Skip to main content
. 2014 Nov 10;6(6):e23158. doi: 10.5812/numonthly.23158

Table 3. Logistic Regression Models for Identifying Potential Barriers Related to Nutritional Status a.

Variable B SE (B) OR 95% CI P Value
Medical barriers
Poor appetite
MIS 0.262 0.119 1.30 1.02-1.64 0.02
BCM -0.084 0.030 0.92 0.86-0.97 0.005
Difficulty chewing
SGA 0.151 0.044 1.16 1.06-1.26 0.001
Depression
MIS 0.193 0.047 1.21 1.10-1.33 < 0.001
Behavioral barriers
Poor general nutrition Knowledge
SGA 0.268 0.112 1.30 1.05-1.62 0.01
BFMI 0.145 0.073 1.15 1.001-1.33 0.04
Poor protein nutrition Knowledge
BFMI 0.242 0.108 1.27 1.03-1.57 0.02
Poor potassium nutrition Knowledge
SGA 0.639 0.204 1.89 1.27-2.88 0.002
Socioeconomic barriers
Need help for shopping
SGA 0.15 0.038 1.16 1.07-1.25 < 0.001
BFMI 0.134 0.047 1.14 1.04-1.25 0.005
Need help for cooking
MIS 0.147 0.043 1.15 1.06-1.26 0.001
BCM -0.119 0.026 0.88 0.84-0.93 < 0.001

aabbreviations: SE, standard error; OR, odds ratio.