Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1994 Mar 15;91(6):2041–2045. doi: 10.1073/pnas.91.6.2041

Delayed emergence of effects of memory-enhancing drugs: implications for the dynamics of long-term memory.

C Mondadori 1, B Hengerer 1, T Ducret 1, J Borkowski 1
PMCID: PMC43305  PMID: 8134347

Abstract

Many theories of memory postulate that processing of information outlasts the learning situation and involves several different physiological substrates. If such physiologically distinct mechanisms or stages of memory do in fact exist, they should be differentially affected by particular experimental manipulations. Accordingly, a selective improvement of the processes underlying short-term memory should be detectable only while the information is encoded in the short-term mode, and a selective influence on long-term memory should be detectable only from the moment when memory is based on the long-term trace. Our comparative study of the time course of the effects of the cholinergic agonist arecoline, the gamma-aminobutyric acid type B receptor antagonist CGP 36742, the angiotensin-converting enzyme inhibitor captopril, and the nootropic oxiracetam, four substances with completely different primary sites of action, show that the memory-enhancing effects consistently come into evidence no sooner than 16-24 h after the learning trial. On the one hand, this finding suggests that all these substances act by way of the same type of mechanism; on the other hand, it demonstrates that the substrate modulated by the compounds forms the basis of memory only after 16-24 h. From the observation that animals also show clear signs of retention during the first 16 h--i.e., before the effects of the substances are measurable--it can be inferred that retention during this time is mediated by other mechanisms that are not influenced by any of the substances.

Full text

PDF
2041

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barondes S. H., Cohen H. D. Comparative effects of cycloheximide and puromycin on cerebral protein synthesis and consolidation of memory in mice. Brain Res. 1967 Feb;4(1):44–51. doi: 10.1016/0006-8993(67)90147-3. [DOI] [PubMed] [Google Scholar]
  2. Barondes S. H., Cohen H. D. Delayed and sustained effect of acetoxycycloheximide on memory in mice. Proc Natl Acad Sci U S A. 1967 Jul;58(1):157–164. doi: 10.1073/pnas.58.1.157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Barondes S. H., Cohen H. D. Memory impairment after subcutaneous injection of acetoxycycloheximide. Science. 1968 May 3;160(3827):556–557. doi: 10.1126/science.160.3827.556. [DOI] [PubMed] [Google Scholar]
  4. Bishop J. M. Molecular themes in oncogenesis. Cell. 1991 Jan 25;64(2):235–248. doi: 10.1016/0092-8674(91)90636-d. [DOI] [PubMed] [Google Scholar]
  5. Bättig K. The effect of pre- and post-trial application of nicotine on the 12 problems of the Hebb-Williams-test in the rat. Psychopharmacologia. 1970 Aug 19;18(1):68–76. doi: 10.1007/BF00402385. [DOI] [PubMed] [Google Scholar]
  6. Cohen H. D., Barondes S. H. Effect of acetoxycycloheximide on learning and memory of a light-dark discrimination. Nature. 1968 Apr 20;218(5138):271–273. doi: 10.1038/218271a0. [DOI] [PubMed] [Google Scholar]
  7. Cole A. J., Saffen D. W., Baraban J. M., Worley P. F. Rapid increase of an immediate early gene messenger RNA in hippocampal neurons by synaptic NMDA receptor activation. Nature. 1989 Aug 10;340(6233):474–476. doi: 10.1038/340474a0. [DOI] [PubMed] [Google Scholar]
  8. Davis H. P., Squire L. R. Protein synthesis and memory: a review. Psychol Bull. 1984 Nov;96(3):518–559. [PubMed] [Google Scholar]
  9. Deyo R. A., Straube K. T., Disterhoft J. F. Nimodipine facilitates associative learning in aging rabbits. Science. 1989 Feb 10;243(4892):809–811. doi: 10.1126/science.2916127. [DOI] [PubMed] [Google Scholar]
  10. Dragunow M., Robertson H. A. Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res. 1988 Jul 12;455(2):295–299. doi: 10.1016/0006-8993(88)90088-1. [DOI] [PubMed] [Google Scholar]
  11. Dragunow M., Robertson H. A. Kindling stimulation induces c-fos protein(s) in granule cells of the rat dentate gyrus. Nature. 1987 Oct 1;329(6138):441–442. doi: 10.1038/329441a0. [DOI] [PubMed] [Google Scholar]
  12. FLEXNER J. B., FLEXNER L. B., STELLAR E. Memory in mice as affected by intracerebral puromycin. Science. 1963 Jul 5;141(3575):57–59. doi: 10.1126/science.141.3575.57. [DOI] [PubMed] [Google Scholar]
  13. Flood J. F., Cherkin A. Effect of acute arecoline, tacrine and arecoline + tacrine post-training administration on retention in old mice. Neurobiol Aging. 1988 Jan-Feb;9(1):5–8. doi: 10.1016/s0197-4580(88)80003-4. [DOI] [PubMed] [Google Scholar]
  14. GEHAN E. A. A GENERALIZED WILCOXON TEST FOR COMPARING ARBITRARILY SINGLY-CENSORED SAMPLES. Biometrika. 1965 Jun;52:203–223. [PubMed] [Google Scholar]
  15. Goelet P., Castellucci V. F., Schacher S., Kandel E. R. The long and the short of long-term memory--a molecular framework. 1986 Jul 31-Aug 6Nature. 322(6078):419–422. doi: 10.1038/322419a0. [DOI] [PubMed] [Google Scholar]
  16. Gold P. E. Glucose modulation of memory storage processing. Behav Neural Biol. 1986 May;45(3):342–349. doi: 10.1016/s0163-1047(86)80022-x. [DOI] [PubMed] [Google Scholar]
  17. Gold P. E., Van Buskirk R. B. Facilitation of time-dependent memory processes with posttrial epinephrine injections. Behav Biol. 1975 Feb;13(2):145–153. doi: 10.1016/s0091-6773(75)91784-8. [DOI] [PubMed] [Google Scholar]
  18. Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature. 1984 Oct 4;311(5985):433–438. doi: 10.1038/311433a0. [DOI] [PubMed] [Google Scholar]
  19. Hengerer B., Lindholm D., Heumann R., Rüther U., Wagner E. F., Thoenen H. Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos. Proc Natl Acad Sci U S A. 1990 May;87(10):3899–3903. doi: 10.1073/pnas.87.10.3899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. McGaugh J. L., Landfield P. W. Delayed development of amnesia following electroconvulsive shock. Physiol Behav. 1970 Oct;5(10):1109–1113. doi: 10.1016/0031-9384(70)90197-6. [DOI] [PubMed] [Google Scholar]
  21. Mondadori C., Ducret T., Borkowski J. How long does 'memory consolidation' take? New compounds can improve retention performance, even if administered up to 24 hours after the learning experience. Brain Res. 1991 Jul 26;555(1):107–111. doi: 10.1016/0006-8993(91)90866-t. [DOI] [PubMed] [Google Scholar]
  22. Mondadori C., Ducret T., Häusler A. Elevated corticosteroid levels block the memory-improving effects of nootropics and cholinomimetics. Psychopharmacology (Berl) 1992;108(1-2):11–15. doi: 10.1007/BF02245278. [DOI] [PubMed] [Google Scholar]
  23. Mondadori C., Etienne P. Nootropic effects of ACE inhibitors in mice. Psychopharmacology (Berl) 1990;100(3):301–307. doi: 10.1007/BF02244597. [DOI] [PubMed] [Google Scholar]
  24. Mondadori C., Gentsch C., Hengerer B., Ducret T., Borkowski J., Racine A., Lederer R., Haeusler A. Pretreatment with aldosterone or corticosterone blocks the memory-enhancing effects of nimodipine, captopril, CGP 37,849, and strychnine in mice. Psychopharmacology (Berl) 1992;109(4):383–389. doi: 10.1007/BF02247712. [DOI] [PubMed] [Google Scholar]
  25. Mondadori C., Jaekel J., Preiswerk G. CGP 36742: the first orally active GABAB blocker improves the cognitive performance of mice, rats, and rhesus monkeys. Behav Neural Biol. 1993 Jul;60(1):62–68. doi: 10.1016/0163-1047(93)90729-2. [DOI] [PubMed] [Google Scholar]
  26. Mondadori C., Petschke F., Häusler A. The effects of nootropics on memory: new aspects for basic research. Pharmacopsychiatry. 1989 Oct;22 (Suppl 2):102–106. doi: 10.1055/s-2007-1014627. [DOI] [PubMed] [Google Scholar]
  27. Mondadori C. The pharmacology of the nootropics; new insights and new questions. Behav Brain Res. 1993 Dec 31;59(1-2):1–9. doi: 10.1016/0166-4328(93)90145-g. [DOI] [PubMed] [Google Scholar]
  28. Morgan J. I., Curran T. Role of ion flux in the control of c-fos expression. Nature. 1986 Aug 7;322(6079):552–555. doi: 10.1038/322552a0. [DOI] [PubMed] [Google Scholar]
  29. STRATTON L. O., PETRINOVICH L. POST-TRIAL INJECTIONS OF AN ANTI-CHOLINESTERASE DRUG AND MAZE LEARNING IN TWO STRAINS OF RATS. Psychopharmacologia. 1963 Oct 24;5:47–54. doi: 10.1007/BF00405574. [DOI] [PubMed] [Google Scholar]
  30. WAUGH N. C., NORMAN D. A. PRIMARY MEMORY. Psychol Rev. 1965 Mar;72:89–104. doi: 10.1037/h0021797. [DOI] [PubMed] [Google Scholar]
  31. Yamamoto K. R. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209–252. doi: 10.1146/annurev.ge.19.120185.001233. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES