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Abstract

IMPORTANCE—Epigenetic studies present unique opportunities to advance schizophrenia
research because they can potentially account for many of its clinical features and suggest novel
strategies to improve disease management.

OBJECTIVE—To identify schizophrenia DNA methylation biomarkers in blood.

DESIGN, SETTING, AND PARTICIPANTS—The sample consisted of 759 schizophrenia
cases and 738 controls (N = 1497) collected in Sweden. We used methyl-CpG-binding domain
protein-enriched genome sequencing of the methylated genomic fraction, followed by next-
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generation DNA sequencing. We obtained a mean (SD) number of 68 (26.8) million reads per
sample. This massive data set was processed using a specifically designed data analysis pipeline.
Critical top findings from our methylome-wide association study (MWAS) were replicated in
independent case-control participants using targeted pyrosequencing of bisulfite-converted DNA.

MAIN OUTCOMES AND MEASURES—Status of schizophrenia cases and controls.

RESULTS—Our MWAS suggested a considerable number of effects, with 25 sites passing the
highly conservative Bonferroni correction and 139 sites significant at a false discovery rate of
0.01. Our top MWAS finding, which was located in FAM63B, replicated with P = 2.3 x 10710, |t
was part of the networks regulated by microRNA that can be linked to neuronal differentiation and
dopaminergic gene expression. Many other top MWAS results could be linked to hypoxia and, to
a lesser extent, infection, suggesting that a record of pathogenic events may be preserved in the
methylome. Our findings also implicated a site in RELN, one of the most frequently studied
candidates in methylation studies of schizophrenia.

CONCLUSIONS AND RELEVANCE—To our knowledge, the present study is one of the first
MWAS:s of disease with a large sample size using a technology that provides good coverage of
methylation sites across the genome. Our results demonstrated one of the unique features of
methylation studies that can capture signatures of environmental insults in peripheral tissues. Our
MWAS suggested testable hypotheses about disease mechanisms and yielded biomarkers that can
potentially be used to improve disease management.

The methylation of DNA cytosine residues at the carbon 5 position is a common epigenetic
modification that is often found in the sequence context CpG. Investigations of these
markings provide a promising complement to schizophrenia studies of DNA sequence
variation. First, methylation can directly affect gene expression, so it may capture additional
variation in disease susceptibility. Indeed, specific epimutations have already been
associated with human diseases, including psychiatric disorders.} Second, methylation
studies may advance our understanding of schizophrenia. For example, they can potentially
account for a variety of features, such as its episodic nature.2:3 Third, the translational
potential is considerable. For example, epigenetic markings are modifiable by
pharmaceutical interventions, making them possible new drug targets.*

The pathogenic processes for psychiatric disorders likely involve the brain. However, brain
tissue is not readily accessible in living patients, so blood is typically used in biomarker
studies. There are 2 models explaining how methylation studies in blood can advance
schizophrenia research.> Neither model assumes that methylation in blood directly affects
disease susceptibility, although this is possible, in principle, because blood provides a
biological environment for other tissues, including the brain. In the “signature” model,
associations occur between schizophrenia and methylation markings because the factors that
increase disease susceptibility leave a biomarker signature in blood. Thus, the methylation
markings in blood implicate a cause of the disease, which may affect schizophrenia through
processes that are unrelated to methylation in the brain. In contrast, the “functional mirror
site” model assumes a causal role of methylation sites in the brain. When the methylation
status of these sites in the brain is mirrored by the corresponding sites in the blood, we will
observe associations between schizophrenia and methylation markings at the same loci in
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blood. Compared with tissue-specific differentially methylated regions,8 correlated
methylation profiles across tissues are common. Mirror sites occur because peripheral
tissues may reveal methylation markings predating or resulting from the epigenetic
reprogramming events affecting the germ line and embryogenesis,” and environmental
factors and genetic polymorphisms can affect methylation levels in multiple tissues.8° To
study the 2 models,> we administered haloperidol decanoate to inbred mice and then
performed whole-methylome profiling in the blood, cortex, and hippocampus. More than
65% of the sites showed correlated changes where the concordance rates were similar
between blood and brain vs between the 2 brain tissues. This showed that factors affecting
brain processes (eg, haloperidol) can leave biomarker signatures in blood and that the
methylation status of many sites in the brain is mirrored in the blood.

Current knowledge about the role of DNA methylation in schizophrenia is mainly acquired
from relatively small studies of peripheral blood1%-17 and postmortem brain tissue,18-26
Most studies focused on specific genes, such as RELN,1922 HTR2A,20 COMT, 1318
S0X10,23 and FOXP2.26 Two studies12 investigated a broader set of sites. One
investigated approximately 12 000 regulatory regions in postmortem brain tissue samples
from 35 patients with schizophrenia and 35 controls.! It reported differences in the vicinity
of loci that can be functionally linked to disease etiology. The second study!?2 investigated
approximately 27 000 CpG sites in peripheral blood from 11 pairs of monozygotic twins
discordant for schizophrenia. Dempster et al2 observed significant epigenetic disruptions in
biological networks relevant to psychiatric disease and neurodevelopment.

The goal of the present study is to identify schizophrenia methylation biomarkers in blood
through a methylome-wide association study (MWAS). The most comprehensive method
involves the use of next-generation sequencing after bisulfite conversion of unmethylated
cytosines. Currently, however, this is not economically feasible considering the sample sizes
required for an MWAS.27 As a cost-effective alternative, we first captured the methylated
DNA fragments and then sequenced this methylation-enriched portion of the genome?8 (see
Aberg et al?? for a discussion of the merits of methyl-CpG binding domain [MBD]protein-
enriched genome sequencing [MBD-seq]). Our “discovery” MWAS sample consisted of
almost 1500 schizophrenia cases and controls. Critical findings were replicated in an
independent group of participants using targeted bisulfite pyrosequencing.

Detailed descriptions of the method can be found else-where.2%-31 Qur study was approved
by the institutional review board at Karolinska Institutet, Stockholm, Sweden, and written
informed consent was obtained from all participants.

Table 1 describes the “discovery” MWAS and replication samples. All participants were
selected from national population registers in Sweden and are part of a larger study.32
Because 3 participants withdrew their consent during the study, we report results for 1497
participants. Key findings were replicated in an independent group of 1144 participants and
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at other sites in an independent group of 360 participants. For all participants, DNA was
extracted from the buffy coat of whole blood.

Whole-Methylome Profiling

Association

We used MethylIMiner (Invitrogen), which employs MBD protein-based enrichment of the
methylated DNA fraction, followed by single-end sequencing (50 base-pair reads) on the
SOL.ID platform (Life Technologies). We eluted the captured methylated fraction with 0.5M
sodium chloride to increase the relative number of fragments from CpG-poorregions,2?
which otherwise would not be as well covered.33 To avoid batch effects, samples were
processed in random order.

eTable 1 in the Supplement gives descriptive statistics for a variety of sequencing
parameters. In summary, after deleting reads with more than 2 missing calls, we obtained a
mean (SD) number of 68(26.8) million reads per sample. Reads were aligned (build hg19/
GRCh37) using BioScope 1.2 (Life Technologies). We deleted all samples with less than
40% alignment. For the remaining samples, the mean (SD) percentage of mapped reads was
69.2% (6.2%). We eliminated 32.1% of the mapped reads because they were low-quality
multireads (reads aligning to multiple locations) or duplicate reads (reads with identical start
positions). We excluded 38 participants because less than 15 million reads remained after
quality control. This left 1459 participants with a mean (SD) number of 32.4 (13.7) million
quality-control reads. Using data from 73 technical replicates, we observed a mean/median
correlation of 0.90/0.92 between the methylation profiles from the replicates.2? This
supported the reproducibility of our assay.

The MBD protein only binds to methylated CpG sites, so we only consider the 26 752 702
autosomal CpG sites in the reference genome for our analysis. The 10.5 million CpG sites
(36%) located in regions showing alignment problems were eliminated.2® Most (71.8%) of
these were in regions flagged as repetitive elements by RepeatMasker (http://
www.repeatmasker.org/). Methylation measurements were obtained by estimating how
many fragments covered each CpG site.31 Highly intercorrelated coverage estimates at
adjacent CpG sites were combined to obtain more reliable measurements.34 Rather than
using a sliding window of an arbitrary fixed length, we combined sites adaptively based on
their observed intercorrelations.3% Using the 99th percentile of the coverage estimates at
non-CpG sites?? as the threshold for background noise, we excluded 730 522 blocks with
low coverage (likely unmethylated) from further analysis (eFigure 1 in the Supplement).
This left 4 344 016 blocks for association testing.

Testing, Confounders, and Tissue Heterogeneity

A variety of efforts were made to control for confounders. First, we regressed out possible
assay-related technical artifacts such as the quantity of genomic DNA starting material, the
quantity of methylation-enriched DNA captured, and the sample batch. In addition, we
controlled for age and sex.

Second, after regressing out the measured confounders, we performed principal component
analysis to capture the major remaining unmeasured confounders. Because existing soft-
ware cannot handle the ultrahigh-dimensional MWAS data, we used our own software30 that
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allows for parallel processing, that uses C++ for CPU-intensive and input/output-intensive
calculations, and that follows Gower3® by performing the eigen-decomposition of a much
smaller transposed variant of the data matrix. Based on a scree test (eFigure 2 in the
Supplement), the first 7 principal components were regressed out of the association analysis.

Third, we correlated principal component scores with a variety of variables to check whether
additional covariates were required (see Table 2 in Aberg et al?%). For example, these
analyses showed that, in this fairly homogeneous sample, ancestry did not contribute
substantially to variation in the methylome, and it was therefore not included as a covariate.

Blood consists of a variety of cell types. By using whole-blood samples, we are studying an
“average” methylation pattern that will be dominated by the common types. This can
produce false positives only if both (1) the relative abundance of common cell types differs
across cases and controls, and (2) methylation patterns of common cell types differ. Ideally,
we would have case-control MBD-seq data obtained from separated white blood cells3® to
identify sites that are at risk for creating false positives. The principal component analysis
provides an alternative in situations where cell-type heterogeneity affects many methylation
sites.36-38 participants with a similar cell-type composition will have more similar
multilocus methylation patterns, and these patterns will be captured by the principal
components. However, situations where few methylation sites are involved will remain
uncorrected. We note, however, that most tissue samples will be heterogeneous, so similar
risks are present when studying other tissues too.

Network Analyses

Replication

We used ConsensusPathDB3%-41 to generate protein-protein interaction (PP1) networks and
perform pathway analyses based on the Reactome,*2 Kyoto Encyclopedia of Genes and
Genomes,*3 and BioCarta databases. To create microRNA (miRNA) networks, we used the
University of California, Santa Cruz, genome track TS miRNA site for GRCh37/hg19,
which is based on TargetScan 5.1 (Bioinformatics and Research Computing). All blocks
with g < 0.01 in the MWAS were matched to the closest gene +20 kilobases. For each of the
4601 reference pathways present in ConsensusPathDB, incorporating 9859 known genes, a
hypergeometric test was performed to study whether the overlap between the top MWAS
genes and those present in each reference pathway was higher than expected by chance.

For the replication, we used targeted bisulfite pyrose-quencing.#44> We replicated the top 5
MWAS findings and 10 sites selected from the network analyses. Controlling the familywise
error rate at the a level of .05 through a Bonferroni correction therefore gives a threshold

of .05/15 = 3.3 x 1073. We conservatively used the highest (least significant) P value if there
were multiple (correlated) CpG sites in the same assay. Finally, we added a negative control
by assaying a site with a high nonsignificant MWAS P value, and to assess the efficacy of
the principal component analysis, we selected the 2 most significant findings obtained after
performing the MWAS without principal components.
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For network/pathways findings, a second “replication” opportunity existed by testing
whether, after excluding the (top) findings used to identify the networks, the remaining
genes from that network are also associated with case-control status in the MWAS (for
miRNA networks, these tests are not suitable because miRNA likely regulates genes that
may have different functions). For this purpose, we performed permutation tests.

Our Figure shows the MWAS Manhattan plot with 139 tests with g < 0.01, meaning that less
than 1% of the 139 findings are expected to be false discoveries (eFigure 3 in the
Supplement).4647 The P values for these sites ranged from 10~ to 10711, with 25 sites
reaching significance after we used the highly conservative Bonferroni correction (threshold
P =1.15 x 1078). Our test statistic inflation parameter X of 1.12 was higher compared with
what is commonly observed in genome-wide association studies. This A value is unlikely an
artifact. After we performed a square root transformation to normalize the data and mitigate
the effects of possible outliers, A did not change. Furthermore, increasing the stringency of
the quality control resulted in higher rather than lower \ values (eFigure 4 in the
Supplement). Instead, this A value reflects that methylation studies are more akin to gene
expression studies that typically show many correlated effects with relatively large effect
sizes.

Of the 139 MWAS findings, 112 overlapped with genes. Table 2 shows that regardless of
whether we used PPI networks, pathway databases, or miRNA target networks, hypoxia was
the dominant theme. For example, the PPI network centered on EPASL (previously known
as hypoxia-inducible factor 2) includes 2 genes, both of which were detected in our MWAS.
EPASL encodes a transcription factor induced as oxygen levels fall and is known to
specifically interact with ETSL, another center for a PPl network among our findings, which
is involved in the regulation of vascular development in the neonatal mouse brain.*8
Furthermore, transcription coactivator EP300 is necessary for hypoxia-induced
transcriptional activation and is upregulated in low-oxygen conditions.*® Using reference
biological pathways, we detected the hypoxia-inducible factor 1 alpha (HIF1A) transcription
factor network. HIF1A, together with ARNT, forms hypoxia-inducible factor (HIF), which
regulates hypoxia-inducible genes.?0 In addition, AKT signaling is an important modulator
of HIF activity,>! and signaling by Rho GTPases has been linked to hypoxia response,
particularly in the vascular system.52 Finally, miRNA miR-217 regulates heme oxygenase 1,
an enzyme responsive to hypoxic conditions.>3

Other findings shown in Table 2 converge on immune sys-tem themes. A prominent
example is IgA1 (encoded by IGHAL), which is highlighted by our PPI network analyses.
Although several genes associated with this network (RUNX3, CREB1, and SMAD3) are
involved in multiple pathways, FCAR is highly specific to IgA because it encodes the
receptor for the Fc fragment of IgA. In blood, FCAR interacts with IgA to initiate
inflammatory reactions and phagocytosis. Fcy-mediated phagocytosis, related to the action
of 1gG, was also among the top findings in our pathway analysis.
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Table 3 shows the replication results (for design features of pyrosequencing assays and for
full replication results, see eTables 2 and 3, respectively, in the Supplement). Except for the
control sites, the direction of effects was the same in the replication as in the MWAS.
Although all 5 top findings had replication P values of less than .05, only FAM63B remained
significant after applying our very conservative correction for multiple testing. FAM63B was
our top MWAS finding with a P = 6.3 x 10711 (q = 2.1 x 1074). The replication assay
contained 3 CpG sites. The highest P value (2.3 x 10719) of these 3 CpG sites was below our
multiple testing threshold of P = 3.3 x 1073, Table 2 shows that FAM63B is part of 4
networks regulated by miRNA. Three types of these mMiRNA (miR-218, miR-9, and
miR-504) can be linked to neuronal differentiation and dopaminergic gene expression,>4-56

All genes selected from hypoxia pathways had a nominal P < .05. Whereas the most
hypoxia-specific gene (ARNT) replicated after correcting for multiple testing, the most
specific immune response-related gene, FCAR, was only nominally significant. To perform
our second “replication” effort, we first removed the top MWAS findings that were used to
detect the networks/pathways in the initial analyses and then performed 10 000 permutations
to test whether the other genes in the implicated networks showed enrichment for small P
values in the MWAS. For hypoxia networks created using PPIs, none of the test statistics
obtained after permutation had a value more extreme than the observed test statistic (eFigure
5 in the Supplement). This implies a P < 1.0 x 10~ (= 1/10 000), indicating that the MWAS
results for the remaining group of network genes were more significant than expected under
the null hypothesis. For the pathway analyses, the permutation test was also highly
significant (P <.001; eFigure 5 in the Supplement). For the immune system, we combined
PPI network and pathway results to avoid small sets of genes. None of the permutation test
statistics had a value more extreme than the observed test statistic (P < 1.0 x 10™4; eFigure 6
in the Supplement).

Interestingly, a site in RELN had an MWAS q value of less than 0.1. RELN has previously
been associated with schizophrenia via messenger RNA expression studies®’:8 and,
although some inconclusive results exist,2° is one of the most prominent schizophrenia
candidate genes in methylation studies.122 Furthermore, support for a strong inverse
correlation between RELN expression and promoter methylation has been observed in
mice®® and humans.®0 Table 3 shows that the RELN site also replicated. Similar to previous
findings,19-22 we observed increased levels of methylation in schizophrenia cases.
Traditionally, methylation studies of RELN have focused on the promoter region. Our best
finding was located in the first intron and did not directly overlap the previous findings.

Table 3 shows that our negative control did not replicate, nor did the 2 most significant sites
obtained after we performed an MWAS without regressing out the principal components.
This suggests that the principal components were useful to prevent false positives.
Regressing out the covariates from Table 1 did not alter results (eTables 4, 5, and 6 in the
Supplement). For example, cigarette smoking can result in impaired oxygen release to
tissues,51 and nicotine can upregulate HIF1A.52 However, we did not observe correlations
between the methylation of genes in hypoxia networks and smoking, nor did the inclusion of
smoking status as a covariate change the replication results (eTable 4 in the Supplement).
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Discussion

Our top MWAS finding (FAM63B) replicated with a P = 2.3 x 10710, It was part of the
networks regulated by miRNA that can be linked to neuronal differentiation and
dopaminergic gene expression,>-5% functions of potential relevance for schizophrenia.
Many of our other top MWAS results could be linked to hypoxia and sometimes infection.
Replicated findings also implicated RELN, one of the most frequently studied candidates in
methylation studies of schizophrenia.?? Interestingly, RELN is regulated by HIF1/2a and can
therefore also be linked to hypoxia.63.64

The hypoxia findings were very robust. Regardless of whether we used PPI networks,
pathway databases, or an miRNA target gene database, hypoxia was a dominant theme. The
hypoxia genes replicated in independent samples using a different technology. Furthermore,
genes that were not among the top findings in the MWAS but were in the hypoxia pathways
were also significantly enriched for small P values. Although the scope and quality of our
phenotype data were limited, smoking or other covariates did not account for the hypoxia
findings. Although we can only speculate about the cause, we note that a substantial amount
of literature exists showing that hypoxia during fetal development increases the risk of
schizophrenia.? It is known that environmentally induced methylation changes can be
preserved over a prolonged period of time.55:66 One intriguing hypothesis is that early
hypoxia events alter methylation profiles in blood DNA, traces of which are preserved in the
adult patient.

Many MWAS results reflected environmental insults. Because environmental effects cannot
alter sequence variation, these phenomena cannot be detected with genome-wide association
studies or exome-sequencing studies. Although there was some thematic overlap (eg,
genome-wide association studies have implicated genes involved in immune response87),
this likely explains why we found genes that were different from those found in studies of
sequence variants. To find overlapping loci, different analytical strategies may be required.
For example, the DNA sequence can regulate methylation patterns,®68-70 and we are
currently conducting analyses to find loci where these regulatory mechanisms may be
disrupted in schizophrenia. Because these analyses combine sequence variants with
methylation patterns, they are more likely to yield results that overlap with genome-wide
association study findings. Methylation signatures of environmental insults may not impact
gene expression in blood. Thus, whole transcriptome studies may not be able to capture the
phenomena detected in this study; therefore, methylation studies provide unique possibilities
compared with other technologies.

Our results demonstrate how methylation studies in whole blood can advance schizophrenia
research. First, they suggest that a record of pathogenic events may be preserved in the
methylome. Etiologically distinct disease subtypes may be distinguishable from each other
with respect to prognosis, course, or response to treatment.’ The possibility of identifying
these subtypes using methylation markers that tend to have large effect sizes and can be
measured with cost-effective assays, using DNA from blood that is stable and easy to
collect, would be of great clinical importance. Second, methylation studies can generate
testable hypotheses about disease mechanisms. For example, the hypoxia findings show how
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methylation studies can point to disease-causing factors. As postulated by the “signature
model,”® the causal factors may affect schizophrenia through processes that have nothing to
do with methylation (eg, possible causal mechanisms include disruption of the laminar
organization of the cerebral cortex’2). Our RELN finding possibly demonstrates the second
possible model, in which the methylation status of disease-relevant sites in the brain is
mirrored by the corresponding sites in the blood. Thus, previous studies!?22 have implicated
methylation sites in RELN in schizophrenia using postmortem brain samples. The fact that
we find this gene in whole blood provides a possible illustration of the “functional mirror-
site model.”®

A variety of efforts were taken to control for potential confounders. Our results suggested
genes related to hypoxia, the immune system, and brain function rather than genes that, for
example, are potentially relevant to medication and life style differences. This suggests that
our efforts worked satisfactorily. For biomarkers other than genetic variants, there is always
the inherent risk of confounding effects. Experiments studying model systems in controlled
environments (eg, cell culture) would be the next step to rule out confounders completely.

Studies have suggested that 30 to 60 million reads per sample may be sufficient to reveal
valuable information for whole-genome methylation analysis.33:73 We obtained, on average,
68.0 million reads, of which 32.4 million high-quality reads (47.6%) remained after
stringent quality control. The MWAS was performed on “blocks” that summed reads across
correlated CpG sites to improve the reliability of the measurements. This appeared to be
sufficient to detect methylation markers that replicated in independent samples. It is
possible, however, that increasing the number of reads would allow the detection of sites
(eg, in CpG-poor regions) that could currently not be measured reliably.

Conclusions

In summary, to our knowledge, the present study is one of the first MWASS of disease with
a large sample size using a technology that provided good coverage of methylation sites
across the genome. Our results demonstrate how methylation studies can suggest new
avenues to increase our understanding of disease and yield biomarkers that can be used to
potentially improve disease management.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure. M ethylome-Wide Association Study Manhattan Plot
The 22 autosomes are displayed along the x-axis, with the negative logarithm of the

association P value for each block displayed on the y-axis. All P values above the upper
(red) line have g values of less than 0.01, and those above the lower (blue) line have g
values of less than 0.1.
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Table 1

Key Findings of Methylome-Wide Association Study of Schizophrenia?®

% of Participants (% of Participants With Missing Data)
Variable Cases Controls Total
Discovery sample
Participants, No. 759 738 1497
Male 54.9 (0) 54.1 (0) 54.5 (0)
Non-Finnish Nordic parents 89.4 (19.1) 93 (13.1) 91.2 (16.2)
Alcohol use 58.1 (15) 93.6 (13.8) 75.7 (14.4)
Smoker 50.4 (82.2) 53.8 (85.6) 51.9 (83.9)
Narcotic use 255 (1.7) 6.8 (0.1) 16.2 (0.9)
Epilepsy 5.1(1.8) 0.5 (0.8) 2.8(1.3)
Diabetes 8.8 (1.4) 3.4(0.8) 6.1(1.1)
Hyperthyroid 0.5 (3) 1.7 (3.8) 1.1(3.4)
Hypothyroid 45(2.9) 2.7(3.5) 3.6(3.2)
Autoimmune disorder 1(9.6) 1.8(2.4) 14 (6.1)
Age, mean (SD), y 53.2 (11.6) 55.1 (11.8) 54 (11.7)
Replication sample 1
Participants, No. 178 182 360
Male 61.8 (0) 65.9 (0) 63.9 (0)
Alcohol use 56.1 (16.9) 95.4 (4.4) 77.3(10.6)
Smoker 40.1 (17.4) 13.2 (0) 25.2 (8.6)
Narcotic use 19.1 (0) 7.1(0) 13.1(0)
Autoimmune disorder 1.2(3.9) 0.6 (4.9) 0.9 (4.4)
Age, mean (SD), y 56.4 (10.7) 58.5 (10.3) 57.5 (10.6)
Replication sample 2
Participants, No. 561 582 1144
Male 63.3(0) 60.5 (0) 61.9 (0.1)
Alcohol use 55.2 (10) 94.9 (2.2) 76.3 (6.1)
Smoker 42.7 (38.7) 12 (0) 23.4 (19.1)
Narcotic use 20.3(0.9) 6.5(0.2) 13.3(0.6)
Autoimmune disorder 0.6 (5.2) 0.2 (2.7) 0.4 (4)
Age, mean (SD), y 54.5 (11.4) 57.1(10.9) 55.8 (11.2)
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Because of screening, 100% of the participants in the replication samples have Non-Finnish Nordic parents, and 0% of the replication samples

have participants who received a diagnosis of epilepsy, diabetes mellitus, hyperthyroid, or hypothyroid.
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