-mM Tris-
Cl/1-mM EDTA, pH 7.6) and used in Sybr Green real-time
PCR reactions (Applied BioSystems). PCR primers were
designed to amplify 100—400-bp fragments spanning exons.
Housekeeping genes GAPDH and UBB were used as con-
trols (Supplementary Table S2). Reactions were run in trip-
licates on a 7900HT machine (Applied BioSystems) accord-
ing to the manufacturer’s instructions. Only samples with
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single and matching end-point melting curve peaks were
used for subsequent analysis. Cycle threshold values were
imported into the REST software for fold-change calcula-
tions, using the housekeeping genes GAPDH and UBB as
controls.

RESULTS

HiTSelect gene ranking outperforms on cancer stem cell and
iPS cell shRNA screens

Although RSA and RIGER were not designed for screens
with NGS readout, they can be adapted for that purpose.
One important insight of the RSA algorithm is the use of
a test statistic that is sensitive to the number of distinct ac-
tive guide-RNA (the hyper-geometric test). Thus, in prin-
ciple, RSA controls for off-target effects, and it works well
for smaller-scale screens on the order of hundreds of wells.
However, we find that at the scale of the screens we consid-
ered (80 000 and 600 000 shRNA), the hyper-geometric test
is not very sensitive. In fact, in both screens, RSA enriches
for ‘singletons’, i.e. genes with only one active sShRNA. By
contrast, HiTSelect preferentially ranks genes for which the
effect of knockdown is reproducible across multiple shRNA
(Figure 2A and B). Compared to HiTSelect, RSA’s predic-
tions for the primary screen of Tan et al. do not correlate as
well with the results of their siRNA validation assay (Fig-
ure 2C). In comparing HiTSelect to RSA and RIGER in
our iPS cell screen, we found that the upper-quartiles of
the HiTSelect and RIGER gene rankings were enriched
for positive-control genes to a statistically significant extent
(hypergeometric tests: 3.3 x 107> < P < 2.4 x 107%), indi-
cating good sensitivity in hit detection (Figure 2D). How-
ever, RSA was not very sensitive and did not rank positive
control genes highly (0.17 < P < 0.7). While neither HiTS-
elect nor RSA frequently ranked negative-control genes in
the upper quartile range (0.16 < P < 0.68), RIGER ranks
control sequences highly (P = 1.5 x 1072). Thus, RIGERs
false-positive rate is high for some samples. RIGER also en-
riches for singletons (Figure 2A and B), and RIGER has
the least correlation between the primary screen and the
siRNA validation assay of Tan et al. (Figure 2C). Further-
more, RIGER ranks negative control sequences highly in
our iPS cell screen (Figure 2D), indicating that RIGER’s
FDR is high. Figure 2E shows the overlap of the three al-
gorithms.

In a typical workflow, a researcher may first call hits at
the 5% level, in order to have a large enough sample to
perform functional annotation clustering and gene network
analysis. After obtaining relevant pathways, one may then
choose genes from those pathways for validation using a
more stringent threshold, such as 1%. At this threshold,
the distributions of the number of active guide-RNA are
shifted to the left for RSA and RIGER compared to HiTS-
elect in both screens. In particular, RSA and RIGER pref-
erentially rank singletons in the top 1%. HiTSelect’s top 1%
ranked genes all have at least two (and most have three or
more) active sShRNA. Thus, HiTSelect is less prone to off-
target effects since, for all genes ranked in the top 1%, the
effect of knockdown is reproducible over multiple guide-
RNA. To compare the impact of off-target effects on hit
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Figure 2. A comparison of HiTSelect with the RSA and RIGER algo-
rithms for sensitivity, specificity and off-target effects. (A) The distribution
of the numbers of active sShRNA for genes ranked in the top 1% by each
algorithm in the iPS cell screen. While RSA and RIGER enrich for genes
with only one supporting shRNA, all of HiTSelect’s genes have two or
more active sShRNA as redundant evidence of effect. (B) The distribution
of the numbers of active sShRNA for genes ranked in the top 1% by each
algorithm in the ovarian carcinoma screen of Tan ez al. Only HiTSelect has
multiple active sShRNA for all top genes. Thus, HiTSelect is more robust to
off-target effects. (C) HiTSelect’s primary screen predictions from the data
of Tan et al. correlate better with the results of their downstream siRNA
validation assay. (D) Rankings for genes from positive and negative con-
trol gene lists in the iPS cell screen were tabulated and their distributions
are compared among the HiTSelect, RSA and RIGER algorithms. A list
of known gene barriers to reprogramming as well as the validated targets
of micro-RNA known to enhance reprogramming were used as positive
controls. A random gene list, control sequences and the validated targets
of miR-218 (a known tumor suppressor) were used as negative controls
(Supplementary Table S2). The medians of the rank distributions of these
genes are shown. While HiTSelect and RIGER both enrich for positive
control genes, RSA does not. This indicates that RSA may lack sensitivity
on some data sets. On the other hand, RIGER shows significant enrich-
ment for negative control sequences, while HiTSelect and RSA do not.
This may point to a high false positive rate in RIGER for some samples.
(E) Overlap between the top 5% gene hits ranked by HiTSelect, RSA and
RIGER in the screen of Tan et al.

selection of the three algorithms, we spot-checked a hand-
ful of gene hits for ineffective ShARNA and also employed
the software GESS (29) to identify off-targets attributable
to ‘seed effects’. Firstly, we identified the seven most highly
ranked singleton genes that were mutually ranked in the top
1% by RIGER and RSA in our iPS cell screen. None of
HiTSelect’s top 1% are singletons. We measured the knock-
down efficiency of the single active shRNA for each sin-
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Figure 3. Validation of knockdown for singleton genes highly ranked by
RSA and RIGER. (A) RSA and RIGER enriched for genes with only
one active shRNA in both the carcinoma screen of Tan ez al. and in our
iPS cell screen. In contrast to these methods, all of HiTSelect’s top genes
demonstrate a robust effect over at least two shRNA. To validate that this
phenomenon leaves RSA and RIGER prone to off-target effects, we per-
formed knockdowns in human fibroblasts for the top seven ranked genes
that were ranked in the 1% by both RSA and RIGER and that were also
singletons. The ranking was relative to the iPS cell screen. Using the sin-
gle shRNA identified by their algorithms per gene, we were able to pro-
duce a knockdown greater than 2-fold for only five out of seven genes.
In contrast, all of HiTSelect’s genes identified in the top 1% had at least
two active shRNA which produced a knockdown of greater than 2-fold.
(B) GESS analysis to identify shRNAs that may exhibit off-target effects
due to homology between their seed sequences and unintended gene tar-
gets. GESS compared the seed-match frequency (SMF) of shRNAs tar-
geting the top 1% gene hits of our iPS screen (phenotype) to those target-
ing the bottom 1% ranked genes (no-phenotype). GESS did not find any
HiTSelect hits with statistically significant off-target effects at the GESS
(Benjamini—-Hochberg corrected) P-value cutoff of 0.05. However, 17% of
shRNA from RIGER and 35% of shRNA from RSA showed statistically
significant off-target effects.

gleton gene via reverse transcription quantitative real-time
polymerase chain reaction (RT-qPCR), comparing the ef-
fect of RNAI to that of a nonsense-sequence control. We
then compared these knockdown effect sizes to those ob-
served in knockdown experiments of genes identified in the
top 1% by HiTSelect. All of HiTSelect’s top 1% hits have
at least two active ShRNA, and we performed knockdowns
using the two most active shRNA (identified by HiTSelect)
separately and averaged the results. All knockdowns were
performed in human fibroblasts. The median knockdown
efficiency was slightly greater in HiTSelect’s picks (log, fold-
change = —2) than in the RSA/RIGER singletons (log,
fold-change = —1.8), and two of the seven RSA/RIGER
singletons did not show significant knockdown efficiency
(<2-fold change compared with nonsense-sequence con-
trol) (Figure 3A). To explore whether this 29% off-target
rate observed in the RSA/RIGER hits was an artifact of
the small sample size used, we computed the ‘seed-match
frequencies’ for the top iPS cell screen hits using GESS.
GESS identifies shRNAs that may exhibit off-target effects
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by computing the frequency with which the seed sequences
in those shRNAs match known transcripts in a database.
GESS produces Benjamini-Hochberg-corrected P-values
for seed-match frequency (SMF). We ran GESS on the top
1% hits for RSA, RIGER and HiTSelect, using the bottom
1% as negative controls. GESS did not report any HiTSelect
hit to have a statistically significant SMF at the GESS P-
value cutoff of 0.05. However, 17% of ShARNA from RIGER
and 35% of shRNA from RSA show a statistically signifi-
cant SMF (Figure 3B). Taken together, these findings show
that HiTSelect is less prone to off-target effects than RSA
or RIGER.

HiTSelect provides an integrative analysis suite with visual-
ization tools

While a good ranking algorithm is a prerequisite for ro-
bust screen analysis, identifying key pathways also re-
quires going beyond the statistical significance of indi-
vidual genes and integrating relevant metadata. To this
end, we developed modules to automate data aggrega-
tion, calculate statistics for data synthesis and visualize
the data and results. HiTSelect’s visualization module al-
lows the user to seamlessly browse and search screen re-
sults (Supplementary Figure S3A). Genes of interest can
be annotated with user-defined gene lists, which can then
be exported to a delimiter-separated file or analyzed with
other HiTSelect modules. For example, HiTSelect’s func-
tional annotation module interfaces programmatically with
DAVID (30) to generate reports presented as interactive
visualizations (Supplementary Figure S3B). An example,
obtained from clustering the functional annotations of
the 1PS cell screen hits, is available online: http://song.
igb.illinois.edu/ipsScreen/docs/david_treemap.html. HiTSe-
lect’s gene network analysis module interfaces with Gene-
MANIA (http://www.genemania.org), which contains an-
notations for genetic interactions, physical interactions and
tissue co-localization of expression data aggregated from
public databases. As a summary statistic for GeneMANIA
output, we developed the concept of joint-network central-
ity. Joint-network centrality generalizes eigenvalue network
centrality to multiple networks defined on the same set of
genes. Lastly, we developed a Cytoscape interface module
to visualize screen hit network interactions with an overlay
of metadata from the above modules. Together, these mod-
ules provide a powerful and user-friendly system for screen
analysis.

HiTSelect is suitable for both shRNA and CRISPR-mediated
screens

To demonstrate the versatility of our approach, we use
HiTSelect to analyze four screens recently performed via
CRISPR knockout and reported by two separate groups
(8,31). Wang et al. (8) screened for genes necessary for sur-
vival in HL60 and KBM?7 cells expressing Cas9 nuclease.
Cell populations were infected with barcoded lentivirus ex-
pressing a library of 73 151 sgRNA, targeting 7114 genes.
After an incubation period of 12 cell doublings, barcodes
were recovered via PCR and sequenced. We analyzed these
screens’ data using HiTSelect and identified the top 5%
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Figure 4. HiTSelect analysis of CRISPR-mediated negative selection
screens in HL60 and KBM7 cells, respectively. Genes ranked in the top
5% by HiTSelect’s gene ranking algorithm (A, B: left panels) are enriched
for functional annotations for fundamental biological processes, such as
transcription, translation, DNA replication and cell cycle (C). These an-
notations were discovered using HiTSelect’s functional annotation analy-
sis module. In both screens, analysis using a combination of HiTSelect’s
gene-interaction module and MCODE identifies dense clusters of genes
associated with the ribosome, proteasome, DNA replication and transcrip-
tion. In particular, the median joint-network centrality for genes in the ri-
bosome sub-network is in the 97th percentile of joint-network centrality
scores overall.

of genes most under-represented after the incubation pe-
riod (Figure 4A and B, left panel). We found that while
HiTSelect and RIGER agreed better in the sShRNA screen
of Tan et al. (4) (Figure 2E), HiTSelect overlapped better
with RSA in the CRISPR screen of Wang et al. (8) (Sup-
plementary Figure S4C). Using a combination of HiTS-
elect’s network analysis module and the MCODE plugin
to Cytoscape (32), we then studied interactions between
screen hit genes. Strikingly, both screens reproduced four
sub-networks comprised of genes associated with the ri-
bosomal, proteasomal, DNA replication and transcription
pathways (Figure 4A and B, right panel). Moreover, in both
screens, the joint-network centrality metric is elevated in the
ribosome sub-network cluster, i.e. the median joint-network
centrality across genes in the ribosomal sub-network is at
the 97th percentile of the distribution of joint-network cen-
trality scores network wide. This result is consistent with
Wang et al., who also observed a depletion of sgRNA tar-
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geting ribosomal proteins. Although Wang et al. also iden-
tified enrichment for ribosomal, proteasomal and DNA
replication genes, the sub-network of transcription-related
genes, which contains mediator complex components and
other genes essential for cell survival, was not reported to
be statistically significant. Also not previously reported, but
enriched in our HiTSelect analysis, are the clusters of genes
that are known to be essential for cell survival: cell cycle
genes (e.g. components of the anaphase-promoting com-
plex and cyclin-dependent kinases), components of the cy-
toskeleton and elements of the ubiquitination pathway (Fig-
ure 4C). Identification of these additional, essential path-
ways further validates the sensitivity of HiTSelect.

Likewise, Zhou et al. (31) created a library of 873 sgRNA
targeting 291 genes. Two screens were then performed in
OCT]1 and Cas9 expressing HeLa cells (HeLapc) to iden-
tify genes necessary for intoxication by chimeric anthrax
(PA/LFnDTA) and diphtheria toxin (DT). HeLagc cells
were infected with barcoded lentivirus expressing the afore-
mentioned sgRNA library and then treated with each toxin.
The treatment was followed by PCR amplification and se-
quencing of the vectors’ barcodes in surviving cells. We an-
alyzed these screens using HiTSelect and identified 14 and
16 genes with a non-zero effect size (log-odds>0) in the
PA/LFnDTA and DT screens, respectively (Supplementary
Figure S4A and B). All seven of the genes validated by
Zhou et al. (via a cell viability assay) were identified in HiT-
Select’s picks. In particular, anthrax receptor (ANTXR1)
and diphtheria toxin receptor (HBEGF) were the number
1 genes in HiTSelect’s ranking of the PA/LFnDTA and
DT screens, respectively. Moreover, knockout of these two
genes in Zhou et al.’s validation assay produced the greatest
increases in cell viability over control, following treatment
with PA/LFnDTA or DT, respectively. Due to the small
number of gene hits in the screens of Zhou et al. (14-16
genes), DAVID did not identify any over-represented func-
tional annotation terms, and GeneMANIA also did not
identify significant interactions among these genes, limit-
ing our re-analysis of the screens. HiTSelect thus provides
a rigorous analysis method for selecting hits that correlate
well with validation. In addition to these cell-surface re-
ceptors, HiTSelect also identifies adenosine triphosphate
(ATP) binding proteins in the PA/LFnDTA screen: CFTR
and PECR. PECR knockout was validated by Zhou et al. as
conferring resistance to PA/LFnDTA, but CFTR was not.
Another bacterial toxin, cholera toxin, induces the secre-
tion of intestinal fluid via CFTR upregulation (in an ATP-
mediated fashion); thus, HiTSelect revealed that the role of
CFTR in anthrax toxicity is a potential avenue for further
investigation (33).

DISCUSSION

High-throughput, genome-wide screening is a powerful
technique to identify genes and pathways regulating a
phenotype of interest. However, statistical approaches de-
signed for smaller-scale screens, performed at low through-
put in multi-well plates and/or screens using microarrays
as readout, do not completely control for variation in
knockdown/knockout efficiency or variation in sequencing
depth-of-coverage. Thus, analysis techniques that are ro-
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bust to these random effects are currently lacking. More-
over, there are no bioinformatics tools available to perform
integrative analysis of screen metadata. To address these
needs, we have developed HiTSelect. In addition to pro-
viding a rigorous hit selection method that compares very
favorably with existing approaches, HiTSelect is a com-
prehensive tool with gene network analysis, gene ontology
analysis and visualization modules. HiTSelect is free, open
source and available as a stand-alone software package for
Windows, MacOS and Linux. As exemplified by the algo-
rithm comparisons and data analyses reported here, HiTS-
elect is expected to enable a high degree of confidence in the
interpretation of genome-wide screen data and maximize
the depth of biological insights arising from these kinds of
screens.
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