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Abstract

IMPORTANCE—Epigenetic studies present unique opportunities to advance schizophrenia 

research because they can potentially account for many of its clinical features and suggest novel 

strategies to improve disease management.

OBJECTIVE—To identify schizophrenia DNA methylation biomarkers in blood.

DESIGN, SETTING, AND PARTICIPANTS—The sample consisted of 759 schizophrenia 

cases and 738 controls (N = 1497) collected in Sweden. We used methyl-CpG–binding domain 

protein-enriched genome sequencing of the methylated genomic fraction, followed by next-

Copyright 2014 American Medical Association. All rights reserved.

Corresponding Author: Edwin J. C. G. van den Oord, PhD, Center for Biomarker Research and Personalized Medicine, Virginia 
Commonwealth University, PO Box 980533, Richmond, VA 23298-0581 (ejvandenoord@vcu.edu). 

Supplemental content at jamapsychiatry.com

Author Contributions: Dr van den Oord had full access to all of the data in the study and takes responsibility for the integrity of the 
data and the accuracy of the data analysis.
Study concept and design: Aberg, McClay, Chen, Xie, Gao, Sullivan, van den Oord.
Acquisition of data: Aberg, Hudson, Harada, Hultman, Magnusson, van den Oord.
Analysis and interpretation of data: Aberg, McClay, Nerella, Clark, Kumar, Chen, Khachane, Xie, Hudson, Gao, Hultman, 
Magnusson, van den Oord.
Drafting of the manuscript: Aberg, McClay, Nerella, Clark, Kumar, Hudson, Gao, Hultman, van den Oord.
Critical revision of the manuscript for important intellectual content: Aberg, Clark, Chen, Khachane, Xie, Harada, Sullivan, 
Magnusson, van den Oord.
Statistical analysis: Aberg, McClay, Clark, Chen, Gao, van den Oord.
Obtained funding: Aberg, Hultman, Sullivan, Magnusson, van den Oord.
Administrative, technical, or material support: Aberg, McClay, Nerella, Khachane, Hudson, Harada, Hultman, Magnusson, van den 
Oord.
Study supervision: Aberg, Khachane, Hultman, van den Oord.

Conflict of Interest Disclosures: None reported.

Additional Contributions: Library construction and next-generation sequencing were performed by EdgeBio. We thank the Swedish 
Schizophrenia Consortium and Life Technologies for their advice.

NIH Public Access
Author Manuscript
JAMA Psychiatry. Author manuscript; available in PMC 2015 March 01.

Published in final edited form as:
JAMA Psychiatry. 2014 March ; 71(3): 255–264. doi:10.1001/jamapsychiatry.2013.3730.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

http://jamapsychiatry.com


generation DNA sequencing. We obtained a mean (SD) number of 68 (26.8) million reads per 

sample. This massive data set was processed using a specifically designed data analysis pipeline. 

Critical top findings from our methylome-wide association study (MWAS) were replicated in 

independent case-control participants using targeted pyrosequencing of bisulfite-converted DNA.

MAIN OUTCOMES AND MEASURES—Status of schizophrenia cases and controls.

RESULTS—Our MWAS suggested a considerable number of effects, with 25 sites passing the 

highly conservative Bonferroni correction and 139 sites significant at a false discovery rate of 

0.01. Our top MWAS finding, which was located in FAM63B, replicated with P = 2.3 × 10−10. It 

was part of the networks regulated by microRNA that can be linked to neuronal differentiation and 

dopaminergic gene expression. Many other top MWAS results could be linked to hypoxia and, to 

a lesser extent, infection, suggesting that a record of pathogenic events may be preserved in the 

methylome. Our findings also implicated a site in RELN, one of the most frequently studied 

candidates in methylation studies of schizophrenia.

CONCLUSIONS AND RELEVANCE—To our knowledge, the present study is one of the first 

MWASs of disease with a large sample size using a technology that provides good coverage of 

methylation sites across the genome. Our results demonstrated one of the unique features of 

methylation studies that can capture signatures of environmental insults in peripheral tissues. Our 

MWAS suggested testable hypotheses about disease mechanisms and yielded biomarkers that can 

potentially be used to improve disease management.

The methylation of DNA cytosine residues at the carbon 5 position is a common epigenetic 

modification that is often found in the sequence context CpG. Investigations of these 

markings provide a promising complement to schizophrenia studies of DNA sequence 

variation. First, methylation can directly affect gene expression, so it may capture additional 

variation in disease susceptibility. Indeed, specific epimutations have already been 

associated with human diseases, including psychiatric disorders.1 Second, methylation 

studies may advance our understanding of schizophrenia. For example, they can potentially 

account for a variety of features, such as its episodic nature.2,3 Third, the translational 

potential is considerable. For example, epigenetic markings are modifiable by 

pharmaceutical interventions, making them possible new drug targets.4

The pathogenic processes for psychiatric disorders likely involve the brain. However, brain 

tissue is not readily accessible in living patients, so blood is typically used in biomarker 

studies. There are 2 models explaining how methylation studies in blood can advance 

schizophrenia research.5 Neither model assumes that methylation in blood directly affects 

disease susceptibility, although this is possible, in principle, because blood provides a 

biological environment for other tissues, including the brain. In the “signature” model, 

associations occur between schizophrenia and methylation markings because the factors that 

increase disease susceptibility leave a biomarker signature in blood. Thus, the methylation 

markings in blood implicate a cause of the disease, which may affect schizophrenia through 

processes that are unrelated to methylation in the brain. In contrast, the “functional mirror 

site” model assumes a causal role of methylation sites in the brain. When the methylation 

status of these sites in the brain is mirrored by the corresponding sites in the blood, we will 

observe associations between schizophrenia and methylation markings at the same loci in 
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blood. Compared with tissue-specific differentially methylated regions,6 correlated 

methylation profiles across tissues are common. Mirror sites occur because peripheral 

tissues may reveal methylation markings predating or resulting from the epigenetic 

reprogramming events affecting the germ line and embryogenesis,7 and environmental 

factors and genetic polymorphisms can affect methylation levels in multiple tissues.8,9 To 

study the 2 models,5 we administered haloperidol decanoate to inbred mice and then 

performed whole-methylome profiling in the blood, cortex, and hippocampus. More than 

65% of the sites showed correlated changes where the concordance rates were similar 

between blood and brain vs between the 2 brain tissues. This showed that factors affecting 

brain processes (eg, haloperidol) can leave biomarker signatures in blood and that the 

methylation status of many sites in the brain is mirrored in the blood.

Current knowledge about the role of DNA methylation in schizophrenia is mainly acquired 

from relatively small studies of peripheral blood10–17 and postmortem brain tissue.18–26 

Most studies focused on specific genes, such as RELN,19,22 HTR2A,20 COMT,13,18 

SOX10,23 and FOXP2.26 Two studies1,12 investigated a broader set of sites. One 

investigated approximately 12 000 regulatory regions in postmortem brain tissue samples 

from 35 patients with schizophrenia and 35 controls.1 It reported differences in the vicinity 

of loci that can be functionally linked to disease etiology. The second study12 investigated 

approximately 27 000 CpG sites in peripheral blood from 11 pairs of monozygotic twins 

discordant for schizophrenia. Dempster et al12 observed significant epigenetic disruptions in 

biological networks relevant to psychiatric disease and neurodevelopment.

The goal of the present study is to identify schizophrenia methylation biomarkers in blood 

through a methylome-wide association study (MWAS). The most comprehensive method 

involves the use of next-generation sequencing after bisulfite conversion of unmethylated 

cytosines. Currently, however, this is not economically feasible considering the sample sizes 

required for an MWAS.27 As a cost-effective alternative, we first captured the methylated 

DNA fragments and then sequenced this methylation-enriched portion of the genome28 (see 

Aberg et al29 for a discussion of the merits of methyl-CpG binding domain [MBD]protein-

enriched genome sequencing [MBD-seq]). Our “discovery” MWAS sample consisted of 

almost 1500 schizophrenia cases and controls. Critical findings were replicated in an 

independent group of participants using targeted bisulfite pyrosequencing.

Methods

Detailed descriptions of the method can be found else-where.29–31 Our study was approved 

by the institutional review board at Karolinska Institutet, Stockholm, Sweden, and written 

informed consent was obtained from all participants.

Sample

Table 1 describes the “discovery” MWAS and replication samples. All participants were 

selected from national population registers in Sweden and are part of a larger study.32 

Because 3 participants withdrew their consent during the study, we report results for 1497 

participants. Key findings were replicated in an independent group of 1144 participants and 
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at other sites in an independent group of 360 participants. For all participants, DNA was 

extracted from the buffy coat of whole blood.

Whole-Methylome Profiling

We used MethylMiner (Invitrogen), which employs MBD protein-based enrichment of the 

methylated DNA fraction, followed by single-end sequencing (50 base-pair reads) on the 

SOLiD platform (Life Technologies). We eluted the captured methylated fraction with 0.5M 

sodium chloride to increase the relative number of fragments from CpG-poorregions,29 

which otherwise would not be as well covered.33 To avoid batch effects, samples were 

processed in random order.

eTable 1 in the Supplement gives descriptive statistics for a variety of sequencing 

parameters. In summary, after deleting reads with more than 2 missing calls, we obtained a 

mean (SD) number of 68(26.8) million reads per sample. Reads were aligned (build hg19/

GRCh37) using BioScope 1.2 (Life Technologies). We deleted all samples with less than 

40% alignment. For the remaining samples, the mean (SD) percentage of mapped reads was 

69.2% (6.2%). We eliminated 32.1% of the mapped reads because they were low-quality 

multireads (reads aligning to multiple locations) or duplicate reads (reads with identical start 

positions). We excluded 38 participants because less than 15 million reads remained after 

quality control. This left 1459 participants with a mean (SD) number of 32.4 (13.7) million 

quality-control reads. Using data from 73 technical replicates, we observed a mean/median 

correlation of 0.90/0.92 between the methylation profiles from the replicates.29 This 

supported the reproducibility of our assay.

The MBD protein only binds to methylated CpG sites, so we only consider the 26 752 702 

autosomal CpG sites in the reference genome for our analysis. The 10.5 million CpG sites 

(36%) located in regions showing alignment problems were eliminated.29 Most (71.8%) of 

these were in regions flagged as repetitive elements by RepeatMasker (http://

www.repeatmasker.org/). Methylation measurements were obtained by estimating how 

many fragments covered each CpG site.31 Highly intercorrelated coverage estimates at 

adjacent CpG sites were combined to obtain more reliable measurements.34 Rather than 

using a sliding window of an arbitrary fixed length, we combined sites adaptively based on 

their observed intercorrelations.30 Using the 99th percentile of the coverage estimates at 

non-CpG sites29 as the threshold for background noise, we excluded 730 522 blocks with 

low coverage (likely unmethylated) from further analysis (eFigure 1 in the Supplement). 

This left 4 344 016 blocks for association testing.

Association Testing, Confounders, and Tissue Heterogeneity

A variety of efforts were made to control for confounders. First, we regressed out possible 

assay-related technical artifacts such as the quantity of genomic DNA starting material, the 

quantity of methylation-enriched DNA captured, and the sample batch. In addition, we 

controlled for age and sex.

Second, after regressing out the measured confounders, we performed principal component 

analysis to capture the major remaining unmeasured confounders. Because existing soft-

ware cannot handle the ultrahigh-dimensional MWAS data, we used our own software30 that 
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allows for parallel processing, that uses C++ for CPU-intensive and input/output-intensive 

calculations, and that follows Gower35 by performing the eigen-decomposition of a much 

smaller transposed variant of the data matrix. Based on a scree test (eFigure 2 in the 

Supplement), the first 7 principal components were regressed out of the association analysis.

Third, we correlated principal component scores with a variety of variables to check whether 

additional covariates were required (see Table 2 in Aberg et al29). For example, these 

analyses showed that, in this fairly homogeneous sample, ancestry did not contribute 

substantially to variation in the methylome, and it was therefore not included as a covariate.

Blood consists of a variety of cell types. By using whole-blood samples, we are studying an 

“average” methylation pattern that will be dominated by the common types. This can 

produce false positives only if both (1) the relative abundance of common cell types differs 

across cases and controls, and (2) methylation patterns of common cell types differ. Ideally, 

we would have case-control MBD-seq data obtained from separated white blood cells36 to 

identify sites that are at risk for creating false positives. The principal component analysis 

provides an alternative in situations where cell-type heterogeneity affects many methylation 

sites.36–38 Participants with a similar cell-type composition will have more similar 

multilocus methylation patterns, and these patterns will be captured by the principal 

components. However, situations where few methylation sites are involved will remain 

uncorrected. We note, however, that most tissue samples will be heterogeneous, so similar 

risks are present when studying other tissues too.

Network Analyses

We used ConsensusPathDB39–41 to generate protein-protein interaction (PPI) networks and 

perform pathway analyses based on the Reactome,42 Kyoto Encyclopedia of Genes and 

Genomes,43 and BioCarta databases. To create microRNA (miRNA) networks, we used the 

University of California, Santa Cruz, genome track TS miRNA site for GRCh37/hg19, 

which is based on TargetScan 5.1 (Bioinformatics and Research Computing). All blocks 

with q < 0.01 in the MWAS were matched to the closest gene ±20 kilobases. For each of the 

4601 reference pathways present in ConsensusPathDB, incorporating 9859 known genes, a 

hypergeometric test was performed to study whether the overlap between the top MWAS 

genes and those present in each reference pathway was higher than expected by chance.

Replication

For the replication, we used targeted bisulfite pyrose-quencing.44,45 We replicated the top 5 

MWAS findings and 10 sites selected from the network analyses. Controlling the familywise 

error rate at the α level of .05 through a Bonferroni correction therefore gives a threshold 

of .05/15 = 3.3 × 10−3. We conservatively used the highest (least significant) P value if there 

were multiple (correlated) CpG sites in the same assay. Finally, we added a negative control 

by assaying a site with a high nonsignificant MWAS P value, and to assess the efficacy of 

the principal component analysis, we selected the 2 most significant findings obtained after 

performing the MWAS without principal components.
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For network/pathways findings, a second “replication” opportunity existed by testing 

whether, after excluding the (top) findings used to identify the networks, the remaining 

genes from that network are also associated with case-control status in the MWAS (for 

miRNA networks, these tests are not suitable because miRNA likely regulates genes that 

may have different functions). For this purpose, we performed permutation tests.

Results

Our Figure shows the MWAS Manhattan plot with 139 tests with q < 0.01, meaning that less 

than 1% of the 139 findings are expected to be false discoveries (eFigure 3 in the 

Supplement).46,47 The P values for these sites ranged from 10−7 to 10−11, with 25 sites 

reaching significance after we used the highly conservative Bonferroni correction (threshold 

P = 1.15 × 10−8). Our test statistic inflation parameter λ of 1.12 was higher compared with 

what is commonly observed in genome-wide association studies. This λ value is unlikely an 

artifact. After we performed a square root transformation to normalize the data and mitigate 

the effects of possible outliers, λ did not change. Furthermore, increasing the stringency of 

the quality control resulted in higher rather than lower λ values (eFigure 4 in the 

Supplement). Instead, this λ value reflects that methylation studies are more akin to gene 

expression studies that typically show many correlated effects with relatively large effect 

sizes.

Of the 139 MWAS findings, 112 overlapped with genes. Table 2 shows that regardless of 

whether we used PPI networks, pathway databases, or miRNA target networks, hypoxia was 

the dominant theme. For example, the PPI network centered on EPAS1 (previously known 

as hypoxia-inducible factor 2) includes 2 genes, both of which were detected in our MWAS. 

EPAS1 encodes a transcription factor induced as oxygen levels fall and is known to 

specifically interact with ETS1, another center for a PPI network among our findings, which 

is involved in the regulation of vascular development in the neonatal mouse brain.48 

Furthermore, transcription coactivator EP300 is necessary for hypoxia-induced 

transcriptional activation and is upregulated in low-oxygen conditions.49 Using reference 

biological pathways, we detected the hypoxia-inducible factor 1 alpha (HIF1A) transcription 

factor network. HIF1A, together with ARNT, forms hypoxia-inducible factor (HIF), which 

regulates hypoxia-inducible genes.50 In addition, AKT signaling is an important modulator 

of HIF activity,51 and signaling by Rho GTPases has been linked to hypoxia response, 

particularly in the vascular system.52 Finally, miRNA miR-217 regulates heme oxygenase 1, 

an enzyme responsive to hypoxic conditions.53

Other findings shown in Table 2 converge on immune sys-tem themes. A prominent 

example is IgA1 (encoded by IGHA1), which is highlighted by our PPI network analyses. 

Although several genes associated with this network (RUNX3, CREB1, and SMAD3) are 

involved in multiple pathways, FCAR is highly specific to IgA because it encodes the 

receptor for the Fc fragment of IgA. In blood, FCAR interacts with IgA to initiate 

inflammatory reactions and phagocytosis. Fcγ-mediated phagocytosis, related to the action 

of IgG, was also among the top findings in our pathway analysis.
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Table 3 shows the replication results (for design features of pyrosequencing assays and for 

full replication results, see eTables 2 and 3, respectively, in the Supplement). Except for the 

control sites, the direction of effects was the same in the replication as in the MWAS. 

Although all 5 top findings had replication P values of less than .05, only FAM63B remained 

significant after applying our very conservative correction for multiple testing. FAM63B was 

our top MWAS finding with a P = 6.3 × 10−11 (q = 2.1 × 10−4). The replication assay 

contained 3 CpG sites. The highest P value (2.3 × 10−10) of these 3 CpG sites was below our 

multiple testing threshold of P = 3.3 × 10−3. Table 2 shows that FAM63B is part of 4 

networks regulated by miRNA. Three types of these miRNA (miR-218, miR-9, and 

miR-504) can be linked to neuronal differentiation and dopaminergic gene expression.54–56

All genes selected from hypoxia pathways had a nominal P < .05. Whereas the most 

hypoxia-specific gene (ARNT) replicated after correcting for multiple testing, the most 

specific immune response–related gene, FCAR, was only nominally significant. To perform 

our second “replication” effort, we first removed the top MWAS findings that were used to 

detect the networks/pathways in the initial analyses and then performed 10 000 permutations 

to test whether the other genes in the implicated networks showed enrichment for small P 

values in the MWAS. For hypoxia networks created using PPIs, none of the test statistics 

obtained after permutation had a value more extreme than the observed test statistic (eFigure 

5 in the Supplement). This implies a P < 1.0 × 10−4 (= 1/10 000), indicating that the MWAS 

results for the remaining group of network genes were more significant than expected under 

the null hypothesis. For the pathway analyses, the permutation test was also highly 

significant (P <.001; eFigure 5 in the Supplement). For the immune system, we combined 

PPI network and pathway results to avoid small sets of genes. None of the permutation test 

statistics had a value more extreme than the observed test statistic (P < 1.0 × 10−4; eFigure 6 

in the Supplement).

Interestingly, a site in RELN had an MWAS q value of less than 0.1. RELN has previously 

been associated with schizophrenia via messenger RNA expression studies57,58 and, 

although some inconclusive results exist,25 is one of the most prominent schizophrenia 

candidate genes in methylation studies.19,22 Furthermore, support for a strong inverse 

correlation between RELN expression and promoter methylation has been observed in 

mice59 and humans.60 Table 3 shows that the RELN site also replicated. Similar to previous 

findings,19,22 we observed increased levels of methylation in schizophrenia cases. 

Traditionally, methylation studies of RELN have focused on the promoter region. Our best 

finding was located in the first intron and did not directly overlap the previous findings.

Table 3 shows that our negative control did not replicate, nor did the 2 most significant sites 

obtained after we performed an MWAS without regressing out the principal components. 

This suggests that the principal components were useful to prevent false positives. 

Regressing out the covariates from Table 1 did not alter results (eTables 4, 5, and 6 in the 

Supplement). For example, cigarette smoking can result in impaired oxygen release to 

tissues,61 and nicotine can upregulate HIF1A.62 However, we did not observe correlations 

between the methylation of genes in hypoxia networks and smoking, nor did the inclusion of 

smoking status as a covariate change the replication results (eTable 4 in the Supplement).
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Discussion

Our top MWAS finding (FAM63B) replicated with a P = 2.3 × 10−10. It was part of the 

networks regulated by miRNA that can be linked to neuronal differentiation and 

dopaminergic gene expression,54–56 functions of potential relevance for schizophrenia. 

Many of our other top MWAS results could be linked to hypoxia and sometimes infection. 

Replicated findings also implicated RELN, one of the most frequently studied candidates in 

methylation studies of schizophrenia.22 Interestingly, RELN is regulated by HIF1/2a and can 

therefore also be linked to hypoxia.63,64

The hypoxia findings were very robust. Regardless of whether we used PPI networks, 

pathway databases, or an miRNA target gene database, hypoxia was a dominant theme. The 

hypoxia genes replicated in independent samples using a different technology. Furthermore, 

genes that were not among the top findings in the MWAS but were in the hypoxia pathways 

were also significantly enriched for small P values. Although the scope and quality of our 

phenotype data were limited, smoking or other covariates did not account for the hypoxia 

findings. Although we can only speculate about the cause, we note that a substantial amount 

of literature exists showing that hypoxia during fetal development increases the risk of 

schizophrenia.3 It is known that environmentally induced methylation changes can be 

preserved over a prolonged period of time.65,66 One intriguing hypothesis is that early 

hypoxia events alter methylation profiles in blood DNA, traces of which are preserved in the 

adult patient.

Many MWAS results reflected environmental insults. Because environmental effects cannot 

alter sequence variation, these phenomena cannot be detected with genome-wide association 

studies or exome-sequencing studies. Although there was some thematic overlap (eg, 

genome-wide association studies have implicated genes involved in immune response67), 

this likely explains why we found genes that were different from those found in studies of 

sequence variants. To find overlapping loci, different analytical strategies may be required. 

For example, the DNA sequence can regulate methylation patterns,9,68–70 and we are 

currently conducting analyses to find loci where these regulatory mechanisms may be 

disrupted in schizophrenia. Because these analyses combine sequence variants with 

methylation patterns, they are more likely to yield results that overlap with genome-wide 

association study findings. Methylation signatures of environmental insults may not impact 

gene expression in blood. Thus, whole transcriptome studies may not be able to capture the 

phenomena detected in this study; therefore, methylation studies provide unique possibilities 

compared with other technologies.

Our results demonstrate how methylation studies in whole blood can advance schizophrenia 

research. First, they suggest that a record of pathogenic events may be preserved in the 

methylome. Etiologically distinct disease subtypes may be distinguishable from each other 

with respect to prognosis, course, or response to treatment.71 The possibility of identifying 

these subtypes using methylation markers that tend to have large effect sizes and can be 

measured with cost-effective assays, using DNA from blood that is stable and easy to 

collect, would be of great clinical importance. Second, methylation studies can generate 

testable hypotheses about disease mechanisms. For example, the hypoxia findings show how 
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methylation studies can point to disease-causing factors. As postulated by the “signature 

model,”5 the causal factors may affect schizophrenia through processes that have nothing to 

do with methylation (eg, possible causal mechanisms include disruption of the laminar 

organization of the cerebral cortex72). Our RELN finding possibly demonstrates the second 

possible model, in which the methylation status of disease-relevant sites in the brain is 

mirrored by the corresponding sites in the blood. Thus, previous studies19,22 have implicated 

methylation sites in RELN in schizophrenia using postmortem brain samples. The fact that 

we find this gene in whole blood provides a possible illustration of the “functional mirror-

site model.”5

A variety of efforts were taken to control for potential confounders. Our results suggested 

genes related to hypoxia, the immune system, and brain function rather than genes that, for 

example, are potentially relevant to medication and life style differences. This suggests that 

our efforts worked satisfactorily. For biomarkers other than genetic variants, there is always 

the inherent risk of confounding effects. Experiments studying model systems in controlled 

environments (eg, cell culture) would be the next step to rule out confounders completely.

Studies have suggested that 30 to 60 million reads per sample may be sufficient to reveal 

valuable information for whole-genome methylation analysis.33,73 We obtained, on average, 

68.0 million reads, of which 32.4 million high-quality reads (47.6%) remained after 

stringent quality control. The MWAS was performed on “blocks” that summed reads across 

correlated CpG sites to improve the reliability of the measurements. This appeared to be 

sufficient to detect methylation markers that replicated in independent samples. It is 

possible, however, that increasing the number of reads would allow the detection of sites 

(eg, in CpG-poor regions) that could currently not be measured reliably.

Conclusions

In summary, to our knowledge, the present study is one of the first MWASs of disease with 

a large sample size using a technology that provided good coverage of methylation sites 

across the genome. Our results demonstrate how methylation studies can suggest new 

avenues to increase our understanding of disease and yield biomarkers that can be used to 

potentially improve disease management.

Supplementary Material
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Figure. Methylome-Wide Association Study Manhattan Plot
The 22 autosomes are displayed along the x-axis, with the negative logarithm of the 

association P value for each block displayed on the y-axis. All P values above the upper 

(red) line have q values of less than 0.01, and those above the lower (blue) line have q 

values of less than 0.1.
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Table 1

Key Findings of Methylome-Wide Association Study of Schizophreniaa

Variable

% of Participants (% of Participants With Missing Data)

Cases Controls Total

Discovery sample

    Participants, No. 759 738 1497

    Male 54.9 (0) 54.1 (0) 54.5 (0)

    Non-Finnish Nordic parents 89.4 (19.1) 93 (13.1) 91.2 (16.2)

    Alcohol use 58.1 (15) 93.6 (13.8) 75.7 (14.4)

    Smoker 50.4 (82.2) 53.8 (85.6) 51.9 (83.9)

    Narcotic use 25.5 (1.7) 6.8 (0.1) 16.2 (0.9)

    Epilepsy 5.1 (1.8) 0.5 (0.8) 2.8 (1.3)

    Diabetes 8.8 (1.4) 3.4 (0.8) 6.1 (1.1)

    Hyperthyroid 0.5 (3) 1.7 (3.8) 1.1 (3.4)

    Hypothyroid 4.5 (2.9) 2.7 (3.5) 3.6 (3.2)

    Autoimmune disorder 1 (9.6) 1.8 (2.4) 1.4 (6.1)

    Age, mean (SD), y 53.2 (11.6) 55.1 (11.8) 54 (11.7)

Replication sample 1

    Participants, No. 178 182 360

    Male 61.8 (0) 65.9 (0) 63.9 (0)

    Alcohol use 56.1 (16.9) 95.4 (4.4) 77.3 (10.6)

    Smoker 40.1 (17.4) 13.2 (0) 25.2 (8.6)

    Narcotic use 19.1 (0) 7.1 (0) 13.1 (0)

    Autoimmune disorder 1.2 (3.9) 0.6 (4.9) 0.9 (4.4)

    Age, mean (SD), y 56.4 (10.7) 58.5 (10.3) 57.5 (10.6)

Replication sample 2

    Participants, No. 561 582 1144

    Male 63.3 (0) 60.5 (0) 61.9 (0.1)

    Alcohol use 55.2 (10) 94.9 (2.2) 76.3 (6.1)

    Smoker 42.7 (38.7) 12 (0) 23.4 (19.1)

    Narcotic use 20.3 (0.9) 6.5 (0.2) 13.3 (0.6)

    Autoimmune disorder 0.6 (5.2) 0.2 (2.7) 0.4 (4)

    Age, mean (SD), y 54.5 (11.4) 57.1 (10.9) 55.8 (11.2)

a
Because of screening, 100% of the participants in the replication samples have Non-Finnish Nordic parents, and 0% of the replication samples 

have participants who received a diagnosis of epilepsy, diabetes mellitus, hyperthyroid, or hypothyroid.
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