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Prenatal ethanol exposure (PE) is one of the developmental factors leading to increased addiction propensity (risk). However, the

neuronal mechanisms underlying this effect remain unknown. We examined whether increased excitatory synaptic transmission in ventral

tegmental area (VTA) dopamine (DA) neurons, which is associated with drug addiction, was impacted by PE. Pregnant rats were exposed

to ethanol (0 or 6 g/kg/day) via intragastric intubation from gestational day 8–20. Amphetamine self-administration, whole-cell recordings,

and electron microscopy were performed in male offspring between 2 and 12-week-old. The results showed enhanced amphetamine self-

administration in PE animals. In PE animals, we observed a persistent augmentation in calcium-permeable AMPA receptor (CP-AMPAR)

expression, indicated by increased rectification and reduced decay time of AMPAR-mediated excitatory postsynaptic currents (AMPAR-

EPSCs), enhanced depression of AMPAR-EPSCs by NASPM (a selective CP-AMPAR antagonist), and increased GluA3 subunits in VTA

DA neuron dendrites. Increased CP-AMPAR expression in PE animals led to enhanced excitatory synaptic strength and the induction of

CP-AMPAR-dependent long-term potentiation (LTP), an anti-Hebbian form of LTP. These observations suggest that, in PE animals,

increased excitatory synaptic strength in VTA DA neurons might be susceptible to further strengthening even in the absence of impulse

flow. The PE-induced persistent increase in CP-AMPAR expression, the resulting enhancement in excitatory synaptic strength, and CP-

AMPAR-dependent LTP are similar to effects observed after repeated exposure to drugs of abuse, conditions known to increase addiction

risk. Therefore, these mechanisms could be important neuronal substrates underlying PE-induced enhancement in amphetamine self-

administration and increased addiction risk in individuals with fetal alcohol spectrum disorders.

Neuropsychopharmacology (2015) 40, 893–905; doi:10.1038/npp.2014.265; published online 26 November 2014

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

INTRODUCTION

There are individual differences in drug addiction propen-
sity (risk). Only a proportion of individuals develop drug
addiction after using drugs repeatedly (Everitt et al, 2008).
Current evidence suggests that prenatal exposure to drugs
of abuse (eg, ethanol, psychostimulants, opiates, cannabi-
noids, nicotine) could increase addiction risk (Malanga and
Kosofsky, 2003). Indeed, clinical studies have shown that
prenatal ethanol exposure (PE) increases addiction risk
(Famy et al, 1998; Baer et al, 2003; Alati et al, 2006). Results
from animal studies show that PE leads to behavioral
phenotypes associated with increased addiction risk such as

enhanced locomotor activity to novelty (Bond, 1981;
Abel, 1984; Kelly et al, 1988; Thomas et al, 2008),
anxiety/depression-like behavior (Hellemans et al, 2008;
Weinberg et al, 2008), behavioral sensitization to stimulants
(Blanchard et al, 1987; Barbier et al, 2009), and augmented
HPA axis reactivity (Lee et al, 2008; Weinberg et al, 2008).
Furthermore, PE facilitates the learning of drug cues in the
conditioned place preference paradigm (Spear and Molina,
2005; Barbier et al, 2008, 2009). However, the cellular
mechanisms mediating PE-induced increase in addiction
risk are not well understood.

The mesolimbic/cortical dopamine (DA) systems are the
major targets for drugs of abuse (Koob and Le Moal, 1997)
and have a critical role in addictive behaviors. Specifically,
DA neurons located in the ventral tegmental area (VTA) are
important in mediating addictive behaviors or increased
addiction risk. For example, intra-VTA psychostimulant
administration enhances the subsequent cocaine self-
administration (Suto et al, 2003) and reinstates drug-
seeking behavior (Shaham et al, 2003). These effects could
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be mediated by enhanced excitatory synaptic transmission
in the VTA because augmenting and blocking glutamate
receptor expression in the VTA can increase responding to
drugs (Carlezon et al, 2000) and prevent psychostimulant
self-administration (Suto et al, 2003), respectively. Further-
more, numerous studies report increased excitatory synap-
tic strength in VTA DA neurons after cocaine, ethanol, or
stress exposure, conditions known to increase addiction
risk. Specifically, increased excitatory synaptic strength in
VTA DA neurons appears to be mediated by increased
calcium-permeable AMPA receptor (CP-AMPAR) expres-
sion in VTA DA neurons (Bellone and Luscher, 2006; Argilli
et al, 2008). The CP-AMPARs have larger conductance than
calcium-impermeable AMPARs (CI-AMPARs) (Cull-Candy
et al, 2006). Therefore, the enhanced expression of
CP-AMPARs in VTA DA neurons could contribute to the
overall increase in excitatory synaptic strength after
exposure to drugs of abuse or stress and mediates increased
addiction risk. In previous in vivo studies, we have shown
that PE leads to a long-lasting increase in the excitation in
VTA DA neurons (Shen et al, 1999; Xu and Shen, 2001;
Choong and Shen, 2004a; Shen and Choong, 2006),
supporting the possibility that PE can enhance the
excitatory synaptic strength in VTA DA neurons via the
augmentation of CP-AMPARs expression. This possibility
was investigated in the present study.

MATERIALS AND METHODS

All experimental procedures were carried out in accordance
with the University at Buffalo Institutional Animal Care and
Use Committee guidelines.

PE and Cross Fostering

The procedure of PE exposure and cross fostering are
described in detail in previous studies (Choong and Shen,
2004a). Breeding of Sprague-Dawley rats (Harlan, Indiana-
polis, IN) was performed to control the prenatal environ-
ment. Ethanol (15% w/v) was administered via intragastric
intubation from gestation day 8 to 20 (two intubations at
0 or 3 g/kg ethanol/day) during weekdays. A single dose
(0 or 4 g/kg) was given during weekends. The control dams
received sucrose solution (22.5% w/v in 0.9% saline) to
equate for ethanol’s calories and were pair-fed with ethanol-
treated dams. Dams received thiamine injections twice per
week (8 mg/kg; i.m.) to compensate ethanol intake-induced
thiamine deficiency, which could cause dysfunction in
neurons. To control for postnatal rearing conditions such as
disrupted maternal behaviors in PE dams due to ethanol
withdrawal, on postnatal day 1, pups from the ethanol
groups were culled to 10 per litter and transferred to dams
that did not receive any treatment during pregnancy and
gave birth 2 days earlier. Pups from the control litters were
cross-fostered with each other (switch dams). One to three
male offspring per litter were used.

Amphetamine Self-Administration

Jugular vein surgery. Seven-week-old male offspring were
anesthetized with ketamine/xylazine (65 mg/kg/15 mg/kg;
i.p.). Buprenorphine (0.025 mg/kg, s.c.) was applied as the

preoperative analgesic. The external jugular vein was
implanted with a heparinized cannula (Instech, Plymouth
Meeting, PA) connected to an injection port in a harness
(Instech). Animals were allowed to recover for at least
5 days after surgery. The catheters were flushed daily with
0.1–0.2 ml solution of enrofloxacin (4 mg/ml) and heparinized
saline (50 IU/ml) to further preserve catheter patency.

Self-administration. After a 5–7 days of recovery period,
animals were trained daily in operant chambers
(Med Associates, St Albans, VT) to self-administer amphet-
amine intravenously (0.02 or 0.1 mg/kg/infusion, salt
weight, over 5–7 s; B0.12 ml/infusion) under a fixed ratio
(FR) 1 schedule for 3 h. A priming dose of amphetamine
was automatically delivered to the rats. Additional nine
infusions per day were allowed. After animals self-adminis-
tered nine infusions for two consecutive days under FR 1,
they were trained on FR 2 schedule. When animals
reached nine infusions under FR 2, they were tested
under a progressive ratio (PR) schedule (ratio values: 5�
EXP(0.25� infusion number� 5); maximal infusions per day: 14)
(Richardson and Roberts, 1996) without the priming
infusion for 6 days. Animals that did not reach the FR 2
criteria (nine self-administered infusions) within eight daily
sessions were not tested on the PR schedule. The above
method is an established behavioral paradigm to examine
group differences in addiction risk (Suto et al, 2003). Data
analysis was conducted only in rats with patent cannula at
the end of the self-administration experiments.

In Vitro Patch Clamp Experiments

Slice preparation. Midbrain slices were prepared from 2
to 12-week-old male offspring (Haj-Dahmane and Shen,
2010). Rats were anesthetized with isoflurane and decapi-
tated. The brain was placed in cold modified artificial
cerebrospinal fluid (in mM): 110 choline Cl, 2.5 KCl, 0.5
CaCl2, 7 MgSO4, 1.25 NaH2PO4, 26.2 NaHCO3, 11.6 sodium
L-ascorbate, 3.1 sodium pyruvate, 25 glucose, and saturated
with 95% O2/5% CO2. Horizontal slices (250 mm) were cut
using a Vibratome (VT1200, Leica Biosystems, St Louis,
MO). Slices were incubated for 45–60 min at 35 1C in
standard artificial cerebrospinal fluid (in mM): 119 NaCl,
2.5 KCl, 2.5 CaCl2, 1.3 MgSO4, 1 NaH2PO4, 26.2 NaHCO3, 11
glucose saturated with 95% O2/5% CO2. One hour later, a
slice was transferred to the recording chamber at 30±1 1C.
In animals 46-week-old, slices were incubated in artificial
cerebrospinal fluid containing kynurenic acid (0.5 mM) to
improve the viability of DA neurons. Recordings were
obtained after extensive (430 min) wash. Previous studies
have shown incubation in kynurenic acid might alter the
basic membrane functions. This manipulation did not alter
the excitatory synaptic neurotransmission in VTA DA
neurons. We observed no changes in rectification index
(RI) after kynurenic acid incubation in 3–4-week-old
control animals (without kynurenic acid: RI¼ 1.71±0.13,
n¼ 6; with kynurenic acid: RI¼ 1.64±0.24; n¼ 5).

Whole-Cell Recordings

Neurons were visualized using an upright microscope
equipped with a differential interference contrast/infra-red
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imaging system (Olympus BX 51, Tokyo, Japan). All
recordings were performed in picrotoxin (100 mM) to block
GABAA receptors. Whole-cell recordings were obtained with
patch electrodes (3–5 MO) containing: (in mM) 120 potas-
sium gluconate, 10 Na2-phosphocreatine, 10 KCl, 10 HEPES,
1 MgCl2; 1 EGTA; 2 Na2-ATP; 0.25 Na-GTP (pH: 7.3),
except in current–voltage (I–V) relationship of AMPA
receptor-excitatory postsynaptic currents (EPSCs) and
AMPAR/NMDAR ratio experiments, in which cesium
methanesulfonate-based intracellular solution was used (in
mM: 120 cesium methanesulfonic acid, 5 TEA-Cl, 10 Na2-
phosphocreatine, 10 HEPES; 1 QX-314; 1 MgCl2; 1 EGTA; 2
Na2-ATP, 0.25 Na-GTP, 0.1 spermine; pH: 7.3). In some
AMPAR/NMDAR ratio experiments, spermine was omitted
from the methanesulfonate-based internal solution. Biocy-
tin (0.2%) was added in the internal solution in some
recordings.

Putative DA neurons were identified by the presence of
the hyperpolarization-activated cation current (Ih). Mem-
brane potentials recorded were corrected for the liquid
junction potential.

Stimulation and Recording

A patch pipette was placed rostral the recorded neuron to
evoke EPSCs or excitatory postsynaptic potentials (EPSPs) by
square-pulses (duration: 100–200 ms; 0.1 Hz). Stimulation
intensity was adjusted to evoke 50–70% of the maximal
response (EPSC amplitude: up to 300 pA). The EPSC amplitude
was determined by subtracting EPSC peak current from the
baseline current. Signals were amplified with an Axoclamp 2B
or Multiclamp 700 B amplifier and acquired using the pClamp
10 software (Molecular Devices, Union City, CA). Access
resistance (10–20 mO) was continuously monitored. Record-
ings with access resistance increased 40% were discarded.

To examine the I–V relationships and RI, neurons were
voltage-clamped at � 70, 0, and þ 50 mV (30 traces/
membrane potential). The I–V curves were constructed by
normalizing AMPAR-EPSC amplitude at 0 and þ 50 mV to
amplitude at � 70 mV. The RI was calculated using the
following formula: RI¼ [I� 70 mV/(� 70 mV-Erev)]/[Iþ 50 mV/
(50 mV-Erev)], where I� 70 mV is the average amplitude of
AMPAR-EPSCs at � 70 mV, Iþ 50 mV is the amplitude of
AMPAR-EPSCs at þ 50 mV, and Erev is the reversal
potential AMPAR-EPSCs. Linearity corresponded to
RI¼ 1.4 (Liu and Cull-Candy, 2002). To analyze EPSC
decay time constant (t), 30 EPSCs per neuron were
randomly selected and fitted with the exponential equation:
y¼ y0þA1*exp� (t-t0)/t, where A1 represents peak EPSC
amplitude, y0 baseline current, and t time constant.

To determine the AMPAR/NMDAR ratio, neurons were
voltage-clamped at þ 50 mV and EPSCs were recorded in
the absence (mixed EPSCs) and presence of APV (50 mM;
AMPAR-EPSCs). NMDAR-EPSCs were determined as the
difference between AMPAR-EPSCs and mixed EPSCs.
The AMPAR/NMDAR ratio was obtained as average
AMPAR-EPSC amplitude (30 traces)/average NMDAR-EPSC
amplitude (30 traces). To construct the input-output
curves, stimulation was delivered at 1, 2, 4, 8, 16, and
32 V (10 stimulation per intensity at 10 s intervals) via the
stimulation electrode consistently placed B100 mM rostral
to the recorded neuron.

To examine the spike-timing dependent (STD) plasticity,
neurons were recorded in the current clamp mode and held
at � 70 mV by DC current injection. The induction of STD
long-term potentiation (LTP) was achieved by pairing five
bursts of three pairs of presynaptic stimulation with
postsynaptic hyperpolarization or depolarization pulses
(5 ms, 1 nA; see Figure 6 for details). This stimulation
paradigm was repeated every 5 s for 15 times.

Cell Identification

Some brain slices used in recordings were fixed (4%
paraformaldehyde) and incubated with Alexa Fluor 594
for biocytin, followed by antibody for tyrosine hydroxylase
(TH) and goat antimouse IgG Alexa Fluor 488. Neurons
were visualized with a Zeiss Axioimager microscope.

Electron microscopy. Animals were perfused (4% parafor-
maldehyde, 0.1% glutaraldehyde). Horizontal vibratome sec-
tions (500mM) containing VTA areas were collected. VTA areas
were dissected out and imbedded. Two blocks per rat were
sectioned (80 nM) and labeled with TH antibody, followed by
antibody against GluA1, GluA2, or GluA3. Sections were
secondarily labeled with a 15 nm colloidal gold mouse IgG
(for TH) and a 6 nm colloidal gold rabbit IgG (for AMPAR
subunits). Aurion blocking system (Electron Microscopy
Sciences, Hatfield, PA) was used to further cut down non-
specific binding. Sections were viewed at � 50 000 with a JEOL
100 CXII electron microscope. Subunits of AMPAR were
counted only in TH-positive dendrites. The TH and GluA3
antibodies have been cited in previous studies (He et al, 1998;
Blanco et al, 2012). Antibodies against AMPAR subunits were
selected because they were affinity-purified and the specificity
was confirmed with western blot and by negative binding on
tissue sections when the antibody was previously exposed to
antigen peptide. A pilot study was executed in which 40 um
frozen sections were labeled with TH and the GluA1, 2, and 3
antibodies followed by secondary colloidal gold labels and
silver enhancement. Antibody against TH only labeled areas
that contained DA neurons. GluA2 was the most prevalent
label, whereas GluA1 was not as widely distributed. On the
other hand, GluR3 was the lowest label. This observation is
consistent with that in the literature (Bassani et al, 2009) and
supports the specificity of the GluA1, GluA2, and GluA3
antibodies.

Chemicals and Drugs

Most chemicals and antibodies were obtained from Sigma-
Aldrich (St Louis, MO; mouse monoclonal TH antibody cat
number: T2928, rabbit polyclonal GluA1 antibody cat
number: SAB4501293; rabbit polyclonal GluA2 antibody
cat number: SAB4501295). Antibody against GluA3 was
monoclonal-raised in rabbit from Cell Applications Inc.
(San Diego, CA; Cat number: CG1180). Picrotoxin, D-(-)-2-
Amino-5-phosphonopentanic acid (APV), kynurenic acid,
and N-[3-[[4-[(3-minopropyl) amino]butyl]amino]propyl]-
1-naphthaleneacetamide trihydrochloride (NASPM) were
purchased from R&D Systems (Minneapolis, MN). Colloidal
gold mouse and rabbit IgG were from Electron Microscopy
Sciences (Hatfield, PA). Fluorescent dyes were from Life
Technologies (Grand Island, NY).
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Data Analysis

Results are presented as mean±SEM. Statistical analyses were
conducted using ANOVA with or without repeated measures
followed by Tukey LSD post hoc test. The group difference in
the proportion of animals entering into the PR schedule
in amphetamine self-administration experiment was analyzed
by Chi-square analysis. In NASPM (Figure 2), AMPAR/
NMDAR ratio (Figure 5), and STD LTP (Figure 6) experiments,
planned comparison was used for examining the differences
between control and PE groups or differences across two time
points (eg, 10–20 min after induction) after ANOVA. EPSC
decay time constants (t) were compared by the Kolmogorov–
Smirnov test because of skewed distribution. The results from
electron microscope studies were analyzed with independent t-
test. The level of significance was set at 0.05.

RESULTS

Birth Outcome

Seventy-four dams (24 control, 25 PE, and 25 foster) were
used. There were no differences in litter size (control:
13.8±0.7; PE: 13.2±0.7), pup number by gender (control
male: 7.0±0.6; control female 6.8±0.5; PE male: 6.7±0.6,
PE female: 6.5±0.6), or male pup weight on postnatal day 1
(control: 6.92±0.17 g; PE male: 6.63±0.17 g). However, PE
female pups (6.19±0.15 g) had lower weight compared with
control female pups (6.60±0.17 g; t-test, t47¼ 2.45,
Po0.05). The above results indicate that the PE treatment
did not lead to major teratogenic effects.

Amphetamine Self-Administration

Not all animals acquired self-administration under the FR
schedule within eight sessions. At the 0.02 mg/kg/infusion
dose of amphetamine tested, a higher proportion of PE
animals reached the acquisition criterion under the FR

schedule (Control: 3/24, 13%; PE: 8/20, 40%; w2
1¼ 4.4,

Po0.05; Figure 1a). No group differences were detected at
the higher amphetamine dose tested (0.1 mg/kg/infusion),
although a greater proportion of animals from both the
control and PE groups tested at this higher dose reached
criterion (Control:12/17, 71%; PE: 7/13, 54%) compared
with those tested with the lower dose.

Under the PR schedule, PE animals self-administered
more amphetamine than controls when the amphetamine
dose was set at 0.02 mg/kg/infusion (t-test, t9¼ 2.26,
Po0.05; Figure 1b and d). The responses (lever presses)
were also increased in PE animals (t-test, t9¼ 1.81,
P¼ 0.051; Figure 1c and e). No group differences were
detected in the number of infusions or lever presses emitted
at the higher dose of amphetamine tested (0.1 mg/kg/
infusion). The effect observed at the lower dose of amphe-
tamine tested (Figure 1) resembles those observed in
amphetamine-sensitized rats that show a greater propensity
to acquire self-administration behaviors for lower but not
higher doses of the drug (Pierre and Vezina, 1997; Vezina,
2004). Notably, the present findings show that PE exposure
can also lead to enhanced work output and drug taking
for 6 days of testing on a PR schedule of reinforcement
(Figure 1b–e). Together, these data indicate that the PE
paradigm used in the present study produced strong
behavioral effects that could place individuals at increased
risk for drug addiction.

DA Neuron Identification

We recovered 30 putative VTA DA neurons identified with
Ih (Figure 2a) and filled with biocytin. Twenty-six (87%)
were TH-positive (Figure 2b), indicating a high level of
positive identification of DA neurons using Ih. This result is
similar to that reported by one study (Mao et al, 2011) but
different from another (Margolis et al, 2006). However, in
the study by Margolis et al. (2006), regions not traditionally
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confined to VTA areas are included. We only recorded areas
adjacent and medial to the medial lemniscus.

Prenatal Ethanol Exposure Persistently Increases
CP-AMPAR Expression

Electrophysiology. We examined the I–V curves and RI of
AMPAR-EPSCs in control and PE animals at different ages.
Both group (F1,27¼ 9.91; Po0.05; 2-way ANOVA) and age
(F1,27¼ 5.07; Po0.05) influenced the results. In control
animals o4-week-old (35 days), the I–V curve exhibited a
linear relationship with little inward rectification at þ 50 mV

(Figure 2c). In contrast, in age-matched PE rats, the I–V curve
exhibited inward rectification and was non-linear (Figure 2c).
In PE animals, the RI was greater (5.86±1.32; 350% increase;
n¼ 9) than that in control animals (1.71±0.13, Tukey HSD
post hoc comparison, Po0.05; n¼ 6; Figure 2d).

Similar results were obtained in animals 44-week-old
(control RI: 1.41±0.29, n¼ 7; PE RI: 2.45±0.35; n¼ 9; 75%
increase in PE animals; Po0.05; Figure 2c and d).
Furthermore, in PE rats, the RI in animals o4-week-old
was greater (40% increase) compared with that in animals
44-week-old (Po0.05), suggesting an age-dependent
decrease in CP-AMPAR expression.
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CP-AMPAR EPSCs exhibit a faster decay time constant
(t) than CI-AMPARs (Toth et al, 2000). We examined t
of AMPAR-EPSCs from neurons recorded in the above
experiment. As shown in Figure 2e, the cumulative
probability curves of t were shifted to the left in VTA DA
neurons recorded from PE animals in both age groups
(Kolmogorov–Smirnov test; o4-week-old, Po0.001; 44-
week-old, Po0.001).

We next examined the effects of the specific CP-AMPAR
antagonist NASPM (20 mM) on AMPAR-EPSCs. The results
revealed that PE potentiated the inhibition of AMPAR-
EPSCs by NASPM (F1,28¼ 33.74; 3-way ANOVA with
repeated measures, Po0.001). Age also impacted NASPM-
induced inhibition (F1,28¼ 2.49; Po0.05) but only when
control and PE animals were considered together. As shown
in Figure 3a, in animals o4-week-old, NASPM reduced the
AMPAR-EPSC amplitude in both control (89.5±4.6% of
baseline; 10.5% decrease 15 min after NASPM; planned
comparison following 3-way ANOVA, Po0.05) and PE
animals (63.26±4.27% of baseline; 36.7% decrease;
Po0.001). The effect of NASPM was greater in PE animals
(Po0.01).

In animals 44-week-old, the difference between control
and PE groups remained (Po0.05). However, NASPM
reduced EPSC amplitude only in PE (73.5±4.7% of
baseline; 26.5% decrease; Po0.001) but not in control
animals (96.2±4.1% of baseline; Figure 3b).

Electron microscopy. The results were obtained in 6–8-
week-old animals. The data are presented as number of
AMPAR subunit-positive particles/dendrite. In PE animals,
there was a significant increase in GluA3-positive particles in
the cytosol/TH-positive dendrite (Control: 4.8±0.5/dendrite,
n¼ 81; PE: 7.4±0.9/dendrite, n¼ 100; t-test, t179¼ 2.40,
Po0.05; Figure 4). No differences were found in GluA1-
positive or GluA2-positive particles (Figure 4). We did not
find any differences in AMPAR subunits in the synapses of
THþ dendrites. This could be due to relatively few synapses
(o30 per subunit) were found in our EM sections. The result
from the EM study supports the increase of CP-AMPARs in
PE animals and suggests GluRA3-containing AMPARs are
added in VTA DA neurons.

Prenatal Ethanol Exposure Enhances Excitatory
Synaptic Strength

To examine the excitatory synaptic strength, we investigated
the AMPAR/NMDAR ratio. The effect was examined using
internal solution without spermine and with spermine. The
results showed a significant main effect of prenatal ethanol
treatment (3-way ANOVA, F1,43¼ 27.51; Po0.001). There
were no differences due to age or internal solutions. When
spermine-free internal solution was used, the AMPAR/
NMDAR ratio was greater in PE animals o4-week-old
(control: 0.42±0.12, n¼ 7; PE: 1.08±0.13, n¼ 6; planned
comparison, Po0.001; Figure 5a) as well in PE animals 44-
week-old (control: 0.48±0.14, n¼ 5; PE: 1.07±0.13; n¼ 6;
Po0.05; Figure 5a). When spermine-containing internal
solution was used, the AMPAR/NMDAR ratio was also
greater in PE animals o4-week-old, (control: 0.38±0.10,
n¼ 7; PE: 0.75±0.09, n¼ 7; Po0.05; Figure 5a) as well in
PE animals 44-week-old (control: 0.52±0.06, n¼ 7; PE:
0.82±0.13; n¼ 6; Po0.05; Figure 5a). These results suggest
PE leads to an increase in excitatory synaptic strength.
However, because there were no differences in AMPAR/
NMDAR ratio caused by spermine-free and spermine-
containing internal solutions (although a trend of decrease
was observed when spermine-containing solution was
used), the results suggest that VTA DA neurons could
contain endogenous polyamines that lead to rectification
(reduction) of CP-AMPAR-dependent EPSCs at depolarized
membrane potentials reported in previous studies (Rozov
and Burnashev, 1999; Shin et al, 2005). Under this
condition, the precise contribution of CP-AMPARs on
excitatory synaptic strength cannot be accurately accessed
by AMPAR/NMDAR ratio using NASPM.

Therefore, we used another approach to examine the
excitatory synaptic strength—the input-output curves (in
animals 44-week-old) and the effect of NASPM. This
experiment was conducted at � 70 mV. The contribution of
CP-AMPARs could be evaluated more accurately without
rectification. We found a significant interaction between group
and stimulation intensity (3-way ANOVA; F5,135¼ 7.17;
Po0.001), confirming a left shift in PE animals (Figure 5b
and c). Bath-applied NASPM also influenced the input-output
curves (3-way ANOVA; F5,135¼ 2.30; Po0.05). Specifically,
AMPAR-EPSC amplitude from PE animals was higher than
control animals when the stimulation intensity was at 32 mV
(control: 72.67±15.42 pA, n¼ 11; PE: 203.08±34.72 pA,
n¼ 10; planned comparison, Po0.05; Figure 5b and c).
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Bath-applied NASPM had no effects in control but decreased
the AMPAR-EPSC amplitude in PE animals close to control
levels (in NASPM, control: 71.52±16.66 pA, n¼ 5; PE:
111.81±33.64 pA, n¼ 5; Po0.05 between PE in vehicle and
PE in NASPM; no differences were observed between PE in
NASPM and control in vehicle or NASPM; Figure 5b and c).
The result also suggests that CP-AMPAR leads to increased
excitatory synaptic strength in PE animals due to an addition
instead of a switch from CI-AMPARs to CP-AMPARs. The
overall increase in AMPAR population could be the reason
of consistently increased AMPAR/NMDAR ratio even with
reduced amplitude of CP-AMPAR-mediated EPSCs due to
rectification at positive membrane potentials.

Prenatal Ethanol Exposure-Induced Increase in
CP-AMPAR Expression Facilitates CP-AMPAR-Dependent
(anti-Hebbian) LTP

The activation of CP-AMPARs can lead to CP-AMPAR-
dependent LTP (Mahanty and Sah, 1998; Lamsa et al, 2007;

Mameli et al, 2011), which is also called anti-Hebbian LTP
because it could be induced by pairing presynaptic stimula-
tion with postsynaptic membrane hyperpolarization instead
of depolarization. We examined CP-AMPAR-dependent,
anti-Hebbian LTP in animals 44-week-old.

We first paired presynaptic stimulation with postsynaptic
hyperpolarization during induction. The results showed a
significant group and LTP induction interaction (3-way
ANOVA with repeated measure, F3,16¼ 5.06, Po0.01;
Figure 6a). In control animals, the induction protocol failed
(EPSP amplitude 4.1±6.8% above baseline 15 min after
induction; n¼ 5; planned comparison). In PE animals, the
induction was successful (53.4±15.6% above baseline;
n¼ 8; Po0.001). When recordings were conducted in the
presence of NASPM, LTP induction in PE animals failed.
(3.2±5.5% above baseline; n¼ 3; Figure 6a). Conversely,
NMDA receptor blocker APV did not block LTP induc-
tion, but reduced LTP magnitude (31.2±4.5% above
baseline, Po0.05, n¼ 4) in PE animals. These results
demonstrated that PE-induced increase in CP-AMPAR
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facilitates anti-Hebbian LTP at excitatory synapses of VTA
DA neurons.

We next paired presynaptic stimulation with postsynaptic
depolarization during LTP induction. The results showed a
significant group and LTP induction interaction (3-way
ANOVA, F2,27¼ 3.62; Po0.05; Figure 6b). In control
animals, the induction protocol caused a weak LTP
(12.9±4.3% above baseline, n¼ 11; Po0.05; Figure 6b).
In PE animals, the LTP was greater (25.2±6.3% above
baseline, n¼ 14; Figure 6b; Po0.001). Application of
NASPM completely abolished the LTP in PE animals
(6.0±4.6% below baseline; n¼ 5). The results indicate that
CP-AMPARs also facilitate ‘regular’ STD LTP induction in
PE animals.

Next, LTP induction was carried out without postsynaptic
stimulation. The results showed a significant LTP induction
effect (3-way ANOVA, F1,23¼ 20.0; Po0.001; Figure 6c). We

did not observe LTP in control animals (6.2±2.1% above
baseline; n¼ 9; Figure 6c). In PE animals, LTP was success-
fully induced (25.2±12.2% above baseline; Po0.01; n¼ 5;
Figure 6c) and blocked by NASPM (4.4±5.8% above
baseline; n¼ 6; Figure 6c) but not by APV (19.5±7.0%
above baseline; Po0.01; Figure 6c). When LTP magnitudes
using different induction protocols were compared in PE
animals, pairing presynaptic stimulation with postsynaptic
hyperpolarization led to greater LTP than pairing presy-
naptic stimulation with postsynaptic depolarization or
using presynaptic stimulation only (significant interaction
between induction protocol and LTP level; 3-way ANOVA,
F1, 25¼ 5.46, Po0.05). This pattern of response is similar to
anti-Hebbian LTP and supports that the presence of
endogenous polyamines underlies the voltage-dependence
of the anti-Hebbian LTP (Rozov and Burnashev, 1999; Shin
et al, 2005; Lamsa et al, 2007).
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DISCUSSION

Increased Amphetamine Self-Administration in PE
Animals

The results from the present study show that PE produces
strong behavioral effects that could place individuals at an
increased risk for drug addiction during adulthood. This
effect is demonstrated first by the finding that a higher
proportion of PE animals acquire amphetamine self-
administration, and second, by the additional finding that
PE leads to enhanced work output and drug taking for
6 days of testing on a PR schedule of reinforcement. The
finding that these effects are observed at the lower dose of
self-administered amphetamine tested is consistent with
those of other reports showing that amphetamine-sensitized
rats are more likely to acquire self-administration behaviors

for lower but not higher doses of the drug (Pierre and
Vezina, 1997, 2004).

Persistent Increases in CP-AMPAR Expression in PE
Animals

A major finding in the present study is a persistent increase
in CP-AMPAR expression in VTA DA neurons in PE
animals. This effect can be observed in animals as old as 12
weeks. At the similar age (10–11-week-old), PE rats show
enhanced amphetamine self-administration. Therefore,
there is a strong association between increased CP-AMPAR
function in VTA DA neurons and increased addiction risk
after PE. The increased CP-AMPAR expression is supported
by confirming the unique electrophysiological properties of
CP-AMPARs including the non-linear I–V relationship due
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to intracellular polyamine block of channel pores at positive
membrane potentials (Isaac et al, 2007) and rapidly
decaying EPSCs (Toth et al, 2000). The PE-induced increase
in CP-AMPARs is further supported by enhanced depres-
sion of AMPAR-EPSCs by specific CP-AMPAR antagonist
NASPM and increased GluA3 AMPAR subunits in TH-
positive dendrites from the EM experiments. The results
also demonstrate that VTA DA neurons express a mixture
of CP-AMPARs and CI-AMPARs in both control and PE
animals o4-week-old. However, CP-AMPAR expression is
higher in PE animals. Results from the NASPM experiments
show that in PE rats, 37% and 27% of total AMPAR-EPSC
amplitude is mediated by CP-AMPARs in animals o4-
week-old and 44-week-old, respectively. In control ani-
mals, the levels are 10% and 4% (not significantly different
from 0%) in animals o4-week-old and 44-week-old,
respectively. Previous studies have shown that in VTA DA
neurons and cerebellar neurons, the regulation of AMPAR
expression might be input-specific (Liu and Cull-Candy,
2000; Toth et al, 2000; Bellone and Luscher, 2005; Lamsa
et al, 2007; Good and Lupica, 2010). In VTA DA neurons,
increases in CP-AMPARs after cocaine treatment is
observed in synapses receiving local VTA projections and
the pedunculopontine nucleus in 2-week-old rats (Good and
Lupica, 2010). Our preparation only evaluates the excitatory
synapses receiving local projections; it remains to be
determined whether synapses receiving projections from
the pedunculopontine express increased CP-AMPARs in PE
animals.

The PE-induced increase in CP-AMPAR is a persistent
effect which is observed in 2–12-week-old animals.
Many studies demonstrate that CP-AMPARs expression is
transient and developmentally regulated. For example,
in neocortical neurons, high levels of CP-AMPARs are
switched to CI-AMPARs between the first and second week
of age in rats (Brill and Huguenard, 2008). The switch
is triggered by synaptic activity and the activation of CP-
AMPARs, resulting in the incorporation of GluA2-subunits
into AMPARs to form CI-AMPRs (Liu and Cull-Candy,
2000; Cull-Candy et al, 2006; Isaac et al, 2007). A similar
developmental switch is described in VTA DA neurons in
mice during the first 2 weeks of age (Bellone et al, 2011).
Therefore, the increased CP-AMPARs in PE animals could
be caused by delayed and/or abnormal developmental
switch of AMPARs. This possibility is supported by the
observation of age-dependent decrease of CP-AMPARs in
PE animals. In the present study, we recorded from animals
as old as 12 weeks. It would be interesting to know whether
CP-AMPARs level will continue to decline in PE animals. A
previous study showing increased CP-AMPAR expression in
prenatal cocaine-exposed mice is reduced to control levels
when animals reach 90 days of age (Bellone et al, 2011).

Evidence has shown that PE alters the morphology of
dendrites and cell bodies of VTA DA neurons (Shetty et al,
1993). It is also possible that these morphological changes
disrupt the excitatory synaptic activity and interfere with
the normal activation of CP-AMPARs and their consequen-
tial switch to CI-AMPARs. In VTA DA neurons, the switch
from CP-AMPARs to CI-AMPARs neurons during early
development also requires the activation of type I metabo-
tropic glutamate receptors (Bellone and Luscher, 2005) and/
or NMDA receptors (Mameli et al, 2011). Morphological

changes in VTA DA neurons in PE animals could also
impact the activation of these receptors and impair the
switch from CP-AMPARs to CI-AMPARs, leading to higher
levels of CP-AMPARs throughout development in PE
animals.

Increased Excitatory Synaptic Strength Caused by
CP-AMPARs in PE Animals

Owing to the larger conductance of CP-AMPARs (Cull-
Candy et al, 2006), we predict the excitatory synaptic
strength is increased in VTA DA neurons in PE animals.
This is confirmed by the input/output curve experiments
showing increased AMPAR-EPSC amplitude in PE animals
which is reduced to control levels by NASPM. The
observation suggests that increased excitatory synaptic
strength in PE animals is caused by adding CP-AMPARs
to the AMPAR population instead of switching CI-AMPARs
with CP-AMPARs. Under this condition, the persistently
enhanced AMPAR/NMDAR ratio in PE animals could be
due to an overall increase in AMPAR population. We have
examined the AMPAR/NMDAR ratio with spermine-free
and spermine-containing internal solutions. The results
show a lack of difference in AMPAR/NMDAR ratio caused
by the presence of spermine and suggest VTA DA neurons
might contain endogenous polyamines as observed in other
neurons in previous studies (Rozov and Burnashev, 1999;
Shin et al, 2005). Although AMPAR/NMDAR ratio can also
be influenced by changes in NMDAR function (Mameli
et al, 2011; Yuan et al, 2013), our analysis of NMDAR-EPSC
decay time constant does not show differences between
control and PE animals (data not shown) and does not
support that there are changes in NMDAR function at this
time.

Anti-Hebbian LTP in PE Animals

Another important finding in the present study is that
PE-induced increase in CP-AMPAR expression directly
leads to CP-AMPAR-dependent LTP. This finding is consis-
tent with previous studies demonstrating CP-AMPAR-
dependent LTP in hippocampal neurons in developing rats
(Mahanty and Sah, 1998; Lamsa et al, 2007) and in VTA DA
neurons after cocaine exposure in developing mice (Mameli
et al, 2011). The CP-AMPAR-dependent LTP induction is
mediated by calcium entry from CP-AMPARs, not NMDARs
(Mahanty and Sah, 1998). The CP-AMPAR-dependent LTP
is termed anti-Hebbian LTP because pairing presynaptic
stimulation with postsynaptic hyperpolarization instead of
depolarization is more effective in LTP induction due to the
depolarization-induced polyamine blockade of CP-AMPARs
(Rozov and Burnashev, 1999; Shin et al, 2005; Lamsa et al,
2007). In the present study, the internal solution used for
the STD LTP experiments does not contain spermine,
supporting the presence of endogenous polyamines in VTA
DA neurons. This notion is consistent with the conclusion
from the AMPAR/NMDAR ratio experiment in the present
study and with a previous study demonstrating anti-
Hebbian LTP in VTA DA neurons in developing mice using
spermine-free internal solution (Mameli et al, 2011).

In the present study, we have demonstrated the CP-
AMPAR-dependent, anti-Hebbian form of LTP induced by
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pairing presynaptic stimulation and postsynaptic hyperpo-
larization in PE animals. One interesting observation is that
NMDAR antagonist APV administration induces a decrease
in LTP amplitude in PE animals suggesting that NMDARs
might have a minor role in anti-Hebbian LTP induction.
Future studies are needed to define the role of NMDARs in
detail. We also find that in PE animals, CP-AMPAR-
dependent LTP can be induced with only presynaptic
stimulation or pairing presynaptic stimulation with post-
synaptic depolarization. However, under these conditions,
the level of LTP expression is lower than the level of anti-
Hebbian LTP. These observations suggest that in PE
animals, the already enhanced excitatory synaptic strength
could be prone to further strengthening even in the absence
of impulse activity of VTA DA neurons.

The PE-induced increase in CP-AMPAR expression and
AMPAR/NMDAR ratio are similar to the effects after
exposure to cocaine. However, CP-AMPAR-dependent
LTP using STD induction has not been consistently
reported. One study reports LTP induction failure after
cocaine exposure in rats (Argilli et al, 2008). Another study
shows that CP-AMPAR-dependent LTP can be induced
when STD LTP induction utilizes postsynaptic hyperpolar-
ization, but not with postsynaptic depolarization after
cocaine exposure in mice (Mameli et al, 2011). The cause
of the discrepancy is unclear. It is possible that the variation
in the level of CP-AMPAR expression caused by different
cocaine exposure and LTP induction protocols and animal
species involving different developmental time courses
could contribute to the success or failure of LTP induction
(Argilli et al, 2008; Mameli et al, 2011).

Functional Implications

Increased CP-AMPAR expression and excitatory synaptic
strength in VTA DA neurons have long been proposed as a
critical mechanism for addictive behaviors. Exposure to
psychostimulants, ethanol, or stress has been shown to
increase addiction risk as well as CP-AMPAR expression in
VTA DA neurons (Bellone and Luscher, 2006; Argilli et al,
2008). Results from behavioral studies demonstrate that
enhancing GluRA1 expression that could facilitate CP-
AMPAR expression in the VTA leads to increased respond-
ing to drug reward (Carlezon et al, 2000), whereas blocking
glutamate receptors in the VTA during psychostimulant
pre-exposure prevents enhanced psychostimulant self-
administration (Suto et al, 2003). Therefore, PE-induced
increase in addiction risk (Baer et al, 1998, 2003; Famy
et al, 1998; Alati et al, 2006) could be mediated by enhanced
excitatory synaptic strength caused by increased CP-
AMPAR expression.

How can increased CP-AMPAR expression and the
resulting augmentation in excitatory synaptic strength/
CP-AMPAR-dependent LTP alter the impulse activity and
function of VTA DA neurons? Several studies have
investigated the spontaneous impulse activity of VTA DA
neurons after PE. An in vitro patch clamp study (Wang
et al, 2006) shows that PE does not alter the impulse activity
of VTA DA neurons. Conversely, a series of in vivo studies
demonstrate that PE persistently decreases the impulse
activity in VTA DA neurons (Shen et al, 1999; Xu and Shen,
2001; Choong and Shen, 2004a; Shen and Choong, 2006).

Interestingly, the decreased activity is reflected in the
number of VTA DA neurons displaying spontaneous
impulse activity (the number of spontaneously active VTA
DA neurons). In other words, fewer VTA DA neurons are
firing action potentials. However, the firing rate of these
spontaneously active neurons remains unchanged. These
observations are similar to that observed after repeated
antipsychotic treatment first reported by Grace and Bunney
(Bunney and Grace, 1978; Grace et al, 1997), who
demonstrate that the reduced number of spontaneously
active DA neurons is caused by over-excitation instead of
inhibition, leading to depolarization block and the cessation
of impulse activity in a proportion of VTA DA neurons.
Such a conclusion is inferred from the observations that the
decreased number of spontaneously active VTA DA
neurons can be reversed (normalized) by enhancing the
inhibitory tone to these neurons, such as acute apomor-
phine administration that activates D2-like somatodendritic
autoreceptors. Using the same strategy, it is also demon-
strated that PE-induced decrease in the spontaneously
active VTA DA neurons is indeed caused by over-
excitation/depolarization block (Shen et al, 1999; Shen
and Choong, 2006).

An interesting observation is that acute psychostimulant
administration can also provide the inhibitory tone and
normalize VTA DA neuron impulse activity in vivo in PE
animals (Choong and Shen, 2004b; Xu and Shen, 2001),
resulting in a net increase in impulse activity which could
lead to augmented impulse-dependent DA release in the
terminal area. Therefore, the over-excitation in VTA DA
neurons might contribute to the increased sensitivity/
responding to drugs of abuse and enhanced addiction risk
after PE. In PE animals, depolarization block/decreased
number of spontaneously active VTA DA neurons begins
when rats approach 4 weeks of age and is observable in 16-
month-old rats (Shen et al, 1999; Choong and Shen, 2004a).
The increased CP-AMPAR expression is detected in 2–12-
week-old PE rats in the present study. In addition, we
demonstrate in the present study that increased CP-AMPAR
expression leads to enhancement in CP-AMPAR-dependent,
anti-Hebbian LTP which can be induced in the absence of
impulse activity. Therefore, increased CP-AMPAR expres-
sion could contribute to the development and maintenance
of depolarization block/over-excitation in VTA DA neurons,
leading to increased responses to psychostimulants and
enhanced addiction risk. Future studies utilizing pharma-
cological agents capable of normalizing CP-AMPARs (eg,
mGluR1 agonists) can further confirm the role of CP-
AMPARs in VTA DA neuron function and addictive
behaviors.

It is worth noting that over-excitation/decreased number
of spontaneously active VTA DA neurons is also a persistent
effect following repeated exposure to drugs of abuse such as
amphetamine, cocaine, methylphenidate, nicotine, and
ethanol during adolescence and adulthood in rats (Shen
and Choong, 2006; Shen et al, 2007). The effect is observable
60 days after the cessation of drug treatment and could be a
result of a time-dependent increase in the excitation in VTA
DA neurons. Supporting evidence for the time-dependent
increase in excitation comes from a transient increase in
firing rate and number of spontaneously active VTA DA
neurons observed within 14 days after withdrawal from
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repeated amphetamine or cocaine treatment, or cocaine
self-administration in rats (White and Wang, 1984; Henry
et al, 1989; Marinelli et al, 2003). This transient increase in
VTA DA neuron activity is linked to enhanced addiction
risk (for review see Wolf and Tseng, 2012). Interestingly, a
later study demonstrates that after repeated methylpheni-
date treatment, the activity of VTA DA neurons increases
first followed by depolarization inactivation/reduced num-
ber spontaneously active neurons after prolonged with-
drawal (430 days), during which the firing rate of the
remaining spontaneously active VTA DA neurons remains
unchanged (Shen and Choong, 2006). This study demon-
strates that, instead of a transient increase in excitation, the
excitation in VTA DA neurons could continue to increase
and parallel the time course of increased excitatory synaptic
strength reported following prolonged withdrawal from
cocaine self-administration in rats (Chen et al, 2008) and
mice (Mameli et al, 2009).

Taken together, the increased CP-AMPAR expression
could be a critical and general cellular mechanism for
increased addiction risk. The development of pharmacolo-
gical tools aiming at normalizing CP-AMPAR expression in
VTA DA neurons might be a useful approach to ameliorate
addiction risk in highly vulnerable individuals.
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