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Abstract

Objective—Brain-computer interfaces (BCIs) are being developed to assist paralyzed people and 

amputees by translating neural activity into movements of a computer cursor or prosthetic limb. 

Here we introduce a novel BCI task paradigm, intended to help accelerate improvements to BCI 

systems. Through this task, we can push the performance limits of BCI systems, we can quantify 

more accurately how well a BCI system captures the user’s intent, and we can increase the 

richness of the BCI movement repertoire.

Approach—We have implemented an instructed path task, wherein the user must drive a cursor 

along a visible path. The instructed path task provides a versatile framework to increase the 

difficulty of the task and thereby push the limits of performance. Relative to traditional point-to-

point tasks, the instructed path task allows more thorough analysis of decoding performance and 

greater richness of movement kinematics.

Main results—We demonstrate that monkeys are able to perform the instructed path task in a 

closed-loop BCI setting. We further investigate how the performance under BCI control compares 

to native arm control, whether users can decrease their movement variability in the face of a more 

demanding task, and how the kinematic richness is enhanced in this task.

Significance—The use of the instructed path task has the potential to accelerate the development 

of BCI systems and their clinical translation.
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1. Introduction

Brain-computer interfaces (BCI) aim to assist paralyzed people and amputees by translating 

neural activity into movement of a computer cursor or prosthetic limb. Researchers have 

demonstrated the potential of these systems in the laboratory using animal subjects. 

Monkeys have been trained to control computer cursors [1–4], robotic limbs [5,6], electrical 

stimulation of their own muscles [7], and electrical stimulation of their own spinal cord [8] 

with BCIs. Recently, paralyzed humans have also controlled computer cursors [9–11] and 

robotic limbs [12, 13] via implanted BCI. In addition to providing quality-of-life benefits, 

BCIs can also be used to study the neural mechanisms of motor control and learning in 

healthy individuals [14–17].

Perhaps the most common tasks used in BCI studies are point-to-point tasks, such as center-

out [2–4,9–11,14,15,17,18]. In a point-to-point task, a user is instructed to move the effector 

(i.e., computer cursor or robotic limb) from one location to another, and there are no 

constraints on the effector’s trajectory. Consider the three BCI cursor trajectories for a point-

to-point task shown in Figure 1a. Although the trajectories are quite different from each 

other, all three trials would be deemed successful. Trajectory 1 most closely resembles the 

movement of the hand in a point-to-point task under arm control, so it may most closely 

reflect the user’s intention. Performance metrics for point-to-point tasks are mainly success 

rate (i.e., the percentage of successful trials) and target acquisition time (i.e., the duration of 

time for the effector to move from one point to another) [19]. Other performance metrics 

evaluate the trajectory of the cursor, measuring properties such as movement variability 

(across trials) and straightness (within a trial) [9]. To accelerate the development of BCIs 

from the lab to the clinic, we need more realistic tasks and richer performance metrics than 

point-to-point tasks can provide. Specifically, we propose the following three goals for BCI 

system design.

First, BCI tasks should be designed to extend the performance limits of current systems. 

Most current BCI systems perform quite well in center-out tasks [2–4, 9–11, 14, 15, 17, 18], 

which can create the impression that further improvements are not needed for clinical 

translation. One way in which performance limits can be extended is by increasing the 

difficulty of a task in a parametric manner until the user is no longer able to complete it 

successfully. With a point-to-point task, researchers can reduce the amount of time allowed 

for driving the effector to the target, increase the duration of time during which the user 

must keep the effector on a target (the ‘hold time’), increase the distance between the 

targets, or decrease the size of the targets. BCI tasks should allow for finer control of 

difficulty. By finely tuning task difficulty, we can reveal deficiencies in BCI control that 

may not be apparent in point-to-point tasks.

Second, we need to have a good understanding of the user’s intentions against which to 

evaluate the performance of a BCI. In a point-to-point task where there are few constraints 

on the effector’s trajectory, it is difficult to know whether or not any particular trajectory 

accurately reflects the user’s intent. When the cursor movement is not straight to the target 

(e.g., trajectory 2 in Figure 1a), it could be that the user intended to drive the cursor along 

that trajectory or that the BCI system is just difficult to control. Knowing the user’s intent 

Sadtler et al. Page 2

J Neural Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



would allow us to assess what aspects of the cursor movement variability is intentional and 

what aspects are beyond the user’s control. This can then be taken into account when 

designing BCI user interfaces (e.g., [20–22]) or physical workspaces (e.g., [6,12,13]) to 

minimize errors.

Third, BCIs should allow the user to demonstrate rich kinematics of the effector, resembling 

those of the arm in everyday life. A point-to-point task typically explores only a limited 

subset of kinematics (that is, the position and velocity of the effector). In a standard center-

out task, position and velocity are highly correlated [23, 24]. Designing tasks to test whether 

users are able to show diverse combinations of position and velocity while proficiently 

controlling the cursor will provide a framework for gauging the effectiveness of BCI 

systems.

Previous BCI studies have already proposed extensions to the center-out task, such as 

requiring users to move a BCI cursor around visual barriers [4] or to sequentially-placed 

targets (i.e., ‘pinball task’) [1, 5, 25–27]. Both of these tasks push the limits of the user’s 

control and increase the richness of kinematics relative to a center-out task, although it can 

be difficult to estimate the user’s true intentions in these tasks for the reason illustrated in 

Figure 1a. Another extension requires users to track a continuously moving target (i.e., 

‘pursuit tracking’) [25,26]. This extension helps to meet the aforementioned three goals and 

tests aspects of BCI control that are complementary to the work presented here.

Similar extensions have also been applied to arm movement tasks. For example, via-points 

[28] (i.e., requiring users to reach through a sequence of predefined targets), a pinball task 

[27], and tasks with visual barriers [29,30] have been used. Other studies have used tasks 

where the target changes location mid-reach [31, 32]. Schwartz and colleagues introduced 

tasks with instructed paths wherein the users traced spirals and ellipses with their hands [33, 

34]. All of these extensions increase the difficulty of the task and provide richer kinematics, 

against which neural activity can be compared.

We introduce the instructed path task for BCI control (Figure 1b). This task specifies the 

path along which the user should drive the cursor on each trial. It is particularly beneficial 

for BCI studies because it adds to the number of ways in which we can increase the 

difficulty of a task. In Figure 1b, the user must keep the cursor on the green path. To 

maintain the same proficiency as with the point-to-point task, the user must improve his or 

her performance, as trajectories like 2 and 3 would be deemed unsuccessful. Additionally, 

the instructed path constrains the possibilities for the user’s true intentions. That is, we know 

the user intends to move the cursor on the path instead of along any other unspecified route. 

This task can also be used to increase the richness of kinematics a user exhibits.

Here, we present findings in two monkeys who performed the instructed path task under 

BCI control. We compare performance to a conventional point-to-point task under BCI 

control. We also compare performance in both tasks under brain control to performance 

under arm control. We previously presented a preliminary version of this work [35].
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2. Methods

2.1. Electrophysiology and behavioral monitoring

All animal handling procedures were approved by the University of Pittsburgh Animal Care 

and Use Committee. Two male monkeys (Macaca mulatta, monkey L aged 9 and monkey J 

aged 6 years) were each implanted with a 96-channel multi-electrode array (Blackrock 

Microsystems) in the proximal arm region of primary motor cortex (M1) in the hemisphere 

contralateral to the arm used to perform the tasks under arm control. We monitored arm 

movements using an LED marker attached to the monkey’s index finger (Phasespace, Inc.). 

The task stimuli (i.e., targets, cursor, and instructed paths) were displayed to the monkeys in 

a virtual 3D environment in the same frontoparallel plane.

2.2. Tasks

We trained the monkeys to perform two tasks under brain control and arm control: the 

instructed path task and, for comparison, a point-to-point task. Both tasks are depicted in 

Figure 2. Sections 2.2.1 and 2.2.2 describe the tasks in general. Section S.1 provides detailed 

descriptions of the tasks, and Table S1 outlines the parameters used in each session.

2.2.1. Point-to-point task—The point-to-point task began with the appearance of a ‘start 

target’ (Figure 2a, top). The monkey moved the cursor to this target. Once the center of the 

cursor entered the ‘tolerance zone’ around the start target, the ‘end target’ appeared either 

immediately or following a short, randomized hold time (for monkey J during arm control 

sessions only). Hold times were chosen from the set {200, 450, 600, 750, 900, 1500} ms. 

Once the end target appeared (i.e., the ‘go cue’), the monkey could move the cursor to that 

target. When the center of the cursor entered the end target tolerance zone, the animal 

received a liquid reward. There was no hold requirement on the end target. The monkeys 

usually moved the cursor swiftly to the end target; if they did not do so, then after 5 s 

(monkey J) or 7.5 s (monkey L), no reward was given, and a 1.5 s penalty period ensued.

2.2.2. Instructed path task—The instructed path task also began with the appearance of 

a start target (Figure 2a, bottom). After the monkey moved the cursor to the start target, a 

path appeared either immediately or after a short, randomized hold time (for monkey J arm 

control only). Hold times were chosen from the same set as for the point-to-point task. The 

path connected the start target to the location of the end target, and the appearance of the 

path signaled the go cue. The monkey could then move the cursor through the path toward 

the end target. Once the cursor was 75% of the way through the path, the end target 

appeared (the path remained visible). When the monkey acquired the end target with the 

cursor (there was no hold time requirement on the end target), a liquid reward was 

administered. If the center of the cursor left the tolerance region around the path, or if the 

monkey did not acquire the end target within the time limit (same limits as the point-to-point 

task), then the trial aborted and was followed by a timeout. For both monkeys, we used 

instructed paths of two types: straight paths and paths with one inflection. For monkey J, we 

also used paths that were U-shaped, had two inflections, or had three inflections. We use the 

term ‘target distance’ refers to the straight-line distance between targets, regardless of the 
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presence or type of the path. The ‘path length’ of the instructed path refers to the distance 

between targets along the centerline of the path.

2.3. Quantification of performance

We quantified performance using several metrics. Two of the metrics (success rate and 

target acquisition time) are standard for BCI studies. Success rate is computed as the fraction 

of trials successfully completed. In order to compare across monkeys and control types, we 

discounted the hold time requirement for monkey J arm control. If a trial failed because the 

monkey did not satisfy the hold time requirement, we did not include that trial in the success 

rate computation.

Acquisition time is the amount of time taken by the monkey to drive the cursor to the end 

target on successful trials (starting from the go cue). We use two other metrics (virtual 

success rate and comparison of kinematics) to highlight the benefits of the instructed path 

task.

Virtual success rate: For a given set of point-to-point cursor trajectories, we asked how 

well the monkeys would have performed if an instructed path had been present. To assess 

this, we applied a ‘virtual’ path tolerance using a hypothetical straight instructed path and 

computed the percentage of trials that would have been successful if a path with that 

tolerance had been present. We termed this the ‘virtual success rate’. In a similar manner, 

we computed virtual success rates for instructed path trajectories for virtual path tolerances 

that were smaller than those used in the actual experiment. For all virtual success rate 

calculations, we disregarded the hold times as we did for the success rate calculations.

Significance testing: For all measures of success rate and virtual success rate, we combined 

each monkey’s performance across many sessions. To compare the success rates of two 

different experimental conditions, we could not simply apply a t-test because the data are 

binary (i.e., each trial is deemed a success or failure). Instead, we adopted a Bayesian 

approach whereby each success or failure is considered to be the result of a coin toss, whose 

probability of heads (i.e., success) is q (i.e., a Bernoulli process) [36,37]. Since q is unknown 

(in fact, it is what we desire to estimate), we set a uniform prior distribution on q between 0 

and 1. Having observed the distribution of successes and failures, we can then compute the 

posterior distribution on q, which is a beta distribution. The figures showing success rate or 

virtual success rate in Sections 3 and S.3 indicate the mean and the 95% confidence interval 

of the posterior distribution on q. We computed a separate posterior beta distribution for 

each experimental condition. To assess whether the success rate of one experimental 

condition (q1) was significantly greater than that of another condition (q2), we evaluated 

whether P (q1 > q2) was larger than 0.95.

For acquisition time and normalized acquisition time, we also combined performance across 

sessions. Because those metrics are continuous-valued, we could compare their distributions 

directly. The metrics are not normally distributed (Kolmogorov-Smirnov test, p = 0.05), so 

we compared distributions using Wilcoxon rank-sum test with a significance threshold of p 
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= 0.05. Because we used the rank-sum statistical test, we indicate the medians of the 

distributions rather than the means.

2.4. Control modalities

The monkeys controlled the position of the cursor using one of two modalities during each 

session: arm control or brain control.

2.4.1. Arm control—For sessions during which a monkey controlled the cursor with his 

arm, the position of the cursor was determined from the position of an LED on the monkey’s 

hand (Figure 2b). Only the horizontal and vertical components of the arm movements 

moved the cursor; arm movements toward or away from the monkey’s body were not 

rendered onscreen.

2.4.2. Brain control—For the brain control sessions, the monkeys controlled the cursor by 

modulating neural activity in M1 (Figure 2c). We loosely restrained monkey L’s arms 

during brain control sessions. Monkey J’s arms were unrestrained during the brain control 

sessions when we used the instructed path task. His arms were restrained during four of the 

five brain control sessions when we used the point-to-point task. In Section 2.5, we describe 

the general form of the decoder. Section S.2 provides more details about the decoder.

2.5. BCI decoders

We decoded cursor kinematics from neural activity using a linear mapping

(1)

where x̂t ∈ ℝr×1 is the cursor kinematics and ut ∈ ℝq×1 is a vector of z-scored activity for 

each ‘neural unit’ in the time bin t (45 ms or 60 ms). Each unit was z-scored separately. We 

defined one neural unit as corresponding to all of the threshold crossings recorded on one 

electrode. We set the threshold at 3.0 or 3.5 times the root-mean-square value for each 

electrode. For each session, the value was consistent across all electrodes. The number of 

units q was typically around 90 each session (monkey L mean +/− standard deviation: 88.44 

+/− 3.81; monkey J: 91.91 +/− 1.20). At the beginning of each session, we determined which 

electrodes to use for decoding. We did not use an electrode if its signal did not appear to be 

neural in origin or if it was electrically shorted to another electrode. M1 ∈ ℝr×r defines the 

contribution of the cursor kinematics at time t−1 to the kinematics at time t, and M2 ∈ ℝr×q 

defines the contribution of the neural activity recorded at time t to the cursor kinematics at 

time t. For some sessions, we derived the values of M1 and M2 from the standard Kalman 

filter [26]. For other sessions, we derived the values from a modified version of the Kalman 

filter [17]. Performance was comparable for both types of Kalman filters, so the data were 

combined. Details of the derivations are given in Section S.2.

For some sessions, the number of kinematic parameters r = 6. In those sessions, the elements 

of x̂t corresponded to horizontal and vertical position, velocity, and acceleration of the 

cursor. At each timestep, the elements of x̂t corresponding to position determined the 

cursor’s position on the screen. For other sessions, r = 2. The elements of x̂t corresponded to 
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horizontal and vertical velocity. We integrated the velocity across timesteps to define the 

cursor position on the screen.

2.5.1. Decoder calibration—Each brain control session began with a calibration block. 

We used the data recorded during that block to calibrate the parameters of the decoders.

Monkey L: The calibration procedure for monkey L was similar to that described in [18]. 

For the first 16 trials of the calibration block, the monkey observed a cursor move with a 

constant velocity from the start target (center of workspace) to the end target (15.2 cm from 

the start target). We called this the ‘observation task’. We calibrated the parameters of an 

initial decoder from the neural activity and cursor kinematics on these trials [38]. For the 

next 8 trials, the monkey controlled the cursor with the decoder calibrated on the 16 

observation trials. The cursor was placed on the start target at the beginning of each trial. 

We calibrated a decoder from these 8 trials, and the monkey controlled the cursor with that 

decoder for 8 more trials. We then calibrated a decoder from all 16 closed-loop trials. We 

repeated this process until the monkey had completed 48 closed-loop trials. The decoder that 

the monkey used for the remainder of the session was calibrated from data recorded on all 

48 trials. For all of monkey L’s sessions, r = 2.

Monkey J: Monkey J performed two different tasks for calibration, one task per session. 

For most sessions, we used the instructed path task under arm control to calibrate the BCI 

decoder. The monkey completed 2 repetitions of 64 unique combinations of path shape and 

target location. We used four path shapes during calibration: single-inflection, double-

inflection, triple-inflection, and U-shaped. We calibrated the decoding parameters using the 

arm kinematics and the recorded neural activity. For these sessions, r = 6.

For some of the point-to-point sessions for monkey J, the calibration block consisted entirely 

of the observation task. The monkey observed the cursor move for 80 trials, and we 

calibrated the parameters of the decoder from the observed cursor kinematics and recorded 

neural activity. For these sessions, r = 2.

Previous BCI studies have compared different methods for calibrating decoding parameters 

[4, 39, 40]. We did not systematically vary the BCI calibration methods in this study to 

allow for a direct comparison of different calibration methods.

3. Results

We trained two monkeys to control the position of a cursor either using their neural activity 

(‘brain control’) or their hand (‘arm control’). For each of these control modalities, there 

were two tasks. The point-to-point task required the monkeys to move the cursor from one 

target to another, and there were no constraints on the cursor’s trajectory. The instructed 

path task required the monkeys to move the cursor along a specified path. We used two 

different shapes of instructed paths for both monkeys: straight and single-inflection.

Figure 3 shows representative cursor trajectories for successful trials for both control 

modalities for both monkeys. For brain control (top row), the cursor mostly moves straight 

from the start target to the end target. For arm control (bottom row), the cursor trajectories 
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are slightly more direct than under brain control. These cursor trajectories are qualitatively 

similar to those shown in other studies (e.g., [18], [27], and [4]). Trajectories shown are 

from a contiguous stretch of trials in the middle of an arbitrarily-selected session. We did 

not observe systematic differences across sessions.

We implemented the instructed path task to push the limits of BCI systems beyond what 

point-to-point tasks can provide. Figure 4 shows representative cursor trajectories for the 

instructed path task for both control modalities (brain control and arm control) and both 

shapes of instructed paths (straight and single-inflection). Whereas in the point-to-point task, 

the cursor was free to take a circuitous route to arrive at the target, in the instructed path 

task, the cursor needs to follow a prescribed path.

Figure 4 highlights monkey L’s strategy for the curved trajectories. Presumably, this animal 

attempted to acquire the end target as quickly as possible by driving the cursor closer to the 

inside edge of the inflection. The instructed path cursor trajectories for monkey J are similar 

to those for monkey L, except that for both control modalities, the single-inflection cursor 

trajectories are not as close to the inside edge of the inflection as for monkey L.

3.1. Success rate

To quantify performance, we measured the success rates for the different tasks, which are 

shown in Figure 5. We expected that as we increased the task difficulty, the success rate 

would decrease. The straight instructed path is more difficult than the point-to-point task 

because of the added constraint to keep the cursor within a small tolerance zone around the 

instructed path. The single-inflection instructed path is more difficult than the straight 

instructed path because of its curvature. Indeed, the success rates were highest for point-to-

point, lower for straight instructed paths, and lowest for single-inflection instructed paths. 

This shows that more challenging tasks can reveal deficiencies in BCI control that are not 

evident using a point-to-point task. Strengthening this point, for monkey L (Figure 5a), as 

the task became more difficult, the difference in success rates between arm control and brain 

control became more pronounced.

Monkey J (Figure 5b) shows similar trends as monkey L. Namely, success rate decreased 

with increasing task difficulty for both brain control and arm control. Because monkey J’s 

experiments involved a variety of task parameters (Table S1), we included only a subset of 

sessions in Figure 5b in which the task parameters were as consistent as possible across 

tasks and control modalities. Success rates for all sessions for Monkey J are shown in Figure 

S1. The differences seen across monkeys in Figure 5 can be attributed to the fact that the 

task parameters are not entirely consistent across tasks and control modalities for Monkey J. 

For example, the difference between brain control and arm control performance did not 

become more pronounced with task difficulty for monkey J, as it did for monkey L. This 

may be due to the fact that the tolerance radii were more forgiving under brain control than 

under arm control.

3.2. Acquisition time

We measured the amount of time required to move the cursor from the start target to the end 

target. The acquisition times for monkey L are shown in Figure 6. The median acquisition 
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times are around 1 s for brain control and are shorter for arm control (point-to-point: 3.65 

times shorter; straight instructed paths: 2.78 times shorter; single-inflection instructed paths: 

1.87 times shorter). Note that the brain control cursor speed can be affected by choices made 

by the experimenter during calibration. For example, increasing the observed cursor speed 

during calibration can increase the speed of the cursor during closed-loop control (Figure 

S2), at the expense of success rate (data not shown). This is a manifestation of the classic 

speed-accuracy trade-off [41]. We chose observed cursor speeds that allowed the monkeys 

to achieve reasonable success rates on both the point-to-point and instructed path tasks, and 

for each monkey, the observed speed was constant for all sessions (monkey L: 17.5 cm/s, 

monkey J: 15 cm/s). In general, monkey J moved the cursor more quickly under arm control 

than brain control, as did monkey L. However, we were not able to directly compare the 

acquisition times for monkey J since the target distances varied between control modalities. 

This motivated the use of a normalized acquisition time, described below.

To compare the acquisition times across tasks (and across trials with different target 

distances), we need to take into account the length of the instructed path. For a given pair of 

start and end targets, a single-inflection path is 1.2 times longer than a straight path, and 

therefore, we expected the acquisition times to be longer for those trials. We normalized the 

acquisition times by the distance between start and end targets (for point-to-point task) or 

the distance along the instructed path (for instructed path task), and we show these 

‘normalized acquisition times’ in Figure 7. Because the normalization process accounts for 

the target distance, we could compare the normalized acquisition times for monkey J.

For monkey L (Figure 7a), the differences between the normalized acquisition times for 

brain control are smaller than they are for arm control. This suggests that the monkey was 

less able to modulate the speed of cursor movement under brain control than under arm 

control [9,42]. The normalized acquisition times were larger for the straight instructed paths 

than for the point-to-point task for both control modalities. The additional constraints of the 

path presumably influenced the monkey to attempt to move the cursor more slowly in order 

to stay within its bounds.

For both brain control and arm control, the longest normalized acquisition times were for the 

single-inflection instructed paths. For arm control, this indicates that the monkey moved his 

arm slower when making a curved trajectory [43]. This is likely because the monkey needed 

to change the momentum of his arm, which required him to make slower movements. The 

same holds for brain control, where the form of the decoder (Equation 1) imparts momentum 

on the cursor [44].

Figure 7b shows the normalized acquisition times for the subset of the sessions from 

monkey J analyzed in Figure 5b. For arm control, the relative ordering of the normalized 

acquisition times are consistent with monkey L. For brain control, there are two differences 

between the monkeys, and they can be explained by the task parameters being not entirely 

matched across tasks for monkey J. First, the normalized acquisition time is lower for the 

straight instructed path task than the point-to-point task for monkey J brain control. This is 

likely due to the fact that the point-to-point target distance (15.2 cm) is substantially shorter 

than that for the straight instructed path trials (22.7 cm). Movements of shorter distance tend 
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to have smaller peak movement speeds and therefore larger normalized acquisition times 

[45]. Second, the normalized acquisition time is lower for single-inflection paths than 

straight paths for monkey J brain control. This is likely due to the fact that the single-

inflection brain control experiments were conducted nearly three months after the point-to-

point and straight-path brain control experiments. The monkey likely became more 

proficient at the instructed path task during the intervening time. A full analysis of 

normalized acquisition times for all sessions for monkey J is shown in Figure S3.

3.3. Virtual success rate

For point-to-point tasks, there can be substantial variability in the cursor trajectories across 

trials. We reasoned that while some of that variability might be inevitable due to stochastic 

spiking of neurons, users might be able to control some of it, albeit with perhaps greater 

effort. We examined whether the monkeys decreased the variability of the cursor 

movements in the face of the more demanding instructed path task. We compared the 

performance on the straight instructed path task to the performance on the point-to-point 

task. Post hoc, we calculated how many trials of the point-to-point task would have been 

successful had the straight path been present in those trials. We call this the ‘virtual path’. 

Figure 1a showed three example cursor trajectories for the point-to-point task. Trial 1 would 

have been deemed successful in this analysis, but trials 2 and 3 would have been deemed 

unsuccessful, since the cursor left the tolerance region.

Figures 8a and 8b compare monkey L’s point-to-point virtual-path success rates to the actual 

straight path success rates for both brain control and arm control. Under brain control 

(Figures 8a), the success rate of the instructed path task was significantly greater than the 

success rate when the virtual path was applied to the point-to-point task. This indicates that 

the presence of the instructed path did indeed influence this monkey to reduce the cursor 

variability. For arm control, the virtual success rate for the point-to-point task was not 

significantly different from the success rate for the straight instructed paths. This indicates 

that for arm movements, the presence of the path did not influence the monkey to tighten 

cursor movement variability (Figure 8b). It is possible that an even smaller tolerance radius 

would have done so. We infer from this first that, it is easier to reach with consistency than 

it is to move a BCI cursor with consistency, and second that with the proper incentives, BCI 

movement variability can be volitionally reduced, at least to some extent.

In Figure S4a, we extend this analysis. Instead of computing the virtual success rates only at 

the path tolerance radius applied online, we computed the virtual success rates at a range of 

path tolerance radii. The results are consistent across a broad range of virtual path tolerance 

radii: the monkey tightened movement variability in the presence of the instructed path 

under brain control, but not during arm control.

We conducted the virtual success rate analysis for arm control for monkey J (Figure 8c). In 

contrast to monkey L, monkey J was influenced by the instructed path to reduce variability 

for arm control, as indicated by the higher virtual success rate for the straight instructed path 

task than the point-to-point task with virtual paths. This is also consistent across a broad 

range of tolerance radii (Figure S4b). We did not have brain control point-to-point and brain 
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control straight path trials with matched target distances, so we were not able to perform this 

analysis for brain control for monkey J.

3.4. Richness of kinematics

The third benefit we propose of the instructed path task is that it elicits richer volitonally-

controlled kinematics of the movement. To demonstrate this, we measured the instantaneous 

position and velocity of the cursor at every timestep and generated 2D histograms of the 

kinematic elements. These histograms for arm control are shown in Figure 9. As expected, 

the kinematics are similar for the point-to-point task (first columns for both monkeys) and 

the straight instructed path task (second columns). However, single-inflection instructed 

paths (third columns) provide a different set of kinematics. Combining the two types of 

instructed paths (fourth columns) provides a larger range of kinematics than the point-to-

point task or either type of instructed path alone. By designing additional instructed paths, 

one could continue to increase the richness of the kinematics. Rich kinematics are important 

not only for showing that BCI movements can resemble arm movements in everyday life, 

but they can also be beneficial in basic scientific studies of neural mechanisms in M1 [24, 

28–30, 32, 33]. For brain control (Figure S5), the kinematic richness in velocity is more 

similar across the different task types than for arm control. This is consistent with previous 

studies showing that there is limited speed modulation in BCI control [9,42], and it 

highlights an important avenue for improvement in future BCI systems.

3.5. More challenging instructed paths

We used the instructed-path framework to finely tune the task difficulty in order to 

challenge the monkeys to the limits of each animal’s ability. We trained monkey J to follow 

double-inflection instructed paths with both brain control and arm control (Figure 10a), U-

shaped instructed paths with arm control (Figure 10b), and triple-inflection paths with arm 

control (Figure 10c). By increasing the difficulty of the paths, we were able to uncover 

additional limitations of monkey J’s performance. For example, it was difficult for him to 

steer the cursor around the tight curves required for the double-inflection paths under brain 

control. Revealing such deficiencies in BCI control is important for two reasons. First, it 

indicates where future work aimed to improve BCI system performance is needed. Second, 

it informs the design of BCI user interfaces (e.g., keyboards) that take into account these 

deficiencies to minimize the user’s errors [20–22].

4. Discussion

Here, we demonstrate for the first time that monkeys can steer a BCI cursor along instructed 

paths. We found that the instructed path task can expose deficiencies in BCI control that 

may not be apparent in point-to-point tasks. Furthermore, the user can decrease BCI cursor 

movement variability in the face of the more demanding, instructed path task. Compared to 

point-to-point tasks, the instructed path task provides finer control of task difficulty, more 

precise knowledge of a BCI user’s movement intentions, and richer movement kinematics. 

These advantages of the instructed path task are important for assessing the performance 

limits of current BCI systems and designing future BCI systems.
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BCIs have shown promise for improving the quality of life for paralyzed individuals, but 

BCIs cannot currently duplicate the richness and deftness of natural reaches. Recent work is 

closing the gap between BCI control and natural reaches (e.g., [4]), but further progress is 

needed on many fronts. Among them is the need for more challenging, lifelike tasks. The 

instructed path task is an important step in that direction. Other task alternatives to the point-

to-point paradigm have been used. Especially relevant to our work is the pursuit tracking 

task [25, 26], in which the subject tracks a continuously-moving target with the BCI cursor. 

Both pursuit-tracking and instructed paths have some real-world relevance. In everyday life, 

we often make tracking movements (such as turning a steering wheel to follow a winding 

road) and movements where the trajectory can be planned before the movement begins (such 

as reaching for a glass of water on a cluttered table). A pursuit tracking task has the 

advantage of allowing us to directly study the extent to which BCI users can effectively 

control cursor speed. In the instructed path task, speed was manipulated only indirectly by 

changing the curvature of the path. An advantage of the instructed path task is that the entire 

movement can be pre-planned, and the neural activity during the plan stage could be 

decoded to improve BCI control [46].

In this work, we focused on virtual BCI effectors. BCIs are also being developed to control 

robotic limbs [5,6,12,13] and to restore function to the individual’s own arm [7,8] for 

reaching and grasping. The instructed path task could extend naturally to three dimensions 

to help raise the performance standard in those studies as well by prescribing the path 

through which the robotic limb or arm should reach.

An interesting secondary outcome of these experiments is that the two animals we studied 

showed individual differences [30]. Although both could complete the main tasks about 

equally well, one (monkey J) may have been more motivated by more challenging tasks, and 

as a result, we were able to train him to follow more complex paths. Another difference 

between the monkeys is the type of calibration procedure that we used. In our initial 

experiments with monkey L (data not included here), we attempted to calibrate decoders 

using only the observation based procedure like we did for monkey J. Doing so, we were 

unable to calibrate decoders that the monkey could use, and as a result, we switched to the 

gradual calibration procedure. We can speculate that monkey L’s cognitive processing of the 

observation task was different from that of monkey J, but we cannot rule out the possibility 

that neurons in monkey L’s motor cortex other than the ones we recorded may have been 

activated by the observation procedure. Nevertheless, the differences between the two 

monkeys highlight the need to tailor BCI systems to suit each user.

An open question is why BCI performance tends to be lower than arm control performance. 

There are likely at least four factors that impact brain control performance. First, the way in 

which BCI decoders are calibrated can influence performance [4, 47, 48]. By taking into 

account aspects of the closed-loop BCI control (as opposed to calibrating solely from 

passive observation or arm control), BCI performance can rival the performance of the 

natural limb [4]. We have not taken advantage of these innovations here, but this can be 

done in future studies. Second, BCI performance is in part determined by the user’s 

experience with and ability to learn to use the BCI system [14, 15, 17, 49]. Subjects have 

had years of experience controlling their limbs, but they typically have much less experience 
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controlling a BCI. In a laboratory setting, users typically use one decoder for 1 – 2 hours per 

day, where the decoder is calibrated anew each day based on the set of neurons present 

(although it is also possible to use the same neurons for days to weeks [15]). Because users 

do not have continuous, sustained practice with a given BCI, brain control performance is 

likely to be lower than arm control performance. Third, many decoders, such as the Kalman 

filter, assume a linear relationship between movement kinematics and firing rates. However, 

the relationship between neural activity and natural arm movements is nonlinear. Designing 

a BCI decoder with a nonlinear relationship can lead to improved brain control performance 

[50]. Fourth, using state-of-the-art recording technologies, we are still only able to record 

from a small fraction of neurons involved in controlling the limbs. While this small fraction 

may nearly be sufficient for controlling a cursor in two dimensions [4], more neurons could 

help to fully close the gap in performance between arm control and brain control [51]. This 

is especially true as the field moves towards BCI systems with high degree-of-freedom 

effectors, such as robotic limbs [6,12,13].

Previous studies have shown that users can change the structure of the variability in their 

arm movements [52–54]. That is, users reduce their movement variability in dimensions that 

are relevant to the task in order to maximize performance. Our study suggests that this also 

holds for neural variability [55–57]. In the virtual success rate analysis (Figure 8a & S4a), 

we found that monkey L reduced the variability of the brain-controlled cursor movements in 

a manner appropriate for the task constraints. Because the cursor movements are driven 

directly by neural activity, this means that the animal shaped the variability of his motor 

cortical activity in a manner that was beneficial for task performance.

The user’s ability to shape the variability of his neural activity, and consequently the BCI 

cursor movements, can be used to aid the design of BCI systems intended for clinical use. 

For example, an important design decision in keyboard-based BCI is the keyboard layout 

[20–22]. By studying the ways in which user is able to reduce cursor variability using 

instructed paths, the keys can be placed in a way that matches the user’s cursor variability to 

minimize key selection errors.

In summary, to increase the clinical viability of BCI systems, developments on multiple 

fronts are needed. To help accelerate those developments, we introduced an instructed path 

task. This new task can reveal deficiencies in BCI control that are not apparent with standard 

point-to-point tasks. This task can inform the design of BCI user interfaces or physical 

workspaces, and test whether BCI users are able to demonstrate the kinematic richness of 

natural arm movements. The combination of novel behavioral tasks like this one with new 

BCI calibration methods, decoding algorithms, and recording technologies will accelerate 

the transition of BCIs from the lab to the clinic.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Raising performance standards in BCI paradigms. Cursor trajectories (black) from three 

trials in two tasks are shown. (a) Point-to-point task. All three trials would be successful 

since the cursor cursor moves from one target (yellow) to the other. (b) Instructed path task. 

The user is required to keep the cursor within the path (green) while moving it from one 

target to the other. Only trial 1 would be successful in this task.
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Figure 2. 
Task schematic and timeline. (a) At the beginning of each trial, the monkey moved the 

cursor (blue circle) to acquire the start target (yellow circle). The go cue (appearance of the 

end target the for the point-to-point task, appearance of the path for the instructed path task) 

was then given, and the monkey was required to move the cursor to the end target (point-to-

point task) or through the path (green; instructed path task). White dashed circle, tolerance 

zone around the target; green dashed line, tolerance zone around the instructed path. (b) For 

arm control trials, the monkeys controlled the red cursor using the position of their hand. We 

mapped the position of an LED on the monkey’s hand (red dot) directly to cursor position 

on the screen. (c) For brain control trials, the monkeys controlled the blue cursor by 

modulating neural activity. Neural activity was converted to cursor position using a BCI 

decoder.

Sadtler et al. Page 19

J Neural Eng. Author manuscript; available in PMC 2016 February 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. 
Representative point-to-point cursor trajectories. Top row: Cursor trajectories for 4 of the 8 

target configurations for the point-to-point task under brain control. Yellow circles, start and 

end targets; arrows, direction of cursor movement (i.e., from start target to end target); 

dashed lines, target tolerance zone; blue circle, brain-controlled cursor; black lines, cursor 

trajectories. Bottom row: Cursor trajectories for 4 of the 8 target configurations under arm 

control. Red circle, arm-controlled cursor. Target-to-target distance is 20 cm for monkey L 

and 15.2 cm for monkey J.
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Figure 4. 
Representative instructed path cursor trajectories. Top: Brain control cursor trajectories for 4 

of the 8 straight path configurations and 4 of the 16 single-inflection path configurations. 

Same format as Figure 3. Green dashed line: path tolerance zone. Bottom: Arm control 

cursor trajectories. Target distances are 10 cm for monkey L arm control and brain control, 

22.5 cm for monkey J brain control, and 15.2 cm for monkey J arm control.
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Figure 5. 
Success rates for the three tasks under brain control and arm control. Each bar shows the 

percentage of successful trials for a given task and control modality across all sessions. Error 

bars are the 95% confidence interval defined by the Bernoulli process. The success rates 

indicated by any two bars for the same monkey are significantly different at the 95% level. 

The tables indicate the target distance and path tolerance radius for each task. (a) Success 

rates for monkey L. Trial counts: point-to-point: brain control, number of trials, n = 2660; 

arm control, n = 1859. Straight instructed paths: brain control, n = 1723; arm control, n = 

4259. Single-inflection instructed paths: brain control, n = 1889; arm control, n = 5344. (b) 

Success rates for monkey J. Point-to-point: brain control, n = 206; arm control, n = 4421. 

Straight instructed paths: brain control, n = 1066; arm control, n = 713. Single-inflection 

instructed paths: brain control, n = 9605; arm control, n = 810.
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Figure 6. 
Comparison of acquisition times for different tasks for monkey L. Tick marks: medians of 

distributions. Acquisition times were computed only for successful trials. In each panel, all 

acquisition times are significantly different from each other (p < 0.05, Wilcoxon rank-sum 

test).
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Figure 7. 
Comparison of normalized acquisition times for different tasks. (a) Normalized acquisition 

times for brain control (left) and arm control (right) for monkey L. Point-to-point: brain 

control, n = 2363 successful trials; arm control, n = 1811. Straight instructed paths: brain 

control, n = 1363; arm control, n = 4089. Single-inflection instructed paths: brain control, n 

= 1001; arm control, n = 4093. (b) Normalized acquisition times for monkey J. Same format 

as a. Point-to-point: brain control, n = 206 successful trials; arm control, n = 4033. Straight 

instructed paths: brain control, n = 839; arm control, n = 629. Single-inflection instructed 

paths: brain control, n = 6331; arm control, n = 626. Acquisition times were defined only for 

successful trials. In each panel, all normalized acquisition times are significantly different 

from each other (p < 0.05, Wilcoxon rank-sum test).
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Figure 8. 
Virtual success rate analysis. (a) Brain control success rates (mean and 95% confidence 

interval based on the Bernouilli process) with a virtual path with tolerance radius 3.5 cm. 

Note that the straight instructed path success rate is the monkey’s actual success rate. 

Success rates are significantly different. Target-to-target distance: 20 cm. Point-to-point, n = 

2660 trials. Straight instructed paths, n = 1723. (b) Virtual success rates for arm control for 

monkey L. Same format as a. Virtual success rates for monkey L arm control are not 

significantly different. Target-to-target distance: 20 cm. Point-to-point, n = 1859. Straight 

instructed paths, n = 4259. (c) Virtual success rates for arm control for monkey J. Same 

format as a. We performed this analysis for instructed path trials with tolerance radii of 16 

cm (n = 713) and all point-to-point trials (n = 4603). Virtual success rates for point-to-point 

and straight paths are significantly different.
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Figure 9. 
Kinematic histograms for different task types for monkey L (left) and monkey J (right) arm 

control. Four pairwise combinations of kinematic distributions for the arm control point-to-

point task (first column for each monkey), straight instructed paths (second columns), 

single-inflection instructed paths (third columns), and both instructed path tasks combined 

(fourth columns). The data from monkey J are from the same subset of sessions shown in 

Figure 5a.
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Figure 10. 
Cursor trajectories from additional instructed path types for monkey J. (a) Double-inflection 

instructed paths. Top row, brain control. Bottom row, arm control. Target distance: 22.5 cm. 

(b) U-shaped instructed paths with arm control. Target distance: 15.2 cm. (c) Triple-

inflection paths with arm control. Target distance: 15.2 cm. Same plotting format as Figure 

3.
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