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Long-term changes in nutrient supply and primary production
reportedly foreshadow substantial declines in global marine
fishery production. These declines combined with current over-
fishing, habitat degradation, and pollution paint a grim picture for
the future of marine fisheries and ecosystems. However, current
models forecasting such declines do not account for the effects of
ocean fronts as biogeochemical hotspots. Here we apply a funda-
mental technique from fluid dynamics to an ecosystem model to
show how fronts increase total ecosystem biomass, explain fishery
production, cause regime shifts, and contribute significantly to
global biogeochemical budgets by channeling nutrients through
alternate trophic pathways. We then illustrate how ocean fronts
affect fishery abundance and yield, using long-term records of
anchovy–sardine regimes and salmon abundances in the California
Current. These results elucidate the fundamental importance of
biophysical coupling as a driver of bottom–up vs. top–down reg-
ulation and high productivity in marine ecosystems.
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Globally, marine primary production is considered to set the
limits of fishery production (1), drive ecosystem functioning

(2), and contribute substantially to biogeochemical cycles (3).
Recent evidence of increased ocean temperatures (4, 5) and
declines in global nutrient supply and primary production (6),
combined with overfishing and other increasing human demands
on the ocean (7–9), therefore raises significant concerns about
fishery sustainability, ecosystem health, and maintaining global
biogeochemical cycles (10). However, the degree of patchiness,
instead of total biomass, may be the primary regulator of marine
production and food web structure (11–16). Fronts in the ocean
are boundaries between distinct water masses with sharp gra-
dients in temperature or salinity (density) that can increase
patchiness through flow convergence and, for density fronts,
increase vertical mixing and nutrient supply (11, 17). Due to flow
convergence at fronts, the spatiotemporal overlap of prey and
predators can be immense, leading to a cascade of impacts across
multiple scales from local prey size structure to global bio-
geochemical fluxes (11–13). However, the effects of fronts as
fishery productivity and biogeochemical cycling hotspots have
not been included in models that assess fisheries production and
ecosystem health (18) or addressed at scales (tens to hundreds of
kilometers) relevant to climate change (19).
Here we use an ecosystem model to explore why fronts appear

to have a strong influence on marine fishery production and
biogeochemical cycling. Existing ecosystem models currently
account only for the mean concentration of predator and prey
with relatively large grid cells (20). In a simple case of a single
autotrophic prey (A) and a single heterotrophic predator (B) the
governing equations are

dA
dt

= μaNA− gAB−maA

dB
dt

= gμbAB−mbB:

[1]

These equations describe the change in biomass of predator
and prey relative to nutrient supply (N), intrinsic growth (μ),
grazing (g), and mortality (m) rates with a reactive term, gμzAB,
coupling the two equations, and the mortality terms, maA and
mbB, represent the contribution of the interaction to biogeo-
chemical cycling.
In the ocean, concentrations of prey and predator are typically

very low, and consequently, the production term in an ecosystem
model will be even lower because it depends on the concentra-
tion of both (Fig. 1A). However, near fronts and other regions of
sharp ocean gradients, the covariance of prey and predators is
driven by (i) fluid dynamic processes that concentrate or disperse
organisms (convergence/divergence, confluence/diffluence, mix-
ing) and (ii) species-specific behaviors (11). Predator–prey co-
variance at fronts can be orders of magnitude higher than mean
oceanic values (Fig. 1B and Table 1) and is not represented
in current ecosystem or fisheries models. We used Reynolds
decomposition, a technique used in fluid dynamics to describe
turbulent flows, to represent the elevated covariance of prey and
predators at fronts. Reynolds decomposition separates the vari-
ables of interest into mean and perturbation terms, which creates
a closure problem (more unknowns than available equations)
where new terms arise due to the covariance of variables.
Modelers often use bulk properties to then estimate the mag-
nitude of the covariance terms. However, the averaging in the
ecosystem model is applied spatially instead of temporally, as
commonly applied in fluid dynamics. In the simple ecosystem
model above, the biomasses of prey and predator become
A= hAi+A′ and B= hBi+B′, where h i indicates the spatial av-
erage (Fig. 1B). The decomposition results in an additional term,
hA′B′i, that represents the influence of the spatial covariance of
prey and predator on the trophic dynamics of the ecosystem and
imposes a similar closure problem to the dynamic equations.
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To resolve the ecosystem closure problem, we developed a
parameterization for the new covariance term in an ecosystem
model (Fig. 1C) that reasonably represents existing field obser-
vational data across trophic levels, using a range of front prop-
erties (convergence rate, density difference) and species-specific
swimming speeds. We define a front as a sharp gradient in ocean
temperature or salinity. Whereas density fronts can drive up-
welling and be a direct source of nutrients, fronts with no density
signature can also lead to aggregation and may be supplied
nutrients indirectly through advection of remote sources. Here,
we do not directly address the source of nutrients for frontal
productivity, but only the aggregative effect of fronts, but a sim-
ilar technique could be used to address increased nutrient flux at
fronts. We used a frontal scaling factor for prey ðζA =A′=hAiÞ
and predator ðζB =B′=hBiÞ and their covariance ðζAB = 1+ hA′B′i=
hAihBiÞ calculated as the ratio of the covariance term ðhA′B′iÞ to
the product of the mean biomass of prey and predator ðhAihBiÞ.
The frontal scaling factor between two species describes the
relative influence of fronts on production (grams per square
meter per year) due to enhanced trophic interactions (Fig. 1C).
As the strength and stability of a front increase, the production
of a species increases due to increased prey availability. Similarly,
as the ability of consumers to exploit the front increases, the pro-
duction of that species increases. For secondary consumers (zoo-
plankton), fronts produce up to a 5-fold increase in production. For
larger, commercially important species, such as anchovies, sardines,
and salmon, fronts can account for a 20- to 40-fold increase in
production and even higher for top predators such as sharks and
marine mammals (Fig. 1C), similar to observed values (Table 1).
To show how increased production associated with fronts may

explain why (i) the ocean has historically supported immense
biomass of higher trophic levels (21), (ii) many large predators
migrate to highly active frontal regions such as the California
Current (22), and (iii) aggregation plays such an important role
in trophic regulation of pelagic ecosystems (2, 13), we incorpo-
rated this covariance parameterization into a hybridized size-
spectral/higher trophic-level ecosystem model (20, 23). The model
contains 40 spectrally distributed size classes each of phyto-
plankton and microzooplankton and 16 classes of higher trophic
levels. We used published values for prey preferences, ingestion
rates, and swimming speeds that have been shown to be realistic
and stable in the Ecopath model (20). We ran the model for
100 y and discarded the first 25 y as model spin-up for analysis,
using a 10-km × 10-km × 20-m deep surface layer ecosystem.
Examples of low front (weak convergence, low persistence) and
high front (strong convergence, high persistence) runs are given
in Figs. S1 and S2. We then computed the mean and 95% con-
fidence intervals of the annual production for several species
(Fig. 2 A–C). At low levels of frontal activity, the model performs
comparably to other ecosystem models for the California Current
[mean production of salmon 0.31 tons (t)·km−2 compared with
0.286 t·km−2; black dashed line in Fig. 2C] (20). When the co-
variance term is near zero or negative, the system is highly

sensitive to nutrient supply and primary production as has been
shown in previous studies (1, 2). However, at moderate and high
levels of frontal activity, higher trophic-level production is up to
25-fold higher than in the low front case and relatively insensitive
to nutrient supply levels. Ultimately fronts, by changing the sus-
ceptibility of prey to consumers, lead to changes in plankton com-
munity structure that translate into increased trophic complexity,
higher diversity, and higher overall biomass (Fig. 2 and Table 2).
The change in zooplankton size spectra due to front dynamics

offers an alternate mechanism for regime shifts from anchovy- to
sardine-dominated systems beyond those related to physical,
biochemical, and climate drivers (24–27). Weak fronts lead to
higher levels of smaller phytoplankton and zooplankton (e.g.,
dinoflagellates and microzooplankton, Fig. 2 A and D), because
top–down forcing of zooplankton on phytoplankton is weaker
relative to bottom–up regulation and therefore to a sardine-
dominated system (Fig. 2 B and D). Strong fronts lead to a size
structure shift from smaller phytoplankton and microzooplankton
to larger zooplankton and phytoplankton (e.g., diatoms), because
zooplankton can exploit phytoplantkon patches, and eventually to
an anchovy-dominated system (Fig. 2 B and D). Although other
mechanisms of anchovy–sardine dynamics have been proposed
related to coastal vs. wind-stress curl upwelling (24) and oxygen
content of waters (27), results here suggest that prey preferences
and variation in the feedback loop between bottom–up and top–
down forcing due to fronts lead to similar patterns. It is likely that
a combination of these mechanisms works in concert to drive ob-
served fluctuations between anchovies and sardines.
To further illustrate the importance of fronts on ocean pro-

duction, we show that anchovy–sardine regimes and salmon
production are closely correlated with front strength and density,
using 30+ y of satellite-derived front probability and strength
estimates for the central California Current (Fig. 3). Front
probability is defined as the probability of a front at a pixel and
computed using a probabilistic method from satellite-derived sea
surface temperature (28). The front probability index (FPI) is
then the first empirical orthogonal function (EOF) of the front
probability and represents the frequency of frontal occurrence
on the continental shelf (Fig. 3A). The frontal strength index
(FSI) is estimated as the distance from the mean to the mode in
the sea surface temperature (SST) gradient and represents a
skewed lognormal distribution toward high values. We used
these two indexes, along with major climate indexes [Pacific
Decadal Oscillation (PDO), El Nino Southern Oscillation
(ENSO), North Pacific Gyre Oscillation (NPGO), freshwater
outflow, and previous year abundance], to develop an integrated
index (29) for each that was incorporated into a general linear
model for both anchovy–sardine ratios and salmon abundance in
the form of the Sacramento index (SI) (30). The best model was
selected using the Akaike information criterion corrected for low
sample size (AICc). The anchovy–sardine ratio best-fit model
(lowest AICc) incorporated an interaction between FSI and
previous year abundance (Fig. 3B and Table 2). The addition
of the front strength term accurately predicts the two regime
shifts in the past 30 y. For salmon, the best-fit model included

A B C

Fig. 1. Effects of spatial covariance between predators and prey. (A) Evenly
dispersed condition currently assumed in models. (B) Highly aggregated
condition representative of most ocean environments. (C) Magnitude of the
effect of spatial covariance on species production.

Table 1. ζAB estimated from observations in available literature
for multiple trophic interaction

Prey, A Predator, B hAihBi hA′B′i ζAB Ref.

Phytoplankton Copepods 1,680 21,000 13.5 (14)
Copepods Micronekton 96 1,340 14.9 (14)
Micronekton Dolphins 20 480 26.0 (14)
Micronekton Tunas 0.094 3.24 35.5 (39)
Copepods Whales 0.066 3.35 56.8 (40)
Salmon Humans 0.088 7.62 87.5 (41)*

*Humans are not included explicitly in the present model, but the
estimate of ζAB illustrates the magnitude of the fishing effect on fish
populations.
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interaction terms between the PDO and the FPI and Sacramento
River outflow (OUT) with the strongest loading on the FPI (Fig. 3D
and Table 2). FPI is the strongest predictor of the 2007–2010
salmon collapse for central California.
Overall, fronts cover ∼4–10% of the area of the California

Current during the spring–summer productive upwelling season
as estimated from the remote sensing analysis for 1983–2011, yet
have disproportionately large contributions to fisheries pro-
duction (Table 3; 5% front level). Based on the model, fronts can
account for more than 59% of salmon production and also a
significant increase in the mean trophic level across the entire
ecosystem (Table 3; 5% front level). A 1% increase in front
probability leads to as much as a 21% increase in fishery pro-
duction (change in salmon production from 0% to 1% fronts).
Increased front activity (more, persistent fronts) consequently
may counteract declines in primary production with respect to
total ecosystem production (1, 6, 31) (Fig. 3C). These results also
suggest that conservation of large marine predators and fishery
management that incorporates persistent frontal features may
allow for a comparatively rapid return to historical abundances
of fishes and other top predators (18).
Recent evidence of enhanced vertical mixing along fronts has

led to the suggestion that these oceanographic features play an
important role in global biogeochemical cycles and consequently
must be considered in global climate change models (19, 32, 33).
Results from our front-parameterized ecosystem model suggest
that in addition to vertical mixing, biogeochemical cycling and
carbon export at fronts are also mediated and enhanced by bi-
ological processes (Fig. 4). Specifically, the enhanced transfer of
nutrients, carbon, and energy to higher trophic levels at fronts
increases biogeochemical fluxes to the deep ocean. The resulting
carbon and nutrient fluxes at frontal zones are an order of magni-
tude higher than in surrounding regions (Fig. 4) through processes
not currently accounted for in global-scale climate and ecosystem

models (19). In the California Current, fronts that cover 5% of the
ocean contribute more than 40% of the total biogeochemical fluxes
(Table 2). Fronts may thus mediate global climate change impacts
on our oceans, including ocean acidification, by vastly increasing
carbon export to the ocean floor (Fig. 4) (32).
The effects of climate change on fisheries production and

biogeochemical cycling will likely be determined by the coun-
teractive effects of stratification (front development and persis-
tence) and winds (front destruction) (33). Increasing sea surface
temperatures and stratification related to climate change would
likely increase frontal strength and persistence (33) and conse-
quently increase fishery production, as suggested by the model.
Conversely, increasing winds may limit front development and
persistence and therefore decrease fishery production despite
the effects of increased upwelling and nutrient flux (34). Eval-
uating how these climate change-related scenarios will interact to
affect fisheries and ecosystem functioning is critical to our ability
to predict and manage future change.
Because fronts are critical, dynamic features of the marine

environment, influencing a range of processes from recruitment

Table 2. Stepwise linear model results for anchovy–sardine
regimes and salmon abundance

Predictor index
Anchovy–sardine

estimate
Predictor
index

Salmon
estimate

PREV 0.915 FPI 0.530
FSI −0.436 PDO×FPI −0.187
PREV×FSI −0.542 PDO×OUT −0.187

PREV, previous year anchovy–sardine ratio; FSI, frontal strength index; FPI,
frontal probability index; PDO, Pacific Decadal Oscillation; OUT, Sacramento
River outflow.
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and fishery production to biogeochemical cycling (1, 18, 19), in-
corporation of frontal parameterizations into climate and eco-
system models is critical. Current Intergovernmental Panel on
Climate Change class models do capture large-scale fronts and
important features of primary production, but not the effects of
smaller-scale fronts on higher trophic-level interactions and
biogeochemical cycling. Reynolds decomposition provides an
elegant, computationally inexpensive, easily parameterized
mechanism to include fronts in both climate and ecosystem
models that will likely improve both climate change and fishery
forecasts (Fig. 1D). This formulation is also easily exported to
other models that may better represent phytoplankton dynamics
using self-selection criteria (35). Explicit data on the spatial
covariance of prey and predators due to fronts will be needed
to improve the parameterizations used in this study, and novel
technological developments in video and acoustic imaging and
dynamical systems analysis provide an excellent opportunity to
acquire these data across a wide range of oceanographic con-
ditions and trophic levels (14, 36, 37).

Materials and Methods
The Model. This study used a hybridized size-spectral higher trophic-level
ecosystem model with nitrogen as the common currency. The hybridization oc-
curs between a size-spectral model (23) and a mass balance model adapted
from Ecopath (20). The model solves equations for the conservation of nitrogen
across i size classes of phytoplankton, P; j size classes of microzooplankton, Z;
and k higher trophic level classes, H:

dN
dt

= S−
X
i

μPi
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Pi +
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−
X
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Φk1k2Hk1

KH +
P
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k1

X
k1

Hk1:

[2]

Table S1 provides a list and definitions of all terms. The model equations are
then solved at each time step, using a fourth-order Runge–Kutta numerical
solver. In the current study, 14 size classes of higher trophic levels are used
and given with prey preferences in Table S2. Predation by microzooplankton
and higher trophic levels is either done using an allometric size distribution or
specified directly. Grazing on phytoplankton and microzooplantkon is esti-
mated using an allometric distribution formulation and a prey size variability
parameter (23).

To account for the effects of predator–prey covariance, Reynolds decom-
position is performed on the set of Eq. 2, yielding an additional growth
term for each class interaction. This term is ultimately folded into the existing
growth term. An example of this formulation for the higher trophic level
Eq. 2 is
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[4]

where

ζAB =1+
ÆA′B′æ
ÆAæÆBæ

[5]

is the covariance factor of prey, A, and predator, B. The covariance factor,
ζAB, can then be estimated from frontal convergence rate (or change in
velocity across a grid cell) and organism swimming speeds as

ζAB = ζAζB

=
Lx

Lx − ð1=LxÞ
R
T

R
Lxðdu+wAÞdxdt

� �
Lx

Lx − ð1=LxÞ
R
T

R
Lxðdu+wBÞdxdt

� �
: [6]

Eq. 6 represents the aggregation (dispersion) of prey and predators due
to convergent/confluent (divergent/diffluent, du) flow and swimming/sensory
capabilities (wA, wB). The first part of [6] represents the aggregative effect of
flow and behavior on prey (A). The term is the ratio of the cross-frontal distance
ðLxÞ to the reduced frontal region due to compression of gradients and be-
havioral aggregation, Lx − ð1=LxÞ

R
T

R
Lx
ðdu+wAÞdxdt. The second part of [6]

represents a similar quantity for the predator. In this formulation, we assume
that prey or predators will swim toward a region of interest and that the value
of w is positive and represents an animal’s ability to search the frontal region.
Swimming speeds (wA, wB) are incorporated to factor in the ability of prey or
predator to find a region of interest. Swimming speeds for model runs were
obtained from available literature or assumed to be one body length per sec-
ond. This term represents the aggregation (dispersion) of prey and predators
due to convergent (divergent) flow and swimming/sensory capabilities within
a grid cell (10 km2). Aggregation (dispersion) acts to increase (decrease) the
covariance of predator and prey as in Fig. 2A. To estimate ζAB in the field, we
used available observations to compute the mean and perturbation abundance
for each trophic interaction based on information such as water depth, area
from map or that estimated from the acoustic device used, and the organism
distributions/densities. For studies that reported the number of individuals for
higher trophic levels, we assumed a mean mass per individual of 100 g for

Table 3. Fishery production and biogeochemical cycling at fronts

Species/dimension Mean At front 1% 5% 10%

Salmon, 103 kg·km−·y−1 0.23 6.16 (0.15) 0.29 (21) 0.53 (59) 0.77 (71)
Pelagic sharks, 103 kg·km−2·y−1 0.05 7.78 (0.38) 0.08 (95) 0.39 (99) 0.78 (99)
Baleen whales, 103 kg·km−2·y−1 0.08 9.34 (0.25) 0.09 (97) 0.47 (99) 0.94 (99)
Shannon diversity index, H′ 0.85 2.79 0.86 1.08 1.22
Simpson reciprocal index of

diversity, 1=D
3.36 9.98 3.67 4.92 6.24

Mean trophic level 1.67 3.33 1.68 2.77 3.18
N, 103 kg·km−2·y−1 0.11 1.65 (0.08) 0.13 (14) 0.19 (44) 0.26 (63)
C, 103 kg·km−2·y−1 11.66 148.10 (8.77) 13.02 (11) 18.47 (40) 25.29 (59)
P, 103 kg·km−2·y−1 1.88 28.29 (1.33) 2.14 (13) 3.20 (41) 4.52 (62)

Percentage columns refer to the amount (1%, 5%, 10%) of the ocean area classified as a front. Values in
parentheses are 95% confidence intervals or the percentage of total production that occurs at fronts.
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micronekton, 10–20 kg for large pelagic predatory fishes (salmon, tunas), 40 kg
for dolphins, and 36,000 kg (40 t) for whales. Acoustic estimates were used to
compute mean and perturbation estimates, assuming a linear correlation be-
tween biomass and backscatter or echo intensity. We then computed the
mean and perturbation concentration in the study region to estimate ζAB.

Biogeochemical fluxes were estimated from the sum of the mortality terms
of each class and some fraction of the grazing that did not go into growth. The
fraction was estimated as an allometric function based on (i) lower ecotrophic
efficiency at higher trophic levels and (ii) increased vertical transport of larger
fecal matter from larger species. Percentages of export ranged from 1% for
phytoplankton to 10% for highest trophic levels following an inverse of the
recycling rates. These percentages potentially underestimate total biogeo-
chemical cycling, but provide a reasonable first-order estimate. Rates of carbon
and phosphorus cycling were estimated from the Redfield ratio across all trophic
levels in a similar fashion to that for annual production rates for model species.

Sensitivity analyses were conducted over a range of convergence (divergence,
−0.1 s−1 to 0.1 s−1) and nutrient supply rates (0–4 μM N·d−1). Nutrient supply
covers the full range of field observations with 4 μMN·d−1 being at the high end
of intense upwelling. Typical upwelling systems experience nutrient fluxes of 1–
2 μM N·d−1 during active upwelling (Fig. S1) (20, 23). The range of convergence
rates covers values typically observed in the field from strong convergent fronts
to divergent regions of intense upwelling. All model runs were for a period of
100 y. Most of the runs (578 of 625) achieved statistical equilibrium, defined as
the point where the mean and variance did not change within the 95% confi-
dence interval of the estimates for all constituents within a 5-y moving window,
within 10 y. However, some took as many as 30 y for transient dynamics to di-
minish. Therefore, the first 25 y of each model run were discarded as initial spin-
up. Statistical equilibrium of production terms typically was reached within 5 y.
Numerical stability tests were completed and resolved before experimental
model runs. We did not perform rigorous sensitivity analyses on other model
parameters because (i) this has been done extensively in other studies and these
parameters were shown to be stable (20) and (ii) these parameters were not
varied within themodel for the results presented here. Model runs for a range of
biological parameters yielded similar results for the effects of fronts and nutrient
supply albeit with different trophic pathways as would be expected. However,
the results for trophic complexity, biodiversity, and production at higher trophic
levels were found to be robust to these parameter changes. All code was
implemented in MatLab and is available online on the author’s website.

Model Results. Time series of model results for a low front and high front run
are shown in Figs. S1 and S2, respectively. We define the low front run as low
persistence and weak or no convergence/confluence (0 m·s−1) and the high
front run as persistent fronts with moderate to strong convergence/confluence
rates (0.05 m·s−1). Phytoplankton and microzooplankton biomasses are repor-
ted in micromolar N. Higher trophic-level biomass was converted from ni-
trogen, using estimates of %N in tissue around 7%. Annual production
rates were estimated directly from model runs for Fig. 2 by integrating the
equilibrium production over the final 75 y of the model run and dividing by
the number of years in the run (20). We computed the Shannon diversity
index (H′=

PN
1 pi log  pi) and the Simpson reciprocal index of diversity

(1=D=
PN

1 p
2
i ), where pi is the proportion of biomass (in grams C) in each

group and N is the number of groups. We also calculated the weighted mean
trophic level for no front and high front conditions. For mean trophic level, we
assigned trophic level based on the maximum number of links required to go
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from a species group to nutrients and then computed the weighted mean
trophic level as

T =
1
N

XN
1

piTL: [7]

Observations. Time series of front probability and chlorophyll concentration
were computed from satellite remote-sensing data obtained from coastwatch.
pfeg.noaa.gov. Front probability was computed from monthly composite sea
surface temperature images (Pathfinder Day and Night, 4 km resolution, 1983–
2003, and MODIS 0.0125° resolution since 2003) over the region from 31° N to
46° N and extending 200 km from the coast, using an adaptive median filter
and a frontal probabilistic technique where spatial gradients in SST are fitted
to a lognormal distribution based on the monthly mean SST gradient, and the
tail of the distribution above 0.1 °C·km−1 is integrated to obtain a monthly
front probability (28). The front probability index is then the first EOF of the
front probability times series, accounts for 12% of the total variance, and
represents total frontal activity over the continental shelf (Fig. 1A). The FSI is
calculated as the distance between the mode of the lognormal distribution of
the SST gradient and the mean SST gradient for each month. Monthly com-
posite chlorophyll data from the MODIS Aqua and SeaWifs satellite data
product (science quality, 0.04167° resolution, 2002–2011 and 1997–2006, re-
spectively) were acquired for the same region. Overlapping years were closely
correlated and an average of the two data points was used during this period
to blend the products and increase temporal coverage. All environmental data
were smoothed using a weighted 12-mo moving average filter and then in-
terpolated to 1-y data to match the fisheries data that are recorded annually.

Salmon production was estimated using the Sacramento index (30, 38),
which is the total sum of catch and escapement for central California chi-
nook salmon. We chose this metric because it is used as an indicator of

salmon abundance by the Pacific Fishery Management Council and the
California Department of Fish and Wildlife to set fishery quotas for the
California salmon fishery. Anchovy and sardine landings data were obtained
from the California Department of Fish and Game. The anchovy–sardine index
was computed as the normalized difference between sardine and anchovy
abundance divided by total biomass for each year.

To develop the first-order autoregressize (AR-1) predictors for each index
(29), we integrated

dβðtÞ
dt

=ΠðtÞ− βðtÞ
τβ

[8]

for each index, Π, where Π is the PDO, ENSO, NPGO, FPI, or FSI. τβ was set to
4 y for anchovies and sardines and to 2 y for salmon to represent the ocean
residency period. We then incorporated each predictor into a stepwise
general linear model. The Akaike information criterion corrected for small
sample sizes was used to select the best-fit model,

AICc= 2k− 2lnðLÞ+ 2kðk+ 1Þ
ðn+ k+ 1Þ, [9]

where k is the number of parameters, L is the maximum likelihood, and n is
the number of samples. All analyses and correlations were performed
in Matlab.

ACKNOWLEDGMENTS. The authors thank R. C. Cowen, G. De Leo, J. Kellner,
A. Stowe, and K. Nichols for helpful comments. C.B.W. was supported by the
Packard Foundation through the Center for Ocean Solutions at Stanford
University, by the College of Engineering at the University of Georgia, and
by National Science Foundation Award 1212124 during this work. S.Y.L. was
supported by the Marine Life Observatory of Hopkins Marine Station.

1. Chassot E, et al. (2010) Global marine primary production constrains fisheries catches.
Ecol Lett 13(4):495–505.

2. Frank KT, Petrie B, Shackell NL (2007) The ups and downs of trophic control in con-
tinental shelf ecosystems. Trends Ecol Evol 22(5):236–242.

3. Sabine CL, et al. (2004) The oceanic sink for anthropogenic CO2. Science 305(5682):
367–371.

4. Hegerl GC, Bindoff NL (2005) Ocean science. Warming the world’s oceans. Science
309(5732):254–255.

5. Barnett TP, et al. (2005) Penetration of human-induced warming into the world’s
oceans. Science 309(5732):284–287.

6. Boyce DG, Lewis MR, Worm B (2010) Global phytoplankton decline over the past
century. Nature 466(7306):591–596.

7. Worm B, et al. (2006) Impacts of biodiversity loss on ocean ecosystem services. Science
314(5800):787–790.

8. Pauly D, Christensen V, Dalsgaard J, Froese R, Torres F, Jr (1998) Fishing down marine
food webs. Science 279(5352):860–863.

9. Halpern BS, et al. (2008) A global map of human impact on marine ecosystems. Sci-
ence 319(5865):948–952.

10. Sumaila UR, Cheung WWL, Lam VWY, Pauly D, Herrick S (2011) Climate change impacts
on the biophysics and economics of world fisheries. Nature Clim Change 1:449–456.

11. Bakun A (1996) Patterns in the Ocean: Ocean Processes and Marine Population
Dynamics (California Sea Grant College System, San Diego).

12. Wolanski E, Hamner WM (1988) Topographically controlled fronts in the ocean and
their biological influence. Science 241(4862):177–181.

13. Hunter MD, Price PW (1992) Playing chutes and ladders: Heterogeneity and the relative
roles of bottom-up and top-down forces in natural communities. Ecology 73:724–732.

14. Benoit-Bird KJ, McManus MA (2012) Bottom-up regulation of a pelagic community
through spatial aggregations. Biol Lett 8(5):813–816.

15. Flierl G, McGillicuddy DJ (2002) Mesoscale and submesoscale physical-biological in-
teractions. Biological-Physical Interactions in the Sea, eds Robinson AR, McCarthy JJ,
Rothschild BJ (John Wiley and Sons, Inc., New York), Vol 12, pp 113–185.

16. Levy M, Martin AP (2013) The influence of mesoscale and submesoscale heterogeneity
on ocean biogeochemical reactions. Global Biogeochem Cycles 27:1139–1150.

17. D’Asaro E, Lee C, Rainville L, Harcourt R, Thomas L (2011) Enhanced turbulence and
energy dissipation at ocean fronts. Science 332(6027):318–322.

18. Worm B, et al. (2009) Rebuilding global fisheries. Science 325(5940):578–585.
19. Ferrari R (2011) Ocean science. A frontal challenge for climate models. Science

332(6027):316–317.
20. Field JC, Francis RC, Aydin K (2006) Top-down modeling and bottom-up dynamics:

Linking a fisheries-based ecosystem model with climate hypotheses in the Northern
California Current. Prog Oceanogr 68:238–270.

21. Pauly D, et al. (2002) Towards sustainability in world fisheries. Nature 418(6898):
689–695.

22. Block BA, et al. (2011) Tracking apex marine predator movements in a dynamic ocean.
Nature 475(7354):86–90.

23. Banas NS (2011) Adding complex trophic interactions to a size-spectral plankton model:

Emergent diversity patterns and limits on predictability. Ecol Model 222:2663–2675.
24. Rykaczewski RR, Checkley DM, Jr (2008) Influence of ocean winds on the pelagic

ecosystem in upwelling regions. Proc Natl Acad Sci USA 105(6):1965–1970.
25. Lindegren M, Checkley DM, Jr, Rouyer T, MacCall AD, Stenseth NC (2013) Climate,

fishing, and fluctuations of sardine and anchovy in the California Current. Proc Natl

Acad Sci USA 110(33):13672–13677.
26. Chavez FP, Ryan J, Lluch-Cota SE, Niquen CM (2003) From anchovies to sardines and

back: Multidecadal change in the Pacific Ocean. Science 299(5604):217–221.
27. Bertrand A, et al. (2011) Oxygen: A fundamental property regulating pelagic eco-

system structure in the coastal southeastern tropical Pacific. PLoS ONE 6(12):e29558.
28. Woodson CB, et al. (2012) Coastal fronts set recruitment and connectivity patterns

across multiple taxa. Limnol Oceanogr 57(2):582–596.
29. Di Lorenzo E, Ohman MD (2013) A double-integration hypothesis to explain ocean

ecosystem response to climate forcing. Proc Natl Acad Sci USA 110(7):2496–2499.
30. Lindley S, et al. (2009) What Caused the Sacramento River Fall Chinook Stock Col-

lapse? Pacific Fishery Management Council Report (Pacific Fisheries Management

Council, Portland, OR).
31. Kahru M, DiLorenzo E, Manzanpo-Sarabia M, Mitchell BG (2012) Spatial and temporal

statistics of sea surface temperature and chlorophyll fronts in the California Current.

J Plankton Res 34:749–760.
32. Gruber N, et al. (2012) Rapid progression of ocean acidification in the California

Current System. Science 337(6091):220–223.
33. Thomas LN, Ferrari R (2008) Friction, frontogenesis, and the stratification of the

surface mixed layer. J Phys Oceanogr 38:2501–2518.
34. Bakun A (1990) Global climate change and intensification of coastal ocean upwelling.

Science 247(4939):198–201.
35. Follows MJ, Dutkiewicz S, Grant S, Chisholm SW (2007) Emergent biogeography of

microbial communities in a model ocean. Science 315(5820):1843–1846.
36. Cowen RK, Guigand CM (2008) In situ ichthyoplankton imaging system (ISIIS): System

design and preliminary results. Limnol Oceanogr Methods 6:126–132.
37. d’Ovidio F, De Monte S, Alvain S, Dandonneau Y, Lévy M (2010) Fluid dynamical

niches of phytoplankton types. Proc Natl Acad Sci USA 107(43):18366–18370.
38. Pacific Fisheries Management Council (2012) Preseason Report I: Stock Abundance Anal-

ysis and Environmental Assessment Part 1 for 2012 Ocean Salmon Fishery Regulations

(Pacific Fisheries Management Council, Portland, OR).
39. Josse E, Bach P, Dagorn L (1998) Simultaneous observations of tuna movements and

their prey by sonic tracking and acoustic surveys. Hydrobiologia 371-372:61–69.
40. Beardsley RC, et al. (1996) Spatial variability in zooplankton abundance near feeding

right whales in the Great South Channel. Deep Sea Res II 43:1601–1625.
41. Healey MC, Thomson RE, Morris JFT (1990) Distribution of commercial troll fishing

vessels off southwest Vancouver Island in relation to fishing success and oceanic

water properties and circulation. Can J Fish Aquat Sci 47:1846–1864.

Woodson and Litvin PNAS | February 10, 2015 | vol. 112 | no. 6 | 1715

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S
EC

O
LO

G
Y

http://coastwatch.pfeg.noaa.gov
http://coastwatch.pfeg.noaa.gov

