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Abstract

In complex multicellular organisms, epithelia lining body cavities regulate absorption and 

secretion of ions, organic molecules, and water. Proper function of epithelia depends on apically 

and basolaterally situated ion channels as well as tight junctions which seal the apical intercellular 

space. Without tight junctions, transepithelial concentration gradients of ions and nutrients would 

be dissipated through the paracellular space. Elevated tight junction permeability is a feature of 

many diseases of multiple organs, including the gastrointestinal tract [1,2,3*,4*], kidney [5,6], and 

lungs [7,8]. In the intestines, epithelial barrier dysfunction is a major contributor to diarrhea and 

malnutrition and is associated with significant morbidity and mortality worldwide.

Introduction to tight junction proteins

In 1986, the first tight junction protein, zonula occludens-1 (ZO-1), was discovered [9], and 

since that time, many additional proteins and interactions have been discovered. These 

include a large number of transmembrane proteins such as claudins, junctional adhesion 

molecules (JAMs), coxsackie adenovirus receptor (CAR), and members of the tight junction 

associated marvel protein (TAMP) family, including marvelD3, occludin, and tricellulin. 

These proteins are situated at the apical intercellular space with the extracellular domains 

interacting between adjacent cells to form the paracellular barrier. In addition to the these 

transmembrane tight junction proteins, cytoplasmic scaffolding proteins including members 

of the ZO family, cingulin, and related proteins, which provide coupling to the cytoskeleton 

(Figure 1a) and a means of interactions with multiple cellular signaling pathways which 

regulate paracellular flux.

Extracellular stimuli modulate tight junction barrier function

Multiple signaling pathways have the capacity to regulate tight junction barrier function. 

Physiologic mechanisms of tight junction barrier regulation include cross talk between 

plasma membrane ion channels and transporters and the tight junction. For example, in the 
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intestine, ingested glucose and amino acids modulate paracellular permeability by 

interacting with the plasma membrane sodium glucose cotransporter (SGLT1), which 

activates myosin light chain kinase (MLCK) through activating another apical membrane 

transporter, Na+/H+ antiporter (NHE3), to promote contraction of the apical actin 

cytoskeleton [10]. This form of barrier regulation is thought to promote increased passive 

paracellular flux of ions and water soon after a meal. Other plasma membrane ion channels 

and transporters, including the Na+/K+ ATPase, and the chloride channel ClC-2, have also 

been reported to regulate the tight junction barrier. The Na+/K+ ATPase regulates tight 

junction permeability by inhibiting protein phosphatase 2A activity to induce occludin 

phosphorylation [11]. ClC-2 channels influence tight junction permeability via caveolar 

trafficking of occluding to the tight junction [12]. Thus physiologic tight junction regulation 

depends not only on tight junction protein expression and localization, but also on the 

expression of plasma membrane channels and transporters.

In addition to these physiological regulators of tight junction barrier function, pathological 

stimuli such as enteric pathogens [13], or basolateral inflammatory cytokines [7,14–16] 

mediate changes in tight junction conductance. Many signaling pathways including protein 

kinase C, mitogen activated protein kinases, and Rho GTPases have been shown to regulate 

tight junctions in cytoskeleton dependent and independent mechanisms [17]. Recent studies 

have highlighted novel roles of non-coding micro RNAs (miRNAs) in tight junction 

maintenance and regulation [18]. MiR-21 is upregulated in patients with ulcerative colitis, 

induces barrier dysfunction, and decreased occludin protein in vitro. These effects are 

correlated with degradation of RhoB mRNA [19]. Another miRNA, MiR-122a, directly 

controls occludin expression by degrading occludin mRNA [20]. Thus, numerous 

physiological and pathophysiological signaling pathways converge at the tight junction for 

fine-tuned regulation of paracellular flux. We now understand that the full capacity of 

barrier regulation is not achieved by simple paracellular tightening and loosening, but via 

regulation of multiple dynamic paracellular charge and size selective permeability pathways.

A Dynamic Model of Tight Junction Function

Historically, the tight junction was often assumed to be a simple static paracellular seal, but 

evidence supports that tight junctions are far more complex with more than one distinct 

permeability pathway and the capacity to dynamically regulate paracellular flux in a size and 

charge selective manner. Early evidence favoring a more complex mechanism of barrier 

regulation comes from freeze fracture scanning electron microscopy studies. Using this 

approach, the lipid bilayer at the apical intercellular space is fractured along hydrophobic 

planes providing a lateral view of the tight junction. These studies showed that the tight 

junction is composed of multiple parallel branching stands encircling the cell at its apical 

surface (Figure 1b). Leaky epithelia, like the kidney proximal convoluted tubule and 

gallbladder, generally have 1–2 strands, and tight epithelia like the bladder contain 5 or 

more strands [21]. Remarkably, it was shown that the number of tight junction strands does 

not correlate linearly with transepithelial resistance, as would be expected of resistors 

arranged in series. Rather, transepithelial resistance follows a logarithmic function of strand 

number [22]. Such non-linear behavior could be explained by a model in which each strand 

is populated by conductive pathways which can open and close [22]. In such a model, 
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conductance depends not only on the number of strands, but also the number of open pores 

in each strand.

To date it has been impossible to directly test this model through direct measurements due to 

limitations in our ability to study tight junction function at the molecular level. Instead, we 

have relied on temporally and spatially averaged measurements of barrier function across 

small areas of epithelium containing thousands of epithelial cells and intercellular spaces.

Additional insight into the dynamics of tight junction structure can be obtained by studying 

the diffusion of fluorescent tagged tight junction proteins. Using an approach known as 

fluorescence recovery after photobleaching (FRAP), a small (e.g., several microns) area of 

fluorescently tagged tight junction protein is transiently bleached. The rate and extent of 

fluorescence recovery in this area is followed over time. This provides both a measurement 

of the rate of recovery (i.e. t1/2) as well as percent recovery (i.e. mobile fraction). Using this 

approach and a similar approach, fluorescence loss in photobleaching (FLIP), it was 

discovered that the interactions between tight junction proteins and the actin cytoskeleton 

are labile and undergo continuous remodeling at steady state [23]. ZO-1, occludin, and 

claudin-1 each have distinct recovery kinetics. Specifically, claudin-1 and occludin both 

diffuse within the plasma membrane but differ dramatically with respect to their mobile 

fraction. In contrast, the scaffolding protein ZO-1 does not diffuse within the plasma 

membrane, but rather exchanges with intracellular pools. Its exchange depends on 

interactions with the actin cytoskeleton and MLCK activity. Remarkably, the mobile 

fraction of ZO-1 correlates with MLCK activity and tight junction barrier function [24]. 

Thus, these data support a dynamic model of tight junction barrier in which tight junction 

mobility is reflective of tight junction electrical conductance.

Pore and Leak Pathways of tight junction conductance

Measurements of tight junction barrier function usually rely on either electrical 

measurements of tight junction conductance and/or flux assays of molecular tracers. These 

two approaches have historically been used as interchangeable methods to study the tight 

junction barrier. However, examples where electrical conductance and flux are not 

correlated suggest a more complicated model in which the barrier to macromolecules is 

distinct from the barrier to small ions [25,26]. To better understand this phenomenon, 

additional assays of barrier function to measure tight junction size selectivity and charge 

selectivity are required [27]. Tight junction size selectivity can be assessed by measuring the 

permeability of a graded series of uncharged polyethylene glycol oligomers as a function of 

their radius [14]. A second approach is to substitute different sized monovalent cations for 

Na+ and to measure relative permeabilities electrically from shifts in equilibrium potential 

[28]. From such measurements, it is clear that the relationship between tracer size and tight 

junction flux is biphasic. There is a high permeability for molecules smaller than ~4 Å 

radius and relatively low permeability for larger molecules [27,29]. Tight junction charge 

selectivity can be assessed from the relative permeabilities of Na+ and Cl− determined from 

the equilibrium potential measured after reducing the concentration of NaCl on one side of 

the epithelium.
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From such measurements, it was determined that expression of claudins are the principal 

determinants of tight junction charge selectivity and define tight junction permeability to 

small molecules [30]. Stimuli that affect ZO-1, occludin, or tricellulin were shown to 

modulate flux of larger molecules irrespective of charge [31]. Based on these data, the 

prevailing hypothesis is that there are at least two distinct pathways of trans-tight junction 

flux: a low capacity ZO-1- and occludin-dependent “leak” pathway that defines the 

permeability of macromolecules and a high capacity claudin-dependent “pore” pathway that 

regulates permeability of the tight junction to ions and small molecules.

Further data support that these two pathways are differentially regulated by 

pathophysiological stimuli. For example, activation of SGLT1, which regulates tight 

junction permeability via communications through the actin cytoskeleton [10], results in 

increased tight junction conductance to small ions (i.e. reduced transepithelial resistance). 

However, when one assesses macromolecular flux using tracer molecules, it becomes 

apparent that permeability is not always increased by activation of SGLT1. There is a size 

cutoff such inulin (radius = 11.5 Å) cannot cross the tight junction, while the smaller 

molecule mannitol (radius = 3.6 Å), can pass. These data are consistent with activation of 

small tight junction pores which would be expected to augment paracellular ion and water 

absorption without allowing significant paracellular loss of larger proteins and nutrients.

Cytokines, which are produced by lamina propria inflammatory cells, also have the capacity 

to differentially regulate pore and leak pathways. Interleukin-13 (IL-13) [15,25,32,33] and 

tumor necrosis factor (TNF)-α [33–35], in particular, have been extensively studied because 

of their relevance to inflammatory bowel disease. Interestingly, these cytokines 

differentially regulate pore and leak pathways. IL-13 acts to specifically increase tight 

junction claudin-2 expression and specifically increases tight junction permeability to Na+ 

and small cations, but does not significantly alter transepithelial permeability of negatively 

charged ions or macromolecules [25]. TNF-α causes increased permeability of small ions 

irrespective of their charge and increased flux of uncharged macromolecules and is 

associated with internalization of occludin [25,36*].

Thus, there are at least two distinct pathways of trans-tight junction conductance: pore and 

leak. We still do not fully understand the relative contributions of these pathways or 

significance of alterations to diseases. Bridging this gap in knowledge of molecular 

mechanisms of these pathways is expected to help with the development of more specific 

approaches to treat barrier dysfunction in the future.

Molecular mechanisms of pore pathway flux

There are 24 members of the claudin family of tight junction proteins. Claudin expression 

varies between types of epithelium, depending on physiological requirements [37–40], 

changes over the course of development [41], and is altered in a large number of different 

disease states [1–3,15,33,42,43]. The pattern of claudins expressed is the major determinant 

of pore pathway permeability. Some claudins form relatively tight paracellular barriers to 

ions [44], while others, such as claudin-2 and claudin-15 make tight junctions selectively 

permeable to small cations, but impermeable to anions and macromolecules [45]. It is 
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notable that knockout of claudins 2 and 15 in mice was recently shown to cause dramatic 

defects in paracellular Na+ flux and this was coupled with defects in cellular sodium coupled 

nutrient transport [46**]. Other claudins (e.g. claudin-4, 10a, 17), induce anion selectivity 

[47*–49].

The crystal structure of a claudin-15 monomer was recently discovered, and agrees with 

mathematical predictions that claudins consist of four transmembrane alpha helices and two 

extracellular loops [50**]. The extracellular loops interact to form a beta sheet fold. Claudin 

monomers are believed to assemble into polymeric structures. The structure of these 

polymers is defined by conserved residues within transmembrane segment 3 of claudins, and 

this also contributes to strand ultrastructure [51*]. It appears that a disulfide bond between 

conserved extracellular cysteines is important to intermolecular interactions and pore 

formation [52*]. Although the structure of the claudin pore remains undefined, mutagenesis 

studies have pinpointed several amino acids in the first extracellular loop, which are 

important to defining pore ion selectivity properties [28,53]. Bulky covalent modifications in 

this region of the pore have the capacity to reduce paracellular conductance [54].

Molecules which interact with residues lining claudin pores are potential modulators of pore 

pathway function. Multivalent cations Ca2+ and La3+ are competitive inhibitors of the pore 

pathway function which compete with monovalent cations for binding to negatively charged 

residues within the pore [54]. However, since these ions interact with other cell membrane 

transporters, they are not specific modulators of paracellular flux. A possible pharmacologic 

approach to treat barrier dysfunction may be to design peptides that act as claudin binding 

partners. For example, a peptide derived from the claudin-1 extracellular loop has been 

shown to specifically disrupt barrier function [55]. However, this effect is associated with a 

drop in barrier function and as such, appears to be due to defects in tight junction assembly 

rather than pore blockade. Another claudin binder derived from Clostridium perfringens 

enterotoxin increases tight junction permeability to macromolecules [56,57]. Improved 

understanding of claudin pore structure is expected to aid in the development of agents to 

specifically block pore function.

Since tight junctions are dynamic structures that undergo continuous remodeling, stimuli 

which modulate the ability of claudins to form stable pore structures is another approach 

which can be used to reduce pore permeability. One such stimulus is casein kinase 2 (CK2). 

CK2-dependent phosphorylation of the occludin C-terminal tail favors the formation of a 

stable complex between claudin-1, claudin-2 and ZO-1, preventing formation of claudin-2 

pores after IL-13-induced increases in permeability [58]. In addition to phosphorylation of 

occludin, other stimuli which directly phosphorylate of claudin-2 at its cytoplasmic tail can 

regulate trafficking and retention of claudin-2 to the tight junction [59*].

Mechanisms of leak pathway flux

Much less is known about the mechanisms of the tight junction leak pathway. The leak 

pathway is often associated with reduced expression or internalization of tight junction 

proteins such as occludin, ZO-1, or tricellulin [25,36,60,61].
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There are several models to account for increased leak pathway, and they are not mutually 

exclusive. One possibility is that increased large molecule flux is due to transient strand 

separations allowing large molecules to cross the tight junction in a stepwise manner. 

Another possible explanation is that leak may be due to the physical geometry of tricellular 

contacts. Overexpression of tricellulin, a member of the TAMP family, which localizes to 

tricellular tight junctions, appears to diminish this type of leak [61]. Finally, loss of occludin 

is associated with a ~62.5 Å barrier defect suggests a model of leak associated with large 

paracellular channels [58]. The structural basis of these channels remains unclear.

Tight junction dynamics are also an important part of leak pathway regulation. TNF-α 

treatment increases the diffusion rate of occludin within the plasma membrane and promotes 

occludin endocytosis. These effects can be blocked through specific inhibition of MLCK 

[16,25] or by blocking occludin/ZO-1 interactions at the occludin OCEL domain [36].

Summary

Tight junctions form the essential paracellular barrier in all epithelia. While these structures 

were once thought to be static and largely impermeant, we now understand that tight 

junctions are dynamic structures. Further, paracellular flux is regulated via at least two 

distinct mechanisms: pore and leak. The pore pathway selectively regulates transepithelial 

permeability to small ions, whereas the leak pathway is a charge non-selective pathway 

which allows much larger macromolecules to pass. Improved understanding of the 

molecular mechanisms and differential roles of these pathways in disease will lead to novel 

therapeutic approaches to treat barrier dysfunction.
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Highlights

1. Paracellular flux is regulated by dynamic tight junction protein interactions.

2. Claudin interactions define small molecule flux across tight junction pores.

3. Macromolecular flux occurs via the non-selective tight junction leak pathway.

4. Pore and leak pathways are differentially regulated in health and disease.
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Figure 1. 
Tight junctions establish the rate limiting step for paracellular flux between epithelial cells. 

(a) The barrier is established by multiple interactions between transmembrane proteins 

situated on adjacent cells. Transmembrane proteins are linked to the actin cytoskeleton 

providing one means of barrier regulation. (b) Ultrastructurally, the tight junction appears 

and a meshwork of anastomosing strands that encircle the epithelial cells. Current models of 

barrier function suggest at least two distinct pathways of trans-tight junction flux. A high 

capacity pore pathway regulates paracellular flux of small ions and molecules but does not 

pass macromolecules. A low capacity leak pathway passes ions and macromolecules in a 

charge and relatively size non-selective manner.
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