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ABSTRACT

Protein sequences predicted from metagenomic
datasets are annotated by identifying their homologs
via sequence comparisons with reference or curated
proteins. However, a majority of metagenomic pro-
tein sequences are partial-length, arising as a re-
sult of identifying genes on sequencing reads or
on assembled nucleotide contigs, which themselves
are often very fragmented. The fragmented nature
of metagenomic protein predictions adversely im-
pacts homology detection and, therefore, the qual-
ity of the overall annotation of the dataset. Here
we present a novel algorithm called GRASP that
accurately identifies the homologs of a given ref-
erence protein sequence from a database consist-
ing of partial-length metagenomic proteins. Our ho-
mology detection strategy is guided by the ref-
erence sequence, and involves the simultaneous
search and assembly of overlapping database se-
quences. GRASP was compared to three commonly
used protein sequence search programs (BLASTP,
PSI-BLAST and FASTM). Our evaluations using sev-
eral simulated and real datasets show that GRASP
has a significantly higher sensitivity than these pro-
grams while maintaining a very high specificity.
GRASP can be a very useful program for detect-
ing and quantifying taxonomic and protein family
abundances in metagenomic datasets. GRASP is im-
plemented in GNU C++, and is freely available at
http://sourceforge.net/projects/grasp-release.

INTRODUCTION

Metagenomics is a cultivation-independent paradigm for
studying microbes and involves the shotgun sequencing of
DNA extracted from biological samples that are collected
from the environment of interest (1). It has greatly fur-
thered our understanding of microbial diversity and ecol-
ogy, and has broad applications in many fields including
human health (2–5), ecological and environmental surveys

and monitoring (6–8), and renewable energy (9–11). Next-
generation sequencing (NGS) technologies (12–15) are used
routinely to sequence metagenomic samples and provide a
cost-effective approach to study the genomic content of the
constituent microbes at high sequence coverage.

In addition to allowing for the inference of taxonomic
composition of the community, metagenomic sequence data
can also be used to reconstruct the functional and metabolic
potential of the organisms that are present. This requires
the identification of proteins that are present in the metage-
nomic sample. Accurate de novo gene finders are available
(16,17) that enable the identification of protein sequences
directly from NGS reads or from assemblies of these reads.
However, the short length of reads from current NGS tech-
nologies implies that most of the protein predictions will
be fragmentary (referred to as short peptides). The qual-
ity of nucleotide assemblies is influenced by the diversity of
the community, and assemblies are often very fragmented
(3,18–21); subsequently, protein predictions on assembled
contigs or scaffolds also result in a large number of partial-
length sequences. The fragmented nature of protein predic-
tions from metagenomic datasets has consequences for the
downstream annotation of proteins (i.e. for the assignment
of protein name and function).

The process of annotating a metagenomic protein se-
quence proceeds via identification of its homologs in com-
parison with reference protein sequences (22–25), using a
sequence comparison program (26,27). However, the sensi-
tivity and specificity of this approach can be adversely im-
pacted by the short length of the metagenomic protein se-
quence and is also dependent on the degree of conservation
of the region in the protein family that the sequence belongs
to. Here we present a novel approach that can significantly
improve the homolog identification process and, therefore,
also improve annotation. Our approach is based on the ob-
servation that shotgun sequencing generates reads that are
distributed randomly across the constituent genomes. With
increased sequencing depth, many of these reads will belong
to overlapping genomic regions; this implies that there will
be overlapping short peptide sequences in the metagenomic
dataset. Therefore, an ‘assembly’ of these overlapping se-
quences during sequence comparison should improve ho-
mology detection; furthermore, an assembly of the short
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Figure 1. An example showing the improved sensitivity of homology detec-
tion when the individual reads are assembled prior to alignment. BLASTP
alignment between the query (1VDX A) and the full-length sequence for
Q8FNB6 identifies high-scoring pair (HSP) spanning a majority of this se-
quence (green segment). For reads (red segments) sampled from Q8FNB6,
only one out of 11 can be identified (above the default BLASTP cutoff,
dashed black line). However, if the reads are assembled based on overlap,
all of them can be identified as homologs as they form part of contigs (blue
segments) with improved E-values.

peptide sequences should be more effective (compared to
nucleotide read assembly) since amino acid conservation ex-
tends over a great taxonomic range compared to nucleotide
conservation (28). The computational problem is thus for-
mulated as one where we are given a reference protein se-
quence (e.g. from a curated protein database) as query and
a database of short peptide sequences (from a metagenomic
dataset), and our goal is to identify the homologs of the
reference sequence in this database. Our solution to this
problem is a reference sequence-guided approach that in-
volves the simultaneous assembly and search of sequences
in the database; our algorithm is called GRASP (Guided
Reference-based Assembly of Short Peptides).

Figure 1 shows an example highlighting the im-
proved sensitivity of detecting homologs when overlap-
ping database sequences are ‘assembled’, in contrast to the
strategy where the reference sequence is searched ‘indepen-
dently’ against each database sequence. For this example, a
database of short peptides was constructed using a mem-
ber (Q8FNB6) of the LigT like Phosphoesterase protein
family (Pfam PF02834 (29)), by randomly sampling short
peptide fragments from this sequence at 2X coverage. An-
other member (1VDX A) of the same family was used as
the query sequence, and NCBI’s BLASTP program (27) was
used to search for homologous sequences in this database.
It is observed that the majority of the individual short pep-
tides (red segments) were not identified––of the 11 database
sequences, only one had a match above threshold, while for

seven sequences, no seed was detected to even initiate align-
ment. This result indicates the low sensitivity of detecting
homologs when short fragments are present and searched
independently, even though the full-length sequences for the
two members align with a very good E-value (green seg-
ment). By assembling the overlapping individual short pep-
tides into longer contiguous sequences (blue segments), the
E-value of the resulting alignments can be significantly im-
proved; in this example, all 11 reads contribute to one of the
two assembled sequences (blue segments).

GRASP was implemented using GNU C++ and its per-
formance was compared to that of three commonly used
sequence homology detection programs (NCBI’s BLASTP
(27) and PSI-BLAST (30) programs, and the FASTM pro-
gram (31)) that search a given reference (or query) protein
sequence against a database of amino acid sequences. Both
simulated and real datasets were used in the evaluations.
The results show that, for the same specificity, GRASP is
capable of improving the sensitivity by ∼20% on the Pfam-
based simulated datasets. For the simulated metagenomic
dataset, the benchmark results show that GRASP can im-
prove the sensitivity by ∼10% over the other programs at
the same specificity level. For the real dataset, GRASP
can identify approximately twice more homologs than the
other search programs at an E-value cutoff of 10 (with an
expected specificity >99%), while at a more stringent E-
value cutoff of 10−10, GRASP is able to identify three times
more homologs than FASTM, and at least five times more
homologs than BLASTP and PSI-BLAST. The GRASP
implementation is freely available at http://sourceforge.net/
projects/grasp-release.

MATERIALS AND METHODS

Let Q denote the reference (or query) protein sequence and
let R denote the database consisting of short peptide se-
quences; these short peptides will henceforth be referred to
as reads. Our goal is to identify a set of contigs where each
contig sequence has an alignment with Q that meets a user-
specified alignment threshold (E-value). Each contig is ei-
ther a single read, or it is an assembly of overlapping reads,
in which case, each constituent read is a substring of the
contig sequence. In our framework, a read may be assigned
to multiple contigs. However, to avoid redundancy in the
output, the set of contigs that is produced by GRASP is
such that no contig is a substring of another contig in the
set.

Conceptually, the GRASP algorithm can be thought of
as a series of traversals of the overlap graph constructed
from the reads, where each traversal is carried out using the
query sequence as a guide so as to identify paths in the graph
that have high scores when aligned with the query sequence.
In theory, this overlap graph can be defined as in traditional
overlap-consensus-layout assemblers (32), where each node
in the graph corresponds to a read and there is a directed
edge between two nodes (reads) if the suffix of one read is
the prefix of the other. Alternatively, the overlap graph can
be a more compact representation of read overlaps defined
using k-mers that are shared between reads (33); this defi-
nition is often more tractable for large NGS datasets. Im-
portant components of the graph traversal strategy include
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Figure 2. The GRASP algorithmic framework for right extension. First,
a seed pair (s Q, sT) is identified by perfect k-mer matches in the reduced
amino acid alphabet space (Assembly Seeding). For each pair, subsequent
extension steps are performed iteratively (implemented using a priority
queue). In Step 1, all supporting reads for extending path p are identified
through suffix array searches. Supporting reads for p are those containing
both green and blue segments; these reads are identified by querying rSA
using rev(x) (see main text for details). In Step 2, the maximal extension
sequences �p∗ (marked red) are selected from the set of supporting reads. In
Step 3, the maximal extension sequences are used to extend the assembly
from p to p′. Banded alignment of p′ and the extended query substring q′
is computed by referring to previously computed alignment scores at the
boundary (orange). Only the red region in the dynamic programming (DP)
table is filled. In Step 4, the extended alignment information is recorded
and the priority queue is updated with new extension sequences.

the identification of regions in the graph where path traver-
sal can be initiated, rules for path extension and criteria for
traversal termination. In the GRASP algorithm, however,
the overlap graph is not explicitly constructed. Instead, a
suffix array (34) data structure is used to capture read over-
lap information and is used to identify reads that can be
used to extend the current path. The suffix array is a space
efficient data structure that represents all suffixes of a given
text in a lexicographically sorted fashion, thus enabling an
efficient determination of the occurrence(s) of a query pat-
tern in this text.

The algorithmic framework of GRASP is outlined in Fig-
ure 2. Initially, a set of k-mer pairs is constructed from the
query and database sequences, where the query sequence k-
mer and the database sequence k-mer in a pair are highly
similar to each other; each such k-mer pair initiates con-
tig assembly (or equivalently, path traversal in the overlap
graph). First, initiated by a k-mer pair, assembly proceeds in
the C-terminus direction of the query sequence; this phase
is referred to as ‘right extension’. In this phase, a set of (pos-
sibly overlapping) assembly paths is identified and main-
tained, along with a priority queue of candidate path ex-
tension sequences that are updated iteratively. The exten-
sion sequences are identified using reads that overlap with
paths in the path set. Banded alignment is used to determine
if an extended path has sufficient score when aligned with
the query. The candidate at the head of the priority queue
is used to identify the next path for extension, and subse-
quently, new candidate extensions that overlap with this ex-
tended path are noted and the priority queue is updated.
Extension stops when a termination criterion is met. After

right extension completes, initiated by the same k-mer pair,
assembly proceeds in the N-terminus direction of the query
sequence (referred to as ‘left extension’) in a similar manner
as the right extension. At the end of this phase, paths from
the right and left extensions that can be concatenated based
on reads that bridge them and have resulting alignment E-
values meeting the user-specified threshold, are identified.
These concatenated paths constitute the GRASP output.
The assembly process is parameterized, and includes pa-
rameters for identifying overlapping reads and for deter-
mining score drop-off during alignment. These parameters
can be used to control the specificity and sensitivity of ho-
molog detection.

Notation

To facilitate the exposition of the GRASP algorithm, we
define the basic notations that will be used. Let m be an ar-
bitrary string derived from an alphabet �, and let |m| de-
note its length. Also, let mi denote the ith character of m,
and mi,j denote the substring of m that begins with mi and
ends with mj, inclusively. For 1 ≤ i ≤ j ≤ |m|, we say that
mi,j is a prefix of m if i = 1, and that mi,j is a suffix of
m if j = |m|; an empty string can be the substring, prefix
or suffix of any string. We use ‘·’ to denote the concatena-
tion operation on strings. Define the reverse string of m as
rev(m) = m|m| · m|m−1| · ... · m2 · m1, and for the read set R,
define rev(R) = {rev(r )|r ∈ R}.

We use SA to denote the generalized suffix array (34) that
is built from R by concatenating all the reads (using a delim-
iter symbol that is not part of the alphabet). We use SA[i]
to denote the ith element of the suffix array, and SA[i, j]
to denote the array range that begins with SA[i] and ends
with SA[j], inclusively. A suffix array query returns an array
range, where each suffix within the range shares the query
sequence as a common prefix. Say SA[i, j] is returned by the
query of a non-empty string m; then, for any k such that i ≤
k ≤ j , we have m as a prefix of SA[k], and SA[k] as a suffix
of some r ∈ R. To facilitate efficient querying, we construct
and store the Longest Common Prefix (LCP) information
for adjacent suffixes in SA (i.e. LCP(SA[i − 1], SA[i ]) for all
1 < i ≤ |SA|). We use rSA to denote a generalized suffix ar-
ray constructed on rev(R).

For the right extension phase of the assembly algorithm,
we consider a read r as a ‘supporting read’ for the extension
of path p if some prefix of r is a suffix of p and the prefix
length is ≥ l (a predefined length cutoff). For path p and a
supporting read r, we use p′ = p · �pr to denote the extended
path using r, where �pr is the ‘extension sequence’ (note that
�pr is a non-empty suffix of the read r) for the current path p.
Without confusion, we use �p to represent an arbitrary ex-
tension sequence when its corresponding supporting read is
not referred to explicitly. We denote the set of extension se-
quences for p as

−→
PE(p), i.e.

−→
PE(p) = { �p}. Correspondingly,

for the query sequence, we have q′ = q · �q, where q, �q and q′
are all substrings of the query sequence Q (note that q and
�q are adjacent substrings in Q).
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GRASP algorithm

Assembly seeding. Contig construction is initiated using k-
mer pairs, where one k-mer of a pair belongs to the query
sequence and the other k-mer to a database read sequence,
and such that these k-mers are highly similar (as defined
below). We use the concept of reduced amino acid alpha-
bet (26,35,36) for the efficient identification of these k-mer
pairs. It has been observed that many amino acids share
similar physical and chemical properties, such that they con-
tribute in a similar manner to protein folding and function.
This observation has been used to partition the standard
amino acid alphabet set � (where|∑ | = 20) into equiva-
lence classes where all amino acids in an equivalence class
share the same property and thus can be substituted by one
designated member of the class. This substitution results
in a reduced alphabet

∑∗ of size less than 20; let f : � →
�∗ be a mapping that denotes this substitution. Given the
mapping f : � → �∗ and a string m = m1 · m2 · ... · m|m|,
where each mi ∈ ∑

, we define reduced(m) to be the string
f (m1) · f (m2) · ... · f (m|m|).

We define MS to be the set of k-mer pairs (s Q, sT), where
sQ is a k-mer of Q, sT is a k-mer of read r (for some r ∈
R). Each pair (s Q, sT) in MS is such that reduced(s Q) =
reduced(sT) and the ungapped alignment score between sQ

and sT is greater than a predefined threshold; alignment
score is computed using an amino acid substitution matrix
(e.g. BLOSUM or PAM). The set MS can be computed effi-
ciently using a fast lookup function implemented using a
hash-table containing all k-mers in

∑∗ and their specific
positions in the read set R. We used the reduced alphabet
GBMR10 (26) for our evaluation of GRASP.

Right extension. Each pair in MS is used to initiate the
construction of a set of assembly paths (or contigs), first by
the process of right extension and then by the process of
left extension. We describe the right extension phase here.
In this phase, for a pair (s Q, sT), a set AS of assembly paths
initiated by this pair and a priority queue PQ corresponding
to the pair, are maintained; both sets are updated iteratively.
The extensions initiated by (s Q, sT) are terminated when its
priority queue becomes empty. Each path in AS is a contig
under construction. Each element in PQ is a maximal exten-
sion sequence, derived from some supporting reads that can
be used to extend some path from AS. The weight of each
maximal extension sequence is the number of supporting
reads that contain the sequence. For each path in AS, the
corresponding coordinates on the query Q that it aligns to,
are also stored along with the identifiers of the constituent
reads.

The following steps are carried out in each iteration of
the right extension phase. First, the head of PQ is used to
identify a path in AS that can be extended and the new ex-
tended path is added to AS; let p denote this extended path
and q denote the corresponding substring of Q that p aligns
with. Next, the supporting reads for path p are identified by
querying the suffix array (Step 1 in Figure 2). The support-
ing read set is pruned to remove those reads containing non-
maximal extension sequences (Step 2 in Figure 2). For each
of the remaining supporting reads, its corresponding suf-
fix (i.e. extension sequence) is concatenated with p, in order

to evaluate path extension. Each such extended path p′ is
aligned with the extended query substring q′ (length deter-
mined by both p′ and the pre-set band size for the sequence
alignment) to evaluate their sequence similarity (Step 3 in
Figure 2). If the alignment score meets the threshold (which
indicates that the assembly extension is desirable), this ex-
tension sequence is inserted into the priority queue using
the weight of the extension sequence (Step 4 in Figure 2). If
there are no extension sequences added to PQ for a path p,
then p is not extended further; this happens when a termina-
tion criterion is encountered (described below). AS and PQ
are initialized as follows: AS contains the sequence sT; PQ
consists of supporting reads that are maximal extensions
of this k-mer, and such that these extended sequences have
alignment scores that meet the score threshold. Details of
each of the four steps are presented below. The pseudo-code
for the GRASP algorithm can be found in Supplementary
Data B.

Step 1: Identification of supporting reads using suffix array:
Supporting reads for the current path p can be obtained by
querying the suffix array SA using all suffixes of p that are
of length ≥ l, and, from each query result, then identifying
reads whose prefixes are in the returned array range. How-
ever, using this approach, the entire SA has to be searched
for each suffix of p and can, in practice, be quite slow. In-
stead, in the GRASP algorithm, we use the reverse suf-
fix array rSA to speed up the identification of supporting
reads. Assume that x is a string of length l and is a suffix
of p (see Figure 2). First, the rSA is queried using rev(x);
let rSA[i, j ] denote the returned array range. From the re-
verse reads that are present in this array range, our goal
then is to identify each reverse read whose suffix is a prefix
of rev(p) (Figure 2, Step 1, reads with blue prefixes). This is
accomplished by successively determining the next longest
length prefix of rev(p) that is also a suffix of (one or more)
reverse reads. Given the lexicographic ordering in a suf-
fix array, we note that each of these determinations can be
carried out by querying rSA in the array range rSA[i, j ]
using binary search (Supplementary Data B); this array
range is much smaller than the full size of rSA.

Step 2: Identification of maximal extension sequences: With
the identification of the supporting reads for the current
path p, the set

−→
PE(p) of possible path extensions for p,

is also defined. However, for computational efficiency, it is
unnecessary to consider every �p ∈ −→

PE(p) to extend path
p. Instead, we consider �p∗ as a candidate for extending p
only if it is a ‘maximal extension sequence’ (i.e. �p∗ is not
a proper substring of any other �p ∈ −→

PE(p), see Figure 2,
Step 2, reads marked red). The supporting reads that give
rise to maximal extensions can be identified as follows.
First, the suffix array SA is queried using x, the length l
suffix of p, and the returned array range SA[i, j ] is noted.
This range also contains, and defines, a lexicographic or-
dering of all those suffixes (of supporting reads) that have
x as a prefix. Using the LCP array for SA, it is also triv-
ial to identify the LCP values of adjacent suffixes from the
supporting reads in this ordering (34). If a suffix �pr [note
that �pr ∈ −→

PE(p)] of a supporting read r is such that its
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LCP with the next suffix (of a supporting read) in this lex-
icographic ordering, is less than | �pr |, then r is designated
as a supporting read generating a maximal extension and
�pr is noted as a maximal extension sequence. This identi-
fication can be done in a single pass of the suffixes in the
array range SA[i, j ].

Step 3: Banded alignment of extended path: Suppose that the
current path p, comprising of assembled reads, has been
aligned to a substring q of Q, and let �p∗ be a maximal ex-
tension sequence for p. It is desirable that the alignment is
extended with some �q in Q that has a comparable length
with �p∗; otherwise, the alignment could contain a large
number of gaps, leading to a lower alignment score. Thus,
the length of �q is defined as |�q| = | �p∗| + d/2, where d is
the predefined band size (Figure 2, Step 3). For substring
q, the extension �q is uniquely defined given its length. For
aligning sequences p′ = p · �p∗and q′ = q · �q, we do not
compute the alignment of p′ to q′ from scratch. Instead,
banded alignment scores are recorded at the end of each
extension step (the last row and column, highlighted in or-
ange in Figure 2), and subsequently used for the next ex-
tension. Thus, the banded alignment (Figure 2, Step 3, red
region in the DP table) of the extension �p∗ and �q are com-
puted starting from the boundary scores for the banded
alignment of p and q. For this, we note that only the align-
ment scores in O(d) cells in the dynamic programming ta-
ble need to be recorded. This global alignment between �p∗
and �q, initiated using the boundary scores, is performed
using a banded version of the Needleman–Wunsch algo-
rithm (37).

Step 4: Updates associated with alignment and path exten-
sion: Required information for path extension includes the
assembled path, the corresponding query substring and
the boundary scores for the alignment between them (Fig-
ure 2, Step 4). Specifically, p′ is taken as the extended path,
and correspondingly q′ is taken as the query substring.
Then, the boundary scores for the alignment of p′ and q′
are stored (Figure 2, Step 4, highlighted in orange). The
maximal extension sequences for p′ are inserted into PQ.
The corresponding supporting reads are also recorded to
facilitate trace back and also to detect termination of path
extension.

Left extension. The left extension phase is analogous to
the right extension phase. In the left extension, the read
rev(r ) is considered as a supporting read if some prefix of
it is a suffix of rev(p), and the length of the prefix is at least
l. Similarly, suppose y is the l-length prefix of p. The sup-
porting reads are identified by querying SA using y, and
the extension sequences are defined by querying rSA using
rev(y). The assembly extension and alignment steps are per-
formed in a similar fashion as for the right extension phase.

Termination criteria. The extension of a path p stops if one
of the following three conditions is met: sequence exhaus-
tion, score drop-off and redundant extension. By sequence
exhaustion, we mean that either the path alignment has
reached one end of Q, or there is no supporting read for p.
The score drop-off criterion is similar to that of BLAST––if

the alignment score for the extended path is lower than the
best score achieved so far (by a predefined threshold), then
that extension is not considered. Finally, a redundant ex-
tension is defined as an extension whose supporting reads
have been previously identified in some other path exten-
sions and with the same alignment coordinates on the query
Q. A hash table is maintained to record the assembled reads
and the query positions where they are aligned. Supporting
reads found in this hash table and aligned at the same posi-
tion are subsequently removed from

−→
PE. Both the database

sequence exhaustion and redundant extension conditions
can be detected by checking whether

−→
PE = Ø.

Merging paths from the right and left extensions. For a pair
(s Q, sT), the paths generated by the right and left exten-
sion phases are merged when there exists enough (a pre-set
threshold) bridging reads between path pairs. A read is des-
ignated as a bridging read if it contains the sequence sT,
and with the corresponding prefix being a suffix of the left
path and the corresponding suffix being a prefix of the right
path. To minimize redundancy in the output set, paths iden-
tified by the right and left extensions that are supported by
the same set of bridging reads, are first ranked, and subse-
quently, the corresponding paths in the right and left sets
with the same rank are paired and concatenated. For the
concatenated paths, new alignment scores are computed by
summing the alignment score from both components of the
pair (and subtracting the ungapped seed alignment score
because it is counted twice), and used to compute the new
E-values. Left and right paths that cannot be merged are
reported individually.

RESULTS

We benchmarked the performance of GRASP and three
other search programs (NCBI’s BLASTP and PSI-BLAST,
and FASTM) on four datasets (parameters used for the ex-
periments are in Supplementary Data A). For the first two
datasets (simulated data), the databases were constructed
from known protein family sequences (used to build Pfam
profile hidden Markov models), where the ground truth
annotation is known. For the third dataset (also simu-
lated data), the database consisted of sequences from a ma-
rine metagenome (from 20 organisms), while for the fourth
dataset, the database consisted of metagenomic sequences
(from a human saliva sample) generated by the human mi-
crobiome project (4,38). We generated the simulated data
by a random sampling of fragments from the full-length se-
quences using a Poisson process.

Datasets

DS1: Unrelated Pfam families: The purpose of constructing
this dataset was to evaluate whether GRASP could distin-
guish between reads from different protein families. The
database consisted of fragments from three unrelated pro-
tein families: PF00154 (recA bacteria recombination pro-
tein), PF02834 (LigT like phosphoesterase) and PF04563
(RNA polymerase beta subunit). Short peptide reads (32
amino acids) were sampled from the seed sequences of



e18 Nucleic Acids Research, 2015, Vol. 43, No. 3 PAGE 6 OF 10

these Pfam families with expected coverage of 20X; the
seed sequences for a Pfam are those family members that
were used to generate the multiple sequence alignment
from which the Pfam was constructed.

DS2: Pfam families from the same clan: To further bench-
mark GRASP’s performance on distinguishing reads from
different, but related, protein families, the second dataset
was constructed using three Pfam families from the same
clan. Such a dataset is challenging because the reference
sequences are more similar to each other, and GRASP
could have a higher chance to misassemble reads from
different families due to their higher interfamily sequence
similarity. The database consisted of fragments from mem-
bers of PF00150 (cellulase), PF01229 (arginine ADP-
ribosyltransferase) and PF07745 (glycosyl hydrolase fam-
ily 53); all of them are from clan CL0058 (Tim barrel gly-
cosyl hydrolase superfamily). Reads were sampled in the
same way as for DS1.

DS3: Simulated marine metagenome: The third dataset
was constructed to evaluate the performance of GRASP
on metagenomic datasets, which contain fragments from
many protein families, and possibly, contain sequenc-
ing errors as well. Genomes of the strains of Candida-
tus pelagibacter, Prochlorococcus marinus, Synechococcus,
Flavobacteriales, Nitrosococcus oceani, Vibrio, Photobac-
terium, Erythrobacter, Alteromonas, Roseobacter and She-
wanella were used to construct the dataset (relative abun-
dances of these genomes are the same as in a previously de-
scribed dataset (28)). Nucleotide reads were sampled from
these genomes using WGSIM (39) with a read length of
100 bp, an expected coverage of 10X, and an error rate of
1% (for Illumina Technology). The genes (short peptide
reads) were then identified using FragGeneScan (16). The
resulting database contained 6 273 043 short peptide reads.

DS4: Real human saliva metagenome: This dataset was
downloaded from the NCBI’s Sequence Read Archive (ac-
cession number SRS013942). It contained 14 637 415 Il-
lumina reads (after filtering reads of human origin) with
a sequence length of 100 bp. FragGeneScan (16) was used
to identify short peptide sequences. The resulting database
contained 12 036 685 short peptide reads.

Query protein sequences

Comprehensive sets of query sequences were used in each
search experiment, and the results were combined to com-
pute the average (arithmetic mean) performances for each
of the four programs. The ‘leave-one-out’ strategy was used
for performance evaluation. That is, when a protein se-
quence is taken as the query, all reads that were sam-
pled from this query protein sequence were removed from
the database before conducting the search. For DS1 and
DS2, each seed protein sequence for the Pfams was used
as a query for the experiments (212 and 161 genes were
searched against DS1 and DS2, respectively). For DS3
where there are many more protein families, all genes (16 in
total) that are involved in the Glycolysis/Gluconeogenesis
pathway (KEGG (40), KO00010) were taken as queries.

These genes were chosen from Dehalococcoides sp. CBDB1,
whose genome was not included in the original genome
set used to construct DS3; using this approach we en-
sure that no reads identical to the query were included
in the database, which is consistent with the ‘leave-one-
out’ evaluation strategy. In addition, 198 marker genes se-
lected from the Amphora2 (41) dataset were also used in
the search experiment to evaluate performance. All marker
genes were also taken from Dehalococcoides sp. CBDB1
for the same reason stated above. Finally, for DS4, genes
from the Glycolysis/Gluconeogenesis pathway were used as
the queries. The gene set included genes from two organ-
isms with different estimated abundances in human saliva
samples, i.e. one from the Streptococcus genus (organism
code: SGO, estimated abundance 14.98% (4)) and the other
from the Lactobacillus genus (organism code: LPI, esti-
mated abundance 0.81% (4)). Glycolysis pathway-related
genes from additional genera were also searched against
DS4.

Benchmark measures

Sensitivity (sen) and specificity (spe) for each method was
computed as:

sen = TP
TP + FN

and spe = TP
TP + FP

where TP, FP and FN are True Positives, False Positives and
False Negatives, respectively.

For DS3, where the ground truth annotations are un-
known, the reads were annotated in the following way.
Each query protein sequence was searched against the full-
length genome sequences using TBLASTN. The resulting
high-scoring pairs (E-value cutoff 10−3) were designated as
the homologous regions with respect to the query. Then,
all reads that were sampled from the genomes, and corre-
sponded to these homologous regions, were deemed as ho-
mologous reads. We note that this approach of designating
reads as homologs favors BLAST.

There is no ground truth annotation or reference se-
quence available for the real dataset DS4. Thus, only the
specificities and the raw numbers of identified reads (instead
of sensitivities) were evaluated for the four programs. To de-
fine TP, HMMER3 (42) was used to evaluate whether the
identified reads (for BLASTP, PSI-BLAST and FASTM)
or the identified contigs (for GRASP) could be assigned
to the same protein family as the query. Given a query se-
quence, its Pfam annotation was extracted from the KEGG
database (40), and the Pfam model was aligned with the
reads or GRASP contigs using HMMER3 (with default E-
value cutoff 0.01). For GRASP contigs that could be as-
signed to the family, all of their constituent reads were taken
as TPs. On the other hand when the contigs could not be
successfully aligned, their constituent reads were taken as
FPs. The specificity measure is defined accordingly.

For each of the three programs (BLASTP, PSI-BLAST
and FASTM), a read is considered as being identified by
the program as long as it is reported, disregarding the actual
length of the alignment between the query and the read. We
also assessed the effect of the length of the output alignment
on performance (see Supplementary Data C and Supple-
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Figure 3. The ROC curves for the performance of GRASP, BLASTP, PSI-
BLAST and FASTM on different simulated datasets. (A) Pfam-based sim-
ulated dataset (DS1) containing three unrelated families. (B) Pfam-based
simulated dataset (DS2) containing three families from the same clan. (C)
Simulated marine dataset (DS3) using glycolysis-related genes as queries.
(D) Simulated marine dataset (DS3) using selected marker genes from Am-
phora2 as queries. Note that only performances with specificity 90% and
higher are shown for (A) and (B). Each individual data point indicates per-
formance at a specific E-value cutoff, ranging from 10−10 to 10. Dashed
lines indicate performances that are extrapolated by projecting to coordi-
nate (1, 1).

mentary Figure S1). We note that for GRASP contigs, the
constituent reads are completely contained in the contigs.

Performance comparison

The programs were evaluated on all datasets for E-value
ranges from 10−10 to 10. The receiver operating charac-
teristic (ROC) curves for DS1 are shown in Figure 3A.
All programs show high specificities even at an E-value
cutoff of 10 (i.e. GRASP 99.99%, BLASTP 99.78%, PSI-
BLAST 99.80% and FASTM 99.96%). All programs also
show improved sensitivity with the relaxation of the E-
value cutoffs (i.e. for the E-value cutoff range from 10−10

to 10, GRASP’s sensitivity increased from 66.60 to 80.83%,
for BLASTP from 36.03 to 59.65%, for PSI-BLAST from
39.09 to 64.73% and for FASTM from 0.24 to 7.52%).
GRASP shows the best performance among all programs
in terms of both specificity and sensitivity. BLASTP and
PSI-BLAST show moderate sensitivity and high specificity.
FASTM shows relatively lower sensitivity, possibly because
it uses regression analysis to infer parameters while comput-
ing the E-values and thus its performance may be affected
by the low complexity and small size of this dataset. The
results show that the GRASP algorithm is capable of iden-
tifying homologous reads that are otherwise missed (due

to the low sequence similarity between them and the query
sequence), and can lead to significant sensitivity improve-
ment. Also, the high specificity of GRASP shows that those
low sequence identity reads are not placed randomly, but
are correctly assembled into contigs using a stringent over-
lap criterion (l ≥ 10) for the extension.

The ROC curves for DS2 are shown in Figure 3B. It was
observed again that all programs show high specificity even
at E-value cutoff of 10 (GRASP 99.73%, BLASTP 99.52%,
PSI-BLAST 98.89% and FASTM 100%). The specificities
for GRASP, BLASTP and PSI-BLAST are lower than that
for DS1, potentially because of an increased chance of as-
sembling reads from different families due to high inter-
family similarity (recall that all families in DS2 were cho-
sen from the same Pfam clan). FASTM, on the other hand,
shows a higher specificity in this experiment. The sensitiv-
ity for all programs appears to be lower for this dataset
(for the given E-value cutoff range, GRASP’s sensitivity was
increased from 30.91 to 36.98%, for BLASTP from 6.90
to 21.85%, for PSI-BLAST from 8.45 to 27.59% and for
FASTM from 2.21 to 7.47%). Nevertheless, GRASP again
shows the highest sensitivity among all programs that were
tested. The benchmark results on this dataset add evidence
that GRASP can assemble and identify homologs with high
specificity even for challenging scenarios, and at the same
time achieve improved sensitivity.

The ROC curves for searching 16
Glycolysis/Gluconeogenesis-related genes against DS3
are shown in Figure 3C. All four programs show lower
specificities compared to those for DS1 and DS2 (for the
given E-value cutoff range, GRASP’s specificity drops
from 98.36 to 87.15%, for BLASTP from 100 to 79.40%,
for PSI-BLAST from 100 to 71.33% and for FASTM from
99.96 to 52.54%), potentially because of the increased com-
plexity of the read set, sequencing errors and gene finding
errors (by the gene-caller). The sensitivities of all programs
are lower than that for DS1, but higher than that for the
challenging dataset DS2 (for the given E-value cutoff range,
GRASP’s sensitivity was increased from 42.23 to 50.76%,
for BLASTP from 25.00 to 42.12%, for PSI-BLAST from
25.92 to 49.09% and for FASTM from 27.56 to 46.30%).
GRASP still shows the highest performance in this exper-
iment compared to the other programs. FASTM shows
significantly improved performance in this experiment
compared to those for DS1 and DS2, potentially because
of the more realistic dataset with increased database size
and complexity.

The ROC curves for searching Amphora2 marker genes
against DS3 are shown in Figure 3D. For specificity within
the E-value cuotff range (from 10−10 to 10), GRASP drops
from 97.47 to 88.99%, BLASTP from 99.99 to 93.71%, PSI-
BLAST from 99.98 to 89.08% and FASTM from 99.81 to
83.32%; and for sensitivity GRASP increased from 32.14 to
48.02%, BLASTP from 5.22 to 36.50%, PSI-BLAST from
8.13 to 51.92% and FASTM from 9.38 to 45.16%. PSI-
BLAST performs the best in this experiment, followed by
GRASP. PSI-BLAST’s improved performance here is pri-
marily due to the highly conserved nature of the marker
genes which when coupled with an iterative detection ap-
proach, improves the chances of detecting homologs (us-
ing the position-specific matrix generated at the end of the
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Figure 4. Performance of GRASP, BLASTP, PSI-BLAST and FASTM
on a human saliva metagenomic dataset (DS4) using (A) Streptococcus and
(B) Lactobacillus proteins (Glycolysis/Gluconeogenesis related) as queries,
respectively. Left panel: Specificities of the four programs (note that only
performances with specificity 99% and higher are shown). Right panel:
Number of homologous reads identified by the four programs.

previous round). In fact, if a similar strategy is adopted for
GRASP, where reads from the database that are not part of
the GRASP output, are mapped to GRASP contigs (as part
of an auxiliary read mapping step at the end), then GRASP
achieves 67.82% sensitivity and 87.86% specificity at an E-
value cutoff of 10, and outperforms PSI-BLAST (see Sup-
plementary Data D and Supplementary Figure S2). These
results on searching marker genes indicate GRASP’s po-
tential applications in microbial community profiling using
metagenomic data.

The performance of GRASP and the other search pro-
grams on DS4 are shown in Figure 4. The E-value cuotffs
for this experiment were the same as in the previous ones
(10−10 to 10), but in the figures we only show the per-
formance on a selected number of cutoffs (due to limited
space). The specificity for GRASP is high (>99.40% in the
worst case scenario, which is observed for Lactobacillus
query at E-value cutoff of 10) and consistent for both query
species, indicating that the majority of assembled contigs
can be assigned to the same family as the query. With high
specificity, GRASP is able to identify many more homolo-
gous reads than the other search programs, which is con-
sistent with the higher sensitivity observation on the sim-
ulated datasets. For the given examples, GRASP identi-
fied approximately twice more homologous reads than the
other three search programs at an E-value cutoff of 10. For
E-value cutoff of 10−10, GRASP identified approximately
three times more homologous reads than FASTM and at
least five times more homologous reads than the BLAST
suite. Experiments using genes from other genus (Prevotella,
Fusobacterium and Aggregatibacter) confirm the same trend
that GRASP can identify many more homologous reads

than the other search programs with high specificity (Sup-
plementary Data E and Supplementary Figure S3). An ad-
ditional advantage of GRASP is that it makes the most ro-
bust prediction at different E-value cutoffs, while the other
search programs are highly sensitive to the E-value cutoff.

GRASP running time

Since GRASP implements both assembly and
search/alignment functions simultaneously, its run-
ning time can be expected to be slower than a program
that only performs sequence search/alignment. To further
investigate its running time, GRASP was run with different
query lengths and database sizes (Supplementary Data
F). In the first experiment, GRASP was used to search
for homologs of queries with different lengths (ranging
from ∼200aa to ∼800aa) against a single database (DS4).
In the second experiment, GRASP was used to search a
single query protein sequence (SGO 0049 with a length of
344aa) against databases with different sizes (constructed
by random sampling of reads from DS4). The results of
these two experiments are shown in Supplementary Figure
S4. It is observed that the actual running time of GRASP
grows linearly with respect to the query length when the
database is fixed. Furthermore, the running time also scales
linearly with the size of the database (for a fixed query).
Multithreaded execution mode is also implemented in
GRASP, with an empirical speed up of ∼2-fold using four
threads observed in these experiments (see Supplementary
Figure S4).

DISCUSSION

In this work we presented GRASP, a query sequence-guided
homology detection method that assembles overlapping
database reads during the search process. We performed a
systematic benchmarking of GRASP and compared it to
three other programs that are frequently used for short pep-
tide database searches. In our evaluations using simulated
and real datasets, we have shown that GRASP achieves
higher sensitivity compared to these three programs, while
maintaining a high specificity.

The sensitivity of the basic GRASP approach can be
further improved by incorporating an auxiliary read map-
ping step at the end, which maps the remaining database
reads (allowing for mismatches) against contigs output
by GRASP. This mapping step improved the sensitivity
by ∼10% when searching glycolysis pathway-related genes
against DS3, and by ∼20% when searching Amphora2
marker genes against DS3 at a similar specificity level. This
observation also motivates a future improvement to the
GRASP assembly algorithm that will allow for mismatches
in read overlaps during the path extension step; this will also
enable the assembly of longer contigs that, in the current
implementation, may be fragmented by the premature ter-
mination of the extension due to sequence mismatches.

Not surprisingly, the running time of GRASP is more
than that of the other three programs, because it also as-
sembles the short peptide fragments during the alignment
process. To search for the homologous reads of a protein
sequence (SGO 0049) with length 344 (which is close to the
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average length of a microbial protein) in the saliva sample
(∼12 million reads), GRASP takes ∼16 min with a single
thread. To improve the scalability of GRASP, we have fur-
ther implemented GRASP to allow for multithreaded exe-
cution; with four threads, the wall clock time reduces to ap-
proximately half. In addition, GRASP has flexible param-
eter settings including the choice of the reduced alphabet
and k-mer length for assembly seeding, the alignment band
size and the termination criteria. These parameters can be
tuned to balance the running time and the expected perfor-
mance (26). For example, by using a reduced alphabet with
more equivalent classes and longer seed length, one could
expect to improve the running time and specificity but at a
decreased sensitivity.

While recent methods have been proposed that have al-
lowed for the de novo reconstruction of complete protein
sequences directly from short peptide sequences (28), our
focus here is only on identifying the homologs of the ‘given’
query/reference protein sequence, and thus is computation-
ally cheaper than a complete assembly of all of the data.
GRASP is expected to be important in scenarios where fine-
grained analysis is desired. GRASP can be a more accurate
substitute for commonly used sequence search programs for
the purpose of annotating fragmentary protein sequences in
metagenomic datasets, and also allow for improved down-
stream analysis such as taxonomic profiling and metabolic
reconstructions.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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38. Methé,B.A., Nelson,K.E., Pop,M., Creasy,H.H., Giglio,M.G.,
Huttenhower,C., Gevers,D., Petrosino,J.F., Abubucker,S. and
Badger,J.H. (2012) A framework for human microbiome research.
Nature, 486, 215–221.

39. Li,H., Handsaker,B., Wysoker,A., Fennell,T., Ruan,J., Homer,N.,
Marth,G., Abecasis,G. and Durbin,R. (2009) The Sequence
Alignment/Map format and SAMtools. Bioinformatics, 25,
2078–2079.

40. Kanehisa,M., Goto,S., Kawashima,S., Okuno,Y. and Hattori,M.
(2004) The KEGG resource for deciphering the genome. Nucleic
Acids Res., 32, D277–D280.

41. Wu,M. and Scott,A.J. (2012) Phylogenomic analysis of bacterial and
archaeal sequences with AMPHORA2. Bioinformatics, 28,
1033–1034.

42. Eddy,S.R. (2009) A new generation of homology search tools based
on probabilistic inference. Genome Inform., 23, 205–211.


