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Nematic braids are reconfigurable knots and links formed by the
disclination loops that entangle colloidal particles dispersed in
a nematic liquid crystal. We focus on entangled nematic disclina-
tions in thin twisted nematic layers stabilized by 2D arrays of
colloidal particles that can be controlled with laser tweezers. We
take the experimentally assembled structures and demonstrate
the correspondence of the knot invariants, constructed graphs,
and surfaces associated with the disclination loop to the physically
observable features specific to the geometry at hand. The nematic
nature of the medium adds additional topological parameters to
the conventional results of knot theory, which couple with the knot
topology and introduce order into the phase diagram of possible
structures. The crystalline order allows the simplified construction
of the Jones polynomial and medial graphs, and the steps in the
construction algorithm are mirrored in the physics of liquid crystals.
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From the invention of ropes and textiles, up to the present day,
knots have played a prominent role in everyday life, essential

crafts, and artistic expression. Beyond the simple tying of strings,
the intriguing irreducibility of knots has led to Kelvin’s vortex
model of atoms, and, subsequently, a more systematic study of
knots and links in the context of knot theory (1–3). As a branch
of topology, knot theory is a developing field, with many un-
resolved questions, including the ongoing search for an algo-
rithm that will provide an exact identification of arbitrary knots.
As knots cannot be converted one into another without the

crossing of the strands––a discrete singular event––knotting topo-
logically stabilizes the structure. In physical fields, this coexistence
of discrete and continuous phenomena leads to the stabilization of
geometrically and topologically nontrivial high-energy excitations
(4, 5). Examples of strand-like objects in physics that can be knotted
include vortices in fluids (6–9), synthetic molecules (10, 11), DNA,
polymer strands and proteins (12–14), electromagnetic field lines
(15, 16), zero-intensity loci in optical interference patterns (17),
wave functions in topological insulators (18), cosmic strings (19),
and defects in a broad selection of ordered media (20–23).
Nematic liquid crystals (NLC) are liquids with a local apolar

orientational order of rod-like molecules. The director field,
which describes the spatial variation of the local alignment axis,
supports topological point and line defects, making it an in-
teresting medium for the observation of topological phenomena
(20, 24). Defect structures in NLC and their colloidal composites
(25) have been extensively studied for their potential in self-
assembly and light control (26), but also to further the theoretical
understanding of topological phenomena in director fields (23,
27). Objects of interest include chiral solitons (28, 29), fields
around knotted particles (30–35), and knotted defects in nematic
colloids (36–42). Each of these cases is unique, as the rules of
knot theory interact with the rules and restrictions of each un-
derlying material and confinement. The investigation of knotted
fields is thus a specialized topic where certain theoretical aspects
of knot theory emerge in a physical context.
In nematic colloids––dispersions of spherical particles con-

fined in a twisted nematic (TN) cell––disclination lines entangle
arrays of particles into “nematic braids,” which can be finely
controlled by laser tweezers to form various linked and knotted
structures (38, 39, 43). In this paper, we focus on the diverse
realizations of knot theory in such nematic colloidal structures.

We complement and extend the classification and analysis of
knotted disclinations from refs. 32, 38, 40 with the direct applica-
tion of graph and knot theory to polarized optical micrographs. We
further analyze the nematic director with constructed Pontryagin–
Thom surfaces and polynomial knot invariants, which enables
a comprehensive topological characterization of the knotted ne-
matic field based on experimental data and analytical tools. We use
a λ-retardation plate to observe and distinguish differently twisted
domains in the optical micrograph, which correspond to medial
graphs of the represented knots and contribute to the Pontryagin–
Thom construction of the nematic director. Finally, we explore the
organization of the space of possible configurations on a selected
rectangular particle array and discuss the observed hierarchy of
entangled and knotted structures.

Colloidal Arrays, Knot Projections, and Tangles
We observe the TN cell with dispersed microparticles under the
polarizing optical microscope (POM), sandwiched between
crossed polarizers. Due to the light scattering on the defect core,
the disclinations (line defects) in the nematic order that form
around the particles are clearly visible and trace out a knot di-
agram (1, 2), as demonstrated in Fig. 1. In the projection seen by
the microscope, we observe only two types of crossings: at each
particle, the top and bottom disclinations cross perpendicularly; in
the space between four neighboring particles there is a point where
the disclinations can also cross, but they can also bypass one an-
other. The experimental image thus constitutes a knot diagram,
which is all of the information needed to further analyze the topo-
logy of the knot formed by the disclination loops (Fig. 1 D–F).
The NLC between the particles can be manipulated with

laser tweezers to switch between different entangled states.
These so-called “tangles” are top projections of the three dif-
ferent configurations of a rewiring site where two disclination
segments approach closely in a tetrahedrally shaped formation
(40). The possible tangles are the crossing tangle and the
smoothings and (Fig. 1E). These tangles exactly correspond
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to the tangles studied in knot theory and enter the knot invariants
via Skein relations (1), which we will exploit later.
The relationship between the 3D nematic field and the pro-

jected knot diagrams ensures that in the TN cell, we observe
exactly these three tangles at the positions between the particles
in a grid. Due to the alignment of the TN director field at the
bottom and top plate of the cell, there is only one type of
crossing, which simplifies the calculations and restricts the set
of possible knot diagrams on a selected grid size. Depending
on how the tangles are configured, the disclinations can form

different knots or links, which are limited in complexity only by
the size of the colloidal aggregate (38, 39). The curve traced by
the disclination can be extracted directly from the experimental
image and either identified by hand, or simplified with specialized
software (44) to detect which particular knot or link is formed
(Fig. 1F). However, the geometric restrictions based on the physics
of the containing TN cell lead to interesting properties that allow
a more elegant investigation of the knotted structures.

Twist Domains and Medial Graphs
An intriguing feature of entangled colloidal structures in a TN cell
is the microscopic twist domains locked between the colloidal
particles and the defects. Adjacent twist domains, separated by
disclinations, have opposite handedness and their director field
orientation in the cell midplane differs by 90° (Figs. 1C and 2A).
The twist domains of opposite handedness are, in the absence
of intrinsic chirality of the NLC, degenerate in free energy. When
observing a large entangled colloidal crystal between crossed
polarizers with an inserted λ-plate (45), the oppositely twisted
domains appear as blue-green– and yellow-gray–colored regions
(Fig. 2). The colors are caused by the difference in the angle be-
tween the average director orientation inside a particular domain
and the orientation of the λ-plate. Minor color differences between
the samples are caused by small variations in the cell thickness.
The twist-domain colors are related to graph theory. A duality

between the knot diagrams and edge-signed planar graphs implies
a knot projection can alternatively be represented as a graph. A
knot projection delimits space into “faces” that can be alternately
colored with two different colors. The vertices (nodes) of the graph
represent the enclosed faces of one color, and the graph edges
represent the crossings between the faces (1). Two-dimensional,
entangled, colloidal structures in a NLC provide a natural frame-
work for the construction of a planar graph from the projection of
the entangled defect loops and the colored domains among them
(Fig. 2). We assign a graph vertex to each same-colored region and
connect adjacent regions with edges. Each graph edge is labeled as
“+” or “−” depending on the type of the crossing it passes through
Fig. 2D). The result is a signed planar graph, a medial graph of the
knot diagram.
Every tangle rewiring is a local operation that does not change

the global alternating color pattern, but only connects or

Fig. 1. (A) Polarized optical micrographs of a single Saturn-ring structure, an
entangled dimer, and an entangled cluster of particles with a homeotropic
surface anchoring in a right-handed 90° TN cell. (B) Side view of the director
field and disclinations in the Saturn-ring structure from A showing the effect of
a 90° twist. (Inset) Direction of view. (C) Sketch of the director streamlines
around the dimer in a horizontal midplane cross-section. Notice the disclinations
delimit opposite twist domains with perpendicular midplane director orienta-
tion. (D) Example of disclinations entangling a 4× 3 array of particles. (E) Ide-
alized and rectangularly aligned depiction of a knot diagram for the structure in
D. The tangles between four adjacent particles can exist in three different states,
which can be individually switched with laser tweezers. (F) Topology-preserving
simplification of the disclination geometry in E identifies a figure-eight knot (41).

Fig. 2. Entangled colloidal aggregates show al-
ternating colored domains, delimited by the dis-
clinations. (A) The grid does not have to be
rectangular to construct the graph. The cell in C has
an opposite handedness compared with A and B. (A,
Inset) Interface between chiral domains of opposite
handedness. A λ-plate oriented at 45° to both
polarizer and analyzer reveals the domains in dif-
ferent colors. The colored domains map directly to
the nodes of the medial graph. (C) The resulting
signed planar graph can be further simplified with
the graph version of the Reidemeister moves and
used to recognize the knot. (D, Inset) The graph
edges are labeled as “+” or “−” according to the
type of crossing they represent. The structures in the
panels are the figure-eight knot ð41Þ, the trefoil knot
ð31Þ, and the Borromean rings ð632Þ, respectively.
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disconnects the color domains. The edges that correspond to the
disclination crossings seen at the particles all have one sign, whereas
the edges corresponding to the tangles have the opposite (Fig. 2
C and D). This makes the graph construction easier: not only are
the colors given by the experiment, but the edge signs can be im-
mediately filled in without checking their orientations individually.
The medial graph is ideal for a straightforward calculation of

the Göritz matrix and, subsequently, the knot signature and de-
terminant, which for nematics also helps to determine the number
of distinct director field textures (34). The resulting graph can be
further simplified by the Reidemeister moves adapted for the
graph representation (1). Thus, a simplified graph can be con-
structed and then used to identify the knot or link from a lookup
table, or with a calculation of further invariants. The graph can be
constructed even if the colloidal array is not rectangular, and
works for any colloidal aggregate bound by disclinations (Fig. 2).

Pontryagin–Thom Construction
The colored region extracted from the λ-plate micrographs can
also be considered a top projection of a surface bounded by the
disclinations (Fig. 3). At the crossings, this surface contains
“twisted bands,” where the surface turns the other side toward the
observer. An important topological invariant, the Euler charac-
teristic, is obtained from the colored region as χ = b− t− v, where
b is the number of rows in an a× b array of particles, whereas t
and v are the numbers of and tangles, respectively. The
expression encodes the fact that the and tangles add ad-
ditional bands to the surface. The surface is only orientable if
the medial graph associated with the same colored region is
bipartite––if it contains no odd cycles (for an odd cycle, see
Fig. 3B). In the orientable case, the surface is a Seifert surface of
the knot and can be used to extract topological properties via the
Seifert matrix, such as the knot signature, Alexander polynomial,
the upper bound of the knot’s genus, and the lower bound on the
unknotting number (3).
Regardless of its orientability, the extracted surface can also be

used to construct the Pontryagin–Thom (P-T) surface––a surface
that compactly, but uniquely, describes the nematic texture up
to a smooth topology-preserving transformation (29). It is de-
fined as the surface where the director field lies in a plane per-
pendicular to the far-field orientation, and colored by the angle
of the director in this plane (Fig. 3 B and D). In general, the
definition of the far-field director is ambiguous in a TN cell, but
for a 90° twist, taking the far field at the middle of the cell as
a reference direction (y direction in Fig. 3), it is only a minor and
topologically insignificant simplification.
The alternating nature of the director orientations of the twist

domains between the colloidal inclusions implies that the P-T sur-
face in the top projection coincides with the colored regions in the
λ-plate micrographs as can be seen in Fig. 3 A and B. This fixes the
shape of the surface up to a homotopy, but not the colors repre-
senting the precise director orientation. Without experimen-
tally or numerically provided director field information, we
predict the director based on the fact that around −1=2 dis-
clination it lies perpendicular to the disclination tangent. Near
the disclination itself, the representative direction can be ex-
tracted as an intersection of the reference plane and the plane,
perpendicular to the disclination. Away from the defects, the
color interpolation is continuous and unique up to a homotopy,
which allows a sketch of the surface. The surfaces in Fig. 3 were
constructed by solving a Laplace equation with the color and
position defined at the disclination lines. Idealized shapes of
the disclinations were modeled with the splines of circular arcs,
as used already for the visualization in ref. 38.
The P-T surface is bounded by line and point defects in the

system, and for the point defects, the number of turns of the
“color wheel” measures the topological charge. The surface acts
as a reference that connects point and line defects that together
amount to a zero total topological charge. The defects and
particles that are topologically bound together with the same
P-T surface cannot be separated without remaining tethered or

undergoing a discontinuous rearrangement. The “topological
entanglement” defined in this way matches the intuitive notion
of entanglement. The disclinations ensure that the entire cluster
of particles is topologically irreducible, in contrast with the more
common situation, where the point defects, particles, and dis-
clinations are bound up into neutral pairs, which in turn interact
weakly via residual elastic interactions (26, 46, 47).
This approximate construction retrieves a topologically exact

P-T surface without using any director field information, simply
by inferring the disclination orientation from the experimental
image. The resulting surface can be used to further investigate
the topological properties of the knot, and in particular, the di-
rector texture that lies in the knot complement (34). Such
a classification is more precise, as two isotopic knots may have
a topologically distinct director field around them.

Polynomial Invariants
The examples above focused on individual structures and
could be analyzed by hand. However, a robust and automated
knot classification is needed to analyze the entire multitude of
possible knots on a selected lattice. For that purpose, we use
polynomial knot invariants, which are easily calculable from the
tangle representation via the Skein relations (1, 2). A particularly
suitable choice is the Kauffman bracket polynomial, because it
does not require an oriented knot diagram (48). In this section, we
shortly summarize the routine, adapted to the geometry of colloi-
dal lattices, first developed for the classification of knots in ref. 38.
The computation of the Kaufmann bracket boils down to a

recursion that relates a particular knot projection to modified
projections with one crossing replaced by a smoothing. The re-
cursion stops when all of the crossings are removed, leaving a set
of unknotted and unlinked loops. A correction factor is required
to obtain the Jones polynomial, which is a true topological

Fig. 3. (A and C) Experimental λ-plate micrographs of nematic braids that
form the 63 knot and the Solomon link, respectively. The disclinations at the
colloidal particles are traced with dashed lines for visual guidance. (B and D)
Geometrically idealized, but topologically accurate P-T surfaces for the
structures in A and C. The surface locates where the director is perpendicular
to the far field at midheight (y direction). The colors encode the direction
within this plane (D, Inset, Left). B omits the particles to pronounce the
regular shape of the surface. D shows the P-T surface for structure C in
perspective. Note the red shading at the cross-tangles that signifies vertical
director field.
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invariant (48). A closed-form expression for the Jones poly-
nomial sums over all simplified diagrams

XðAÞ= ð−AÞ3w
X�

−A−2 −A2�n−1 Au−v; [1]

where u and v are the number of and tangles that replaced
all of the crossings and n is the number of components that build
up each specific final configuration with no crossings (Fig. 4) (2).
Sometimes the polynomial is expressed in terms of a different
variable, t=A−4. The correction factor (the integer writhe num-
ber w) is extracted from an oriented diagram of the original knot,
as a sum of ±1 contributions over all of the crossings (Fig. 4D).
To treat the nematic braids as knot projections, the particles are

interpreted as tangles. On the aligned grid, the calculation can
be easily automated, but the diagram can first be simplified in
several ways. Firstly, the crossings that belong to the leftmost and
rightmost column of particles can be removed (Fig. 4B). The
remaining diagram can be further simplified by performing the
grid-aligned counterparts of the Reidemeister moves of the first
and second kinds, as demonstrated in Fig. 4 C and D. These moves
can remove a great deal of unnecessary crossings in an OðN2Þ
preprocessing pass where N is the number of particles. This is of
vital importance because the computational complexity of the
Kauffman polynomial is exponential in the number of crossings.
For a 4× 4 grid, the optimization removed ∼ 7 crossings on aver-
age and reduced the computation time by a factor of 50.
After the Jones polynomial is obtained, we can find which knot

or link a given nematic braid encodes. For knots of low enough
complexity, a comparison of the result with databases of known
Jones polynomials gives a probable answer, even though the
Jones polynomial is not unique for each knot. The hypothesized
knot has to be additionally verified using other methods, such as
the medial graph analysis we mentioned above. For the knots
that are found on colloidal arrays of sizes up to at least 4× 4, the
Jones polynomial is a reliable and computationally accessible
way of determining the knot type (38). Note that with minor
modifications, the algorithm can be extended to produce the
HOMFLY polynomial, which is a stronger invariant (1).
The nematic braids are related to mirror knots and curves,

with an additional constraint of allowing only one type of
crossing (49). The above simplifications with Reidemester moves

are the counterparts of simplifications for mirror curves, except
for the Reidemester move III, which has no easy local realization
if there is only one type of crossing. The rectangular layout of
the knots resembles Celtic knotwork patterns. They are also
examples of Legendrian knots, because the −1=2 disclination
profile implies that the curve is roughly perpendicular to the
helically ordered, far-field director, which forms a standard
contact structure (50).

Hierarchy of Entangled Arrays
With the reliable classification algorithm described in the pre-
vious section, we can observe the structure of the configuration
space of all of the knots on a selected lattice. Besides the knot
type, the −1=2 disclinations present in our system are also
characterized by the self-linking number ðSlÞ, a topological in-
variant that measures the number of intrinsic turns of the profile
embedded in the loop (40). The threefold symmetry of the cross-
section allows Sl to be an odd multiple of 1=3 if the loop is linked
an odd number of times, and an even multiple of 1=3 if it is
unlinked or linked an even number of times with other compo-
nents of the link. The Sl also holds partial information about the
topological charge q of the system in the form

3
2

 X
i

Sli + 2
X
i>j

Lkij

!
+ n= qmod 2; [2]

where n is the number of components, Sli are their self-linking
numbers, and Lkij are the linking numbers between any pair of
components (27, 40). The switch of a tangle––a rotation of the
tetrahedron at the rewiring site––changes the number of compo-
nents by 1 and changes the first term on the left-hand side of
Eq. 2 by ±2=3, if the switch can be done without changing ori-
entations in an oriented knot diagram (Fig. 5, detail).
The size of the particle array fixes the topological charge. In

a diagram with Sl=
P

iSli and n on its axes, the possible struc-
tures that can be generated by different combinations of tangles
form a checkerboard grid with linked and unlinked structures in
alternating grid cells (38). This approach imparts a partial order
to the ensemble of 3ða−1Þ  ðb−1Þ possible structures on an a× b
array. A switch of one tangle predominantly changes between
diagonally adjacent structures, so proximity on the diagram
suggests a metric of how many switches are required to change
from one knot to the other. However, a switch of a tangle may
also jump far across the diagram if the rewiring violates the
orientation, so a strict ordering of the diagram is not possible.
With an increasing array size, the number of states grows ex-
ponentially, so even after ordering them into the ðSl; nÞ diagram,
the number of different knots and links that share the same
linking invariants grows quickly. Although this prevents pre-
diction of the knot type based only on the Sl, there is never-
theless an intricate hierarchical structure in the diagrams.
Any array can be constructed by incrementally adding single

rows and columns, usually with the use of laser tweezers. Adding
a column preserves the knot topology if the added tangles are all
of the type (Fig. 5, Bottom Right). On the other hand, the
addition of a row adds a single unknotted component if all of the new
tangles are of the type (Fig. 5,Top Left). Changing one of the new

tangles into a or tangle attaches the new loop to one of the
existing loops, restoring the topology of the original structure. Thus, a
larger array includes all of the knots found on smaller arrays (Fig. 5).
The persistence of old structures under the addition of rows or

columns results in a hierarchical structure of lower-dimensional
subdiagrams contained in larger diagrams. The addition of a row
or a column in a topology-preserving way shifts the Sl due to the
introduction of an extra plectonemic twist. Every a× b diagram
includes an ða− 1Þ× b diagram shifted 2=3b to the left and sev-
eral a× ðb− 1Þ diagrams shifted 2=3ða− 1Þ± 2=3 to the left, or by
2=3ða− 1Þ to the left and vertically one unit (with a free loop
added to the existing topology). Each subdiagram in turn

Fig. 4. Extraction of the Jones polynomial on a rectangular colloidal grid.
(A) POM image of a 4× 4 grid with nine active tangles and additional
tangles at each particle. (B) The end hooks can be trivially ignored before
classification (dashed line). (C and D) Reidemeister moves of I type (red) and
II type (blue) are found and resolved in a preprocessing pass. The remaining
crossings contribute to the integer writhe w according to the curve orien-
tation. (E) The final result of Eq. 1 is the Jones polynomial XðAÞ, which
reveals the original structure is the Whitehead link.
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contains multiple copies of even smaller diagrams. Although
these subdiagrams represent a significant percentage of all pos-
sible structures, they only account for those that can be simpli-
fied by removing a column or a row. Unique structures of greater
complexity that are absent from the smaller array require all of the
tangles to realize the required topology. These are the interesting
structures that increase the available complexity and ultimately
allow any knot to be created on a sufficiently large array.
Fig. 5 shows a hierarchical decomposition of a 4× 3 diagram with

outlined subdiagrams. The trapezoidal shape of the diagrams is
inherited from the smaller diagrams. As the subdiagrams exist in
differently shifted copies, the shape of the trapezoid is a convolution
of the shapes of subdiagrams with an elementary “triangle” that
describes the diagonal movement in the diagram under application
of the tetrahedral rotations (Fig. 5) (40). This, however, excludes the
new structures that are not present on the subdiagrams, which can
fall outside this estimated outline. In addition, there is weak clus-
tering of knot types on the diagram. Chiral knots prefer the outskirts
of the diagram, whereas amphichiral knots reside toward the center.
This reflects the coupling between the chirality of the knot and the
sign of the linking number, and thus the geometric writhe of the
disclination line. Within the imposed geometric constraints, differ-
ent knots require different amounts of writhing to entangle.

Conclusion
Among physical fields that potentially allow knotting, liquid
crystals stand out as the most versatile, allowing the greatest
variety and complexity, as well as a fine experimental manipu-
lation. Among many NLC complexes where knots have been
observed with POM, we selected the 90° TN cell as an example
that reflects many different aspects of knot theory. The colloidal
particles create uniformly arranged rewiring sites, with the tan-
gles directly corresponding to the tangles used in knot theory.

The tangles, which also reflect the threefold symmetry induced
by the underlying topology of the director field, allow a straight-
forward calculation of the Jones polynomial and associated invari-
ants. Furthermore, with the use of a λ-plate that introduces
a color-dependent phase shift, oppositely twisted domains are
unveiled as colored areas that correspond to the planar graph
associated with the knot projection seen under the microscope,
and aid in the construction of the P-T surface. If accompanied by
multiphoton fluorescent microscopy experiments, which extract
the P-T surface from a real sample, this method allows a direct
comparison of the theoretical result with the experiments,
either to confirm the prediction or to calibrate the experi-
ment. With the λ-plate POM imaging, the concept of graph
coloring is no longer abstract, but manifests experimentally
through the optical effects of the TN cell. This system represents
the most complex example to date, where the P-T surface can be
easily predicted without simulation or director field measurement,
and thus offers a platform for testing and developing further
theorems about the homotopy of nematic fields (34). As
defects regularly delimit domains with a different optical
signature, the method can be generalized to other systems with
a broken chiral symmetry, as long as the knot crossings or par-
ticles do not overlap in the top projection.
Besides the knot-related topological invariants, the disclination

loops have their own topological rules to obey. The self-linking
number, and essentially the entire matrix of linking numbers for
a multicomponent link (27), decorates the plain mathematical
knots with an additional internal structure. We demonstrated that
the self-linking number and the number of components act as
good additional classifiers that allow organized cataloging of the
knotted structures. We observe an ordering that weakly couples
the self-linking number to the knot type, especially for the chiral
knots. Although there is no strict law connecting the knot

Fig. 5. A diagram classifies all disclination configurations on a 4× 3 grid, with marked structures that are just extensions of structures on subgrids
of dimensions 3× 3 (blue outline) and 4× 2 (green outline). Note that the large grid includes structures, not found on smaller grids. The shifts in the Sl
from the smaller grids are marked. Linked and unlinked structures are shaded in blue and red, respectively. (Top Left) Extending a colloidal grid by one
row adds an unlinked loop, which can be attached by changing one tangle to or . Resulting structure has the same knot topology as
the original one. (Bottom Right) Attached column preserves the knot if all of the added tangles are of type. Linking and orientation preserving
rewirings of a single tangle switches between diagonally adjacent structures that form a triangle, as shown on the left side of the main diagram. Chiral
single-component knots are marked with a “±” sign according to the sign of the exponent of the highest-order term in the Jones polynomial.
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topology to the self-linking number, the hierarchy is nevertheless
qualitatively observable. Additional statistical analysis could also
yield a metric for the average distance between two knots in terms
of the number of tetrahedral rewirings. The number of possible
structures increases exponentially with the array size, and the
ðSl; nÞ diagram, which can be thought of as the projection of the
multidimensional space onto two parameters, becomes less in-
formative. Depending on the hypotheses one wants to test, ad-
ditional parameters, such as the number of tangles of a particular
type, may be used as the axes to test for correlations.
In conclusion, colloidal aggregates in a TN cell reveal how

a physical frustration can cause the system to present itself in a form
that is especially suited for a selected set of theoretical approaches.
The application of topological methods to a physical system requires
adaptations on both the theoretical and the experimental sides and
provides a rigorous formalism for handling the more complex as-
pects of the studied material. Unveiling of interesting new features
can be expected for many otherwise well-known materials that have
yet to be studied with topologically guided algorithms. For abstract
branches of knot theory, an experimental realization can be helpful
for understanding and finding alternative methods and is not to be
disregarded. The ability to observe the theory in action is a nice
opportunity both for education purposes as well as clarifying scien-
tific ideas and revealing a different perspective on existing problems.

Materials and Methods
Sample Preparation. We used a dispersion of 5-μm silica microspheres (Bangs
Labs) in a NLC pentylcyanobiphenyl (5CB, Nematel). To obtain a homeotropic

NLC alignment on the surface of colloidal particles, we have treated the
microspheres with 1 wt % aqueous solution of the surfactant N-dimethyl-n-
octadecyl-3-aminopropyl-trimethoxysilyl chloride (DMOAP, ABCR). The col-
loidal dispersion was confined to wedge-like TN cells, made of 0.7-mm-thick
glass plates, coated with transparent indium–tin–oxide and rubbed poly-
imide alignment layers (PI-2555, Nissan Chemical), spaced by a 6-μm-thick
mylar foil. The alignment directions at the top and bottom glass substrates
were set perpendicular to ensure a 90° twist of the director. The twist was
identified by the colors observed between crossed polarizers with an inser-
ted λ-plate, which shifts the phase of 530-nm light by 2 π.

Experimental Setup. Silica microspheres and defect loops in the NLC were
manipulated with laser tweezers setup built around an inverted optical mi-
croscope (Nikon, TE-2000) equipped with water immersion objective (Nikor,
NIR Apo 60 ×  =1:0w) and Ar+ ion laser (Coherent, Innova 90C-4), con-
trolled by a pair of acoustooptic deflectors (Aresis). Laser power was set
to 40 mW at the focal point which allowed for effective manipulation.
The assembled structures were observed with polarized light microscope
(Nikon, E600) and captured with a camera (Nikon, Coolpix E5400).

ACKNOWLEDGMENTS. The authors acknowledge stimulating discussions
with B. G. Chen, R. D. Kamien, R. B. Kusner, M. Ravnik, and R. Sazdanovi�c. We
thank the Kavli Institute for Theoretical Physics at University of California,
Santa Barbara, for their hospitality during the 2012 “Knotted Fields” mini-
program and acknowledge partial support by National Science Foundation
(NSF) Grant PHY11-25915. This work was supported by the Slovenian Research
Agency under Contracts P1-0099, P1-0055, J1-3612, J1-6723, and Z1-6725,
and in part by the Center of Excellence NAMASTE. S.�C. acknowledges sup-
port from NSF Materials Research Science and Engineering Centers Grant
DMR11-20901.

1. Adams CC (1994) The Knot Book (W. H. Freeman and Company, New York).
2. Prasolov VV, Sossinsky AB (1997) Knots, Links, Braids and 3-Manifolds (American

Mathematical Society, Providence, RI).
3. Cromwell PR (2004) Knots and Links (Cambridge Univ Press, Cambridge, UK).
4. Faddeev L, Niemi AJ (1997) Stable knot-like structures in classical field theory. Nature

387(6628):58–61.
5. Sutcliffe PM (2007) Knots in the Skyrme-Faddeev model. Proc R Soc Lond A 463(2077):

3001–3020.
6. Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35:

117–129.
7. Moffatt HK (2014) Helicity and singular structures in fluid dynamics. Proc Natl Acad Sci

USA 111(10):3663–3670.
8. Scheeler MW, Kleckner D, Proment D, Kindlmann GL, Irvine WT (2014) Helicity con-

servation by flow across scales in reconnecting vortex links and knots. Proc Natl Acad
Sci USA 111(43):15350–15355.

9. Kleckner D, Irvine WTM (2013) Creation and dynamics of knotted vortices. Nat Phys
9(4):253–258.

10. Herges R (2006) Topology in chemistry: Designing Möbius molecules. Chem Rev
106(12):4820–4842.

11. Ayme J-F, Beves JE, Campbell CJ, Leigh DA (2013) Template synthesis of molecular
knots. Chem Soc Rev 42(4):1700–1712.

12. Han D, Pal S, Liu Y, Yan H (2010) Folding and cutting DNA into reconfigurable to-
pological nanostructures. Nat Nanotechnol 5(10):712–717.

13. Micheletti C, Marenduzzo D, Orlandini E (2011) Polymers with spatial or topological
constraints: Theoretical and computational results. Phys Rep 504(1):1–73.

14. Meluzzi D, Smith DE, Arya G (2010) Biophysics of knotting. Annu Rev Biophys 39:349–366.
15. Irvine WTM, Bouwmeester D (2008) Linked and knotted beams of light. Nat Phys

4(9):716–720.
16. Kedia H, Bialynicki-Birula I, Peralta-Salas D, Irvine WTM (2013) Tying knots in light

fields. Phys Rev Lett 111(15):150404.
17. Dennis MR, King RP, Jack B, O’Holleran K, Padgett MJ (2010) Isolated optical vortex

knots. Nat Phys 6(2):118–121.
18. Hasan MZ, Kane CL (2010) Topological insulators. Rev Mod Phys 82(4):3045–3067.
19. Vilenkin A, Shellard EPS (1994) Cosmic Strings and Other Topological Defects (Cam-

bridge Univ Press, Cambridge, UK).
20. Mermin ND (1979) The topological theory of defects in ordered media. Rev Mod Phys

51(3):591–648.
21. Kurik MV, Lavrentovich OD (1988) Defects in liquid crystals: Homotopy theory and

experimental studies. Sov Phys Usp 31(3):196–224.
22. Nelson D (2002) Defects and Geometry in Condensed Matter Physics (Cambridge Univ

Press, Cambridge, UK).
23. Alexander GP, Chen BG, Matsumoto EA, Kamien RD (2012) Colloquium: Dis-

clination loops, point defects, and all that in nematic liquid crystals. Rev Mod Phys
84(2):497–514.

24. de Gennes P-G, Prost J (1993) The Physics of Liquid Crystals (Oxford Univ Press,
Oxford, UK).

25. Poulin P, Stark H, Lubensky TC, Weitz DA (1997) Novel colloidal interactions in an-
isotropic fluids. Science 275(5307):1770–1773.
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