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Abstract

In cryo-electron microscopy (cryo-EM), a microscope generates a top view of a sample of 

randomly oriented copies of a molecule. The problem of single particle reconstruction (SPR) from 

cryo-EM is to use the resulting set of noisy two-dimensional projection images taken at unknown 

directions to reconstruct the three-dimensional (3D) structure of the molecule. In some situations, 

the molecule under examination exhibits structural variability, which poses a fundamental 

challenge in SPR. The heterogeneity problem is the task of mapping the space of conformational 

states of a molecule. It has been previously suggested that the leading eigenvectors of the 

covariance matrix of the 3D molecules can be used to solve the heterogeneity problem. Estimating 

the covariance matrix is challenging, since only projections of the molecules are observed, but not 

the molecules themselves. In this paper, we formulate a general problem of covariance estimation 

from noisy projections of samples. This problem has intimate connections with matrix completion 

problems and high-dimensional principal component analysis. We propose an estimator and prove 

its consistency. When there are finitely many heterogeneity classes, the spectrum of the estimated 

covariance matrix reveals the number of classes. The estimator can be found as the solution to a 

certain linear system. In the cryo-EM case, the linear operator to be inverted, which we term the 

projection covariance transform, is an important object in covariance estimation for tomographic 

problems involving structural variation. Inverting it involves applying a filter akin to the ramp 

filter in tomography. We design a basis in which this linear operator is sparse and thus can be 

tractably inverted despite its large size. We demonstrate via numerical experiments on synthetic 

datasets the robustness of our algorithm to high levels of noise.
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1. Introduction

1.1. Covariance matrix estimation from projected data

Covariance matrix estimation is a fundamental task in statistics. Statisticians have long 

grappled with the problem of estimating this statistic when the samples are only partially 

observed. In this paper, we consider this problem in the general setting where “partial 

observations” are arbitrary linear projections of the samples onto a lower-dimensional space.

Problem 1.1—Let X be a random vector on Cp, with E[X] = μ0 and Var(X) = Σ0 (Var[X] 

denotes the covariance matrix of X). Suppose also that P is a random q × p matrix with 

complex entries, and E is a random vector in Cq with E[E] = 0 and Var[E] = σ2Iq. Finally, 

let I denote the random vector in Cq given by

(1.1)

Assume now that X, P , and E are independent. Estimate μ0 and Σ0 given observations I1,

… , In and P1,… , Pn of I and P , respectively.

Here, and throughout this paper, we write random quantities in boldface to distinguish them 

from deterministic quantities. We use regular font (e.g., X) for vectors and matrices, 

calligraphic font (e.g., X ) for functions, and script font for function spaces (e.g., B). We 

denote true parameter values with a subscript of zero (e.g., μ0), estimated parameter values 

with a subscript of n (e.g., μn), and generic variables with no subscript (e.g., μ).

Problem 1.1 is quite general, and has many practical applications as special cases. The main 

application this paper addresses is the heterogeneity problem in single particle 

reconstruction (SPR) from cryo-electron microscopy (cryo-EM). SPR from cryo-EM is an 

inverse problem where the goal is to reconstruct a three-dimensional (3D) molecular 

structure from a set of its two-dimensional (2D) projections from random directions [12]. 

The heterogeneity problem deals with the situation in which the molecule to be 

reconstructed can exist in several structural classes. In the language of Problem 1.1, X 
represents a discretization of the molecule (random due to heterogeneity), Ps the 3D-to-2D 

projection matrices, and Is the noisy projection images. The goal of this paper is to estimate 

the covariance matrix associated with the variability of the molecule. If there is a small, 

finite number (C) of classes, then Σ0 has low rank (C − 1). This ties the heterogeneity 

problem to principal component analysis (PCA) [40]. If Σ0 has eigenvectors V1,… , Vp 

(called principal components) corresponding to eigenvalues λ1 ≥ ··· ≥ λp, then PCA states 

that Vi accounts for a variance of λi in the data. In modern applications, the dimensionality p 

is often large, while X typically has much fewer intrinsic degrees of freedom [11]. The 

heterogeneity problem is an example of such a scenario; for this problem, we demonstrate 

later that the top principal components can be used in conjunction with the images to 

reconstruct each of the C classes.

Another class of applications closely related to Problem 1.1 is missing data problems in 

statistics. In these problems, X1,… , Xn are samples of a random vector X. The statistics of 

this random vector must be estimated in a situation where certain entries of the samples Xs 
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are missing [31]. This amounts to choosing Ps to be coordinate-selection operators, 

operators which output a certain subset of the entries of a vector. An important problem in 

this category is PCA with missing data, which is the task of finding the top principal 

components when some data are missing. Closely related to this is the noisy low rank matrix 

completion problem [9]. In this problem, only a subset of the entries of a low rank matrix A 

are known (possibly with some error), and the task is to fill in the missing entries. If we let 

Xs be the columns of A, then the observed variables in each column are PsXs + Es, where Ps 

acts on Xs by selecting a subset of its coordinates, and Es is noise. Note that the matrix 

completion problem involves filling in the missing entries of Xs, while Problem 1.1 requires 

us only to find the covariance matrix of these columns. However, the two problems are 

closely related. For example, if the columns are distributed normally, then the missing 

entries can be found as their expectations conditioned on the known variables [51]. 

Alternatively, we can find the missing entries by choosing the linear combinations of the 

principal components that best fit the known matrix entries. A well-known application of 

matrix completion is in the field of recommender systems (also known as collaborative 

filtering). In this application, users rate the products they have consumed, and the task is to 

determine what new products they would rate highly. We obtain this problem by interpreting 

Ai,j as the jth user’s rating of product i. In recommender systems, it is assumed that only a 

few underlying factors determine users’ preferences. Hence, the data matrix A should have 

low rank. A high profile example of recommender systems is the Netflix prize problem [6].

In both of these classes of problems, Σ0 is large but should have low rank. Despite this, note 

that Problem 1.1 does not have a low rank assumption. Nevertheless, as our numerical 

results demonstrate, the spectrum of our (unregularized) covariance matrix estimator reveals 

low rank structure when it is present in the data. Additionally, the framework we develop in 

this paper naturally allows for regularization.

Having introduced Problem 1.1 and its applications, let us delve more deeply into one 

particular application: SPR from cryo-EM.

1.2. Cryo-electron microscopy

Electron microscopy is an important tool for structural biologists, as it allows them to 

determine complex 3D macromolecular structures. A general technique in electron 

microscopy is called SPR. In the basic setup of SPR, the data collected are 2D projection 

images of ideally assumed identical, but randomly oriented, copies of a macromolecule. In 

particular, one specimen preparation technique used in SPR is called cryo-EM, in which the 

sample of molecules is rapidly frozen in a thin ice layer [12, 63]. The electron microscope 

provides a top view of the molecules in the form of a large image called a micrograph. The 

projections of the individual particles can be picked out from the micrograph, resulting in a 

set of projection images. Mathematically, we can describe the imaging process as follows. 

Let X : R3 → R represent the Coulomb potential induced by the unknown molecule. We 

scale the problem to be dimension-free in such a way that most of the “mass” of X lies 

within the unit ball B ⊂ R3 (since we later model X to be bandlimited, we cannot quite 

assume it is supported in B). To each copy of this molecule corresponds a rotation R ∈ 
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SO(3), which describes its orientation in the ice layer. The idealized forward projection 

operator P = P(R) : L1(R3) → L1(R2) applied by the microscope is the X-ray transform

(1.2)

where r = (x, y, z)T . Hence, P first rotates X by R, and then integrates along vertical lines to 

obtain the projection image. The microscope yields the image PX , discretized onto an N × N 

Cartesian grid, where each pixel is also corrupted by additive noise. Let there be q ≈ π N 2 

pixels contained in the inscribed disc of an N × N grid (the remaining pixels contain little or 

no signal because X is concentrated in B). If S : L1(R2) → Rq is a discretization operator, 

then the microscope produces images I given by

(1.3)

with E ~ N (0, σ2Iq ), where for the purposes of this paper we assume additive white 

Gaussian noise. The microscope has an additional blurring effect on the images, a 

phenomenon we will discuss shortly, but will leave out of our model. Given a set of images 

I1,… , In, the cryo-EM problem is to estimate the orientations R1,… , Rn of the underlying 

volumes and reconstruct X . Note that throughout this paper, we will use “cryo-EM” and 

“cryo-EM problem” as shorthand for the SPR problem from cryo-EM images; we also use 

“volume” as a synonym for “3D structure.”

The cryo-EM problem is challenging for several reasons. Unlike most other imaging 

modalities of computerized tomography, the rotations Rs are unknown, so we must estimate 

them before reconstructing X . This challenge is one of the major hurdles to reconstruction 

in cryo-EM. Since the images are not perfectly centered, they also contain in-plane 

translations, which must be estimated as well. The main challenge in rotation estimation is 

that the projection images are corrupted by extreme levels of noise. This problem arises 

because only low electron doses can scan the molecule without destroying it. To an extent, 

this problem is mitigated by the fact that cryo-EM datasets often have tens or even hundreds 

of thousands of images, which makes the reconstruction process more robust. Another issue 

with transmission electron microscopy in general is that technically, the detector only 

registers the magnitude of the electron wave exiting the specimen. Zernike realized in the 

1940s that the phase information could also be recovered if the images were taken out of 

focus [60]. While enabling measurement of the full output of the microscope, this out-of-

focus imaging technique produces images representing the convolution of the true image 

with a point spread function (PSF). The Fourier transform of the PSF is called the contrast 

transfer function (CTF). Thus the true images are multiplied by the CTF in the Fourier 

domain to produce the output images. Hence, the Ps operators in practice also include the 

blurring effect of a CTF. This results in a loss of information at the zero crossings of the 

(Fourier-domain) CTF and at high frequencies [12]. In order to compensate for the former 

effect, images are taken with several different defocus values, whose corresponding CTFs 

have different zero crossings.
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The field of cryo-EM has recently seen a drastic improvement in detector technology. New 

direct electron detector cameras have been developed, which, according to a recent article in 

Science, have “unprecedented speed and sensitivity” [24]. This technology has enabled SPR 

from cryo-EM to succeed on smaller molecules (up to size ~150 kDa) and achieve higher 

resolutions (up to 3Å) than before. Such high resolution allows tracing of the polypetide 

chain and identification of residues in protein molecules [28, 3, 15, 34, 68]. Recently, single 

particle methods have provided high resolution structures of the TRPV1 ion channel [30] 

and of the large subunit of the yeast mitochondrial ribosome [1]. While X-ray 

crystallography is still the imaging method of choice for small molecules, cryo-EM now 

holds the promise of reconstructing larger, biomedically relevant molecules not amenable to 

crystallization.

The most common method for solving the basic cryo-EM problem is guessing an initial 

structure and then performing an iterative refinement procedure, where iterations alternate 

between (1) estimating the rotations of the experimental images by matching them with 

projections of the current 3D model and (2) tomographic inversion producing a new 3D 

model based on the experimental images and their estimated rotations [12, 61, 44]. There are 

no convergence guarantees for this iterative scheme, and the initial guess can incur bias in 

the reconstruction. An alternative is to estimate the rotations and reconstruct an accurate 

initial structure directly from the data. Such an ab initio structure is a much better 

initialization for the iterative refinement procedure. This strategy helps avoid bias and 

reduce the number of refinement iterations necessary to converge [70]. In the ab initio 

framework, rotations can be estimated by one of several techniques (see, e.g., [55, 64] and 

references therein).

1.3. Heterogeneity problem

As presented above, a key assumption in the cryo-EM problem is that the sample consists of 

(rotated versions of) identical molecules. However, in many datasets this assumption does 

not hold. Some molecules of interest exist in more than one conformational state. For 

example, a subunit of the molecule might be present or absent, have a few different 

arrangements, or be able to move continuously from one position to another. These 

structural variations are of great interest to biologists, as they provide insight into the 

functioning of the molecule. Unfortunately, standard cryo-EM methods do not account for 

heterogeneous samples. New techniques must be developed to map the space of molecules 

in the sample, rather than just reconstruct a single volume. This task is called the 

heterogeneity problem. A common case of heterogeneity is when the molecule has a finite 

number of dominant conformational classes. In this discrete case, the goal is to provide 

biologists with 3D reconstructions of all these structural states. While cases of continuous 

heterogeneity are possible, in this paper we mainly focus on the discrete heterogeneity 

scenario.

While we do not investigate the 3D rotation estimation problem in the heterogeneous case, 

we conjecture that this problem can be solved without developing sophisticated new tools. 

Consider, for example, the case when the heterogeneity is small, i.e., the volumes X1,… , Xn 

can be rotationally aligned so they are all close to their mean (in some norm). For example, 
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this property holds when the heterogeneity is localized (e.g., as in Figure 1). In this case, one 

might expect that by first assuming homogeneity, existing rotation estimation methods 

would yield accurate results. Even if the heterogeneity is large, an iterative scheme can be 

devised to alternately estimate the rotations and conformations until convergence (though 

this convergence is local, at best). Thus, in this publication, we assume that the 3D rotations 

Rs (and in-plane translations) have already been estimated.

With the discrete heterogeneity and known rotations assumptions, we can formulate the 

heterogeneity problem as follows.

Problem 1.2 (heterogeneity problem)—Suppose a heterogeneous molecule can take 

on one of C different states: X 1,… , X C ∈ B, where B is a finite-dimensional space of 

bandlimited functions (see section 3.2). Let Ω = {1, 2,… ,C} be a sample space, and p1,… , 

pC probabilities (summing to one) so that the molecule assumes state c with probability pc. 

Represent the molecule as a random field X : Ω × R3 → R, with

(1.4)

Let R be a random rotation with some distribution over SO(3), and define the corresponding 

random projection P = P(R) (see (1.2)). Finally, E ~ N (0, σ2Iq ). Assume that X , R, E are 

independent. A random image of a particle is obtained via

(1.5)

where S : L1(R2) → Rq is a discretization operator. Given observations I1,… , In and R1,… , 

Rn of I and R, respectively, estimate the number of classes C, the structures X c, and the 

probabilities pc.

Note that SP|B is a (random) linear operator between finite-dimensional spaces, and so it has 

a matrix version P : Rp → Rq , where p = dim B. If we let X be the random vector on Rp 

obtained by expanding X in the basis for B, then we recover the equation I = PX + E from 

Problem 1.1. Thus, the main factors distinguishing Problem 1.2 from Problem 1.1 are that 

the former assumes a specific form for P and posits a discrete distribution on X. As we 

discuss in section 4, Problem 1.2 can be solved by first estimating the covariance matrix as 

in Problem 1.1, finding coordinates for each image with respect to the top eigenvectors of 

this matrix, and then applying a standard clustering procedure to these coordinates.

One of the main dificulties of the heterogeneity problem is that, compared to usual SPR, we 

must deal with an even lower effective signal-to-noise ratio (SNR). Indeed, the signal we 

seek to reconstruct is the variation of the molecules around their mean, as opposed to the 

mean volume itself. We propose a precise definition of SNR in the context of the 

heterogeneity problem in section 7.1. Another dificulty is the indirect nature of our problem. 

Although the heterogeneity problem is an instance of a clustering problem, it differs from 

usual such problems in that we do not have access to the objects we are trying to cluster—
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only projections of these objects onto a lower-dimensional space are available. This makes it 

challenging to apply any standard clustering technique directly.

The heterogeneity problem is considered one of the most important problems in cryo-EM. In 

his 2013 Solvay public lecture on cryo-EM, Dr. Joachim Frank emphasized the importance 

of “the ability to obtain an entire inventory of coexisting states of a macromolecule from a 

single sample” [13]. Speaking of approaches to the heterogeneity problem in a review 

article, Frank discussed “the potential these new technologies will have in exploring 

functionally relevant states of molecular machines” [14]. It is stressed there that much room 

for improvement remains; current methods cannot automatically identify the number of 

conformational states and have trouble distinguishing between similar conformations.

1.4. Previous work

Much work related to Problems 1.1 and 1.2 has already been done. There is a rich statistical 

literature on the covariance estimation problem in the presence of missing data, a special 

case of Problem 1.1. In addition, work on the low rank matrix sensing problem (a 

generalization of matrix completion) is also closely related to Problem 1.1. Regarding 

Problem 1.2, several approaches to the heterogeneity problem have been proposed in the 

cryo-EM literature.

1.4.1. Work related to Problem 1.1—Many approaches to covariance matrix estimation 

from missing data have been proposed in the statistics literature [31]. The simplest approach 

to dealing with missing data is to ignore the samples with any unobserved variables. Another 

simple approach is called available case analysis, in which the statistics are constructed 

using all the available values. For example, the (i, j) entry of the covariance matrix is 

constructed using all samples for which the ith and jth coordinates are simultaneously 

observed. These techniques work best under certain assumptions on the pattern of missing 

entries, and more sophisticated techniques are preferred [31]. One of the most established 

such approaches is maximum likelihood estimation (MLE). This involves positing a 

probability distribution on X (e.g., multivariate normal) and then maximizing the likelihood 

of the observed partial data with respect to the parameters of the model. Such an approach to 

fitting models from partial observations was known as early as the 1930s, when Wilks used 

it for the case of a bivariate normal distribution [66]. Wilks proposed to maximize the 

likelihood using a gradient-based optimization approach. In 1977, Dempster, Laird, and 

Rubin introduced the expectation-maximization (EM) algorithm [10] to solve maximum 

likelihood problems. The EM algorithm is one of the most popular methods for solving 

missing data problems in statistics. Also, there is a class of approaches to missing data 

problems called imputation, in which the missing values are filled either by averaging the 

available values or through more sophisticated regression-based techniques. Finally, see [32, 

33] for other approaches to related problems.

Closely related to covariance estimation from missing data is the problem of PCA with 

missing data. In this problem, the task is to find the leading principal components, and not 

necessarily the entire covariance matrix. Not surprisingly, EM-type algorithms are popular 

for this problem as well. These algorithms often search directly for the low rank factors. See 
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[18] for a survey of approaches to PCA with missing data. Closely related to PCA with 

missing data is the low rank matrix completion problem. Many of the statistical methods 

discussed above are also applicable to matrix completion. In particular, EM algorithms to 

solve this problem are popular, e.g., [51, 27].

Another more general problem setup related to Problem 1.1 is the low rank matrix sensing 

problem, which generalizes the low rank matrix completion problem. Let A ∈ Rp×n be an 

unknown rank-k matrix, and let M : Rp×n → Rd be a linear map, called the sensing matrix. 

We would like to find A, but we only have access to the (possibly noisy) data M(A). Hence, 

the low rank matrix sensing problem can be formulated as follows [19]:

(1.6)

Note that when Σ0 is low rank, Problem 1.1 is a special case of the low rank matrix sensing 

problem. Indeed, consider putting the unknown vectors X1,… , Xn together as the columns of 

a matrix A. The rank of this matrix is the number of degrees of freedom in X (in the cryo-

EM problem, this relates to the number of heterogeneity classes of the molecule). The linear 

projections P1,… , Pn can be combined into one sensing matrix M acting on A. In this way, 

our problem falls into the realm of matrix sensing.

One of the first algorithms for matrix sensing was inspired by the compressed sensing theory 

[46]. This approach uses a matrix version of l1 regularization called nuclear norm 

regularization. The nuclear norm is the sum of the singular values of a matrix, and is a 

convex proxy for its rank. Another approach to this problem is alternating minimization, 

which decomposes A into a product of the form UV T and iteratively alternates between 

optimizing with respect to U and V . The first proof of convergence for this approach was 

given in [19]. Both the nuclear norm and alternating minimization approaches to the low 

rank matrix sensing problem require a restricted isometry property on M for theoretical 

guarantees.

While the aforementioned algorithms are widely used, we believe they have limitations as 

well. EM algorithms require postulating a distribution over the data and are susceptible to 

getting trapped in local optima. Regarding the former point, Problem 1.1 avoids any 

assumptions on the distribution of X, so our estimator should have the same property. Matrix 

sensing algorithms (especially alternating minimization) often assume that the rank is known 

in advance. However, there is no satisfactory statistical theory for choosing the rank. By 

contrast, the estimator we propose for Problem 1.1 allows automatic rank estimation.

1.4.2. Work related to Problem 1.2—Several approaches to the heterogeneity problem 

have been proposed. Here we give a brief overview of some of these approaches.

One approach is based on the notion of common lines. By the Fourier projection slice 

theorem (see Theorem 3.1), the Fourier transforms of any two projection images of an object 

will coincide on a line through the origin, called a common line. The idea of Shatsky et al. 

[52] was to use common lines as a measure of how likely it is that two projection images 

correspond to the same conformational class. Specifically, given two projection images and 
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their corresponding rotations, we can take their Fourier transforms and correlate them on 

their common line. From there, a weighted graph of the images is constructed, with edges 

weighted based on this common line measure. Then spectral clustering is applied to this 

graph to classify the images. An earlier common lines approach to the heterogeneity 

problem is described in [16].

Another approach is based on MLE. It involves positing a probability distribution over the 

space of underlying volumes, and then maximizing the likelihood of the images with respect 

to the parameters of the distribution. For example, Wang et al. [65] model the heterogeneous 

molecules as a mixture of Gaussians and employ the EM algorithm to find the parameters. A 

challenge with MLE approaches is that the resulting objective functions are nonconvex and 

have a complicated structure. For more discussion of the theory and practice of maximum 

likelihood methods, see [53] and [50], respectively. Also see [49] for a description of a 

software package which uses maximum likelihood to solve the heterogeneity problem.

A third approach to the heterogeneity problem is to use the covariance matrix of the set of 

original molecules. Penczek, Kimmel, and Spahn outline a bootstrapping approach in [43] 

(see also [41, 42, 67, 29]). In this approach, one repeatedly takes random subsets of the 

projection images and reconstructs 3D volumes from these samples. Then, one can perform 

PCA on this set of reconstructed volumes, which yields a few dominant “eigenvolumes.” 

Penczek, Kimmel, and Spahn propose to then produce mean-subtracted images by 

subtracting projections of the mean volume from the images. The next step is to project each 

of the dominant eigenvolumes in the directions of the images, and then obtain a set of 

coordinates for each image based on its similarity with each of the eigenvolume projections. 

Finally, using these coordinates, this resampling approach proceeds by applying a standard 

clustering algorithm such as K-means to classify the images into classes.

While existing methods for the heterogeneity problem have their success stories, each 

suffers from its own shortcomings: the common line approach does not exploit all the 

available information in the images, the maximum likelihood approach requires explicit a 

priori distributions and is susceptible to local optima, and the bootstrapping approach based 

on covariance matrix estimation is a heuristic sampling method that lacks in theoretical 

guarantees.

Note that the above overview of the literature on the heterogeneity problem is not 

comprehensive. For example, very recently, an approach to the heterogeneity problem based 

on normal mode analysis was proposed [20].

1.5. Our contribution

In this paper, we propose and analyze a covariance matrix estimator Σn to solve the general 

statistical problem (Problem 1.1), and then apply this estimator to the heterogeneity problem 

(Problem 1.2).

Our covariance matrix estimator has several desirable properties. First, we prove that the 

estimator is consistent as n → ∞ for fixed p, q. Second, our estimator does not require a 

prior distribution on the data, unlike MLE methods. Third, when the data have low intrinsic 
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dimension, our method does not require knowing the rank of Σ0 in advance. The rank can be 

estimated from the spectrum of the estimated covariance matrix. This sets our method apart 

from alternating minimization algorithms that search for the low rank matrix factors 

themselves. Fourth, our estimator is given in closed form and its computation requires only a 

single linear inversion.

To implement our covariance matrix estimator in the cryo-EM case, we must invert a high-

dimensional matrix Ln (see definition (2.8)). The size of this matrix is so large that typically 

it cannot even be stored on a computer; thus, inverting Ln is the greatest practical challenge 

we face. We consider two possibilities of addressing this challenge. In the primary approach 

we consider, we replace Ln by its limiting operator L, which does not depend on the 

rotations Rs and is a good approximation of Ln as long as these rotations are distributed 

uniformly enough. We then carefully construct new bases for images and volumes to make L 

a sparse, block diagonal matrix. While L has dimensions on the order of , this 

matrix has only  total nonzero entries in the bases we construct, where Nres is the 

grid size corresponding to the target resolution. These innovations lead to a practical 

algorithm to estimate the covariance matrix in the heterogeneity problem. The second 

approach we consider is an iterative inversion of Ln, which has a low storage requirement 

and avoids the requirement of uniformly distributed rotations. We compare the complexities 

of these two methods, and find that each has its strengths and weaknesses.

The limiting operator L is a fundamental object in tomographic problems involving 

variability, and we call it the projection covariance transform. The projection covariance 

transform relates the covariance matrix of the imaged object to data that can be acquired 

from the projection images. Standard weighted back-projection tomographic reconstruction 

algorithms involve application of the ramp filter to the data [38], and we find that the 

inversion of L entails applying a similar filter, which we call the triangular area filter. The 

triangular area filter has many of the same properties as the ramp filter, but reflects the 

slightly more intricate geometry of the covariance estimation problem. The projection 

covariance transform is an interesting mathematical object in its own right, and we begin 

studying it in this paper.

Finally, we numerically validate the proposed algorithm (the first algorithm discussed 

above). We demonstrate this method’s robustness to noise on synthetic datasets by obtaining 

a meaningful reconstruction of the covariance matrix and molecular volumes even at low 

SNR levels. Excluding precomputations (which can be done once and for all), 

reconstructions for 10000 projection images of size 65 × 65 pixels takes fewer than five 

minutes on a standard laptop computer.

The paper is organized as follows. In section 2, we construct an estimator for Problem 1.1, 

state theoretical results about this estimator, and connect our problem to high-dimensional 

PCA. In section 3, we specialize the covariance estimator to the heterogeneity problem and 

investigate its geometry. In section 4, we discuss how to reconstruct the conformations once 

we have estimated the mean and covariance matrix. In section 5, we discuss computational 

aspects of the problem and construct a basis in which L is block diagonal and sparse. In 
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section 6, we explore the complexity of the proposed approach. In section 7, we present 

numerical results for the heterogeneity problem. We conclude with a discussion of future 

research directions in section 8. Appendices A, B, and C contain calculations and proofs.

2. An estimator for Problem 1.1

2.1. Constructing an estimator

We define estimators μn and Σn through a general optimization framework based on the 

model (1.1). As a first step, let us calculate the first- and second-order statistics of I, 

conditioned on the observed matrix Ps for each s. Using the assumptions in Problem 1.1, we 

find that

(2.1)

and

(2.2)

Note that  denotes the conjugate transpose of Ps.

Based on (2.1) and (2.2), we devise least-squares optimization problems for μn and Σn:

(2.3)

(2.4)

Here we use the Frobenius norm, which is defined by 

Note that these optimization problems do not encode any prior knowledge about μ0 or Σ0. 

Since Σ0 is a covariance matrix, it must be positive semidefinite (PSD). As discussed above, 

in many applications Σ0 is also low rank. The estimator Σn need not satisfy either of these 

properties. Thus, regularization of (2.4) is an option worth exploring. Nevertheless, here we 

only consider the unregularized estimator Σn. Note that in most practical problems, we only 

are interested in the leading eigenvectors of Σn, and if these are estimated accurately, then it 

does not matter if Σn is not PSD or low rank. Our numerical experiments show that in 

practice, the top eigenvectors of Σn are indeed good estimates of the true principal 

components for high enough SNR.

Note that we first solve (2.3) for μn, and then use this result in (2.4). This makes these 

optimization problems quadratic in the elements of μ and Σ, and hence they can be solved by 

setting the derivatives with respect to μ and Σ to zero. This leads to the following equations 

for μn and Σn (see Appendix A for the derivative calculations):
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(2.5)

(2.6)

When p = q and P = Ip, μn and Σn reduce to the sample mean and sample covariance matrix. 

When P is a coordinate-selection operator (recall the discussion following the statement of 

Problem 1.1), (2.5) estimates the mean by averaging all the available observations for each 

coordinate, and (2.6) estimates each entry of the covariance matrix by averaging over all 

samples for which both coordinates are observed. These are exactly the available-case 

estimators discussed in [31, section 3.4].

Observe that (2.5) requires inversion of the matrix

(2.7)

and (2.6) requires inversion of the linear operator Ln : Cp×p → Cp×p defined by

(2.8)

Since the Ps are drawn independently from P , the law of large numbers implies that (2.9) An 

→ A and Ln → L almost surely,

(2.9)

where the convergence is in the operator norm, and

(2.10)

The invertibilities of A and L depend on the distribution of P . Intuitively, if P has a nonzero 

probability of “selecting” any coordinate of its argument, then A will be invertible. If P has a 

nonzero probability of “selecting” any pair of coordinates of its argument, then L will be 

invertible. In this paper, we assume that A and L are invertible. In particular, we will find 

that in the cryo-EM case, A and L are invertible if, for example, the rotations are sampled 

uniformly from SO(3). Under this assumption, we will prove that An and Ln are invertible 

with high probability for sufficiently large n. In the case when An or Ln are not invertible, we 

cannot define estimators from the above equations, so we simply set them to zero. Since the 

RHS quantities bn and Bn are noisy, it is also not desirable to invert An or Ln when these 

matrices are nearly singular. Hence, we propose the following estimators:
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(2.11)

The factors of 2 are somewhat arbitrary; any α> 1 would do.

Let us make a few observations about An and Ln. By inspection, An is symmetric and PSD. 

We claim that Ln satisfies the same properties, with respect to the Hilbert space Cp×p 

equipped with the inner product (A, B) = tr(BH A). Using the property tr(AB) = tr(BA), we 

find that for any Σ1, Σ2,

(2.12)

Thus, Ln is self-adjoint. Next, we claim that Ln is PSD. Indeed,

(2.13)

2.2. Consistency of µn and Σn

In this section, we state that under mild conditions on P , X, E, the estimators μn and Σn are 

consistent. Note that here, and throughout this paper, ∥·∥ will denote the Euclidean norm for 

vectors and the operator norm for matrices. Also, define

(2.14)

where Y is a random vector.

Proposition 2.1—Suppose A (defined in (2.10)) is invertible, that lP l is bounded almost 

surely, and that |||X|||2, |||E|||2 < ∞. Then, for fixed p, q we have

(2.15)

Hence, under these assumptions, μn is consistent.

Proposition 2.2—Suppose A and L (defined in (2.10)) are invertible, that lP l is bounded 

almost surely, and that there is a polynomial Q for which
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(2.16)

Then, for fixed p, q, we have

(2.17)

Hence, under these assumptions, Σn is consistent.

Remark 2.3—The moment growth condition (2.16) on X and E is not very restrictive. For 

example, bounded, subgaussian, and subexponential random vectors all satisfy (2.16) with 

deg Q ≤ 1 (see [62, sections 5.2 and 5.3]).

See Appendix B for the proofs of Propositions (2.1) and (2.2). We mentioned that μn and Σn 

are generalizations of available-case estimators. Such estimators are known to be consistent 

when the data are missing completely at random (MCAR). This means that the pattern of 

missingness is independent of the (observed and unobserved) data. Accordingly, in Problem 

1.1, we assume that P and X are independent, a generalization of the MCAR condition. The 

above propositions state that the consistency of μn and Σn also generalizes to Problem 1.1.

2.3. Connection to high-dimensional PCA

While the previous section focused on the “fixed p, large n” regime, in practice both p and n 

are large. Now, we consider the latter regime, which is common in modern high-

dimensional statistics. In this regime, we consider the properties of the estimator Σn when 

Σ0 is low rank, and the task is to find its leading eigenvectors. What is the relationship 

between the spectra of Σn and Σ0? Can the rank of Σ0 be deduced from that of Σn? To what 

extent do the leading eigenvectors of Σn approximate those of Σ0? In the setting of (1.1) 

when P = Ip, the theory of high-dimensional PCA provides insight into such properties of 

the sample covariance matrix (and thus of Σn). In particular, an existing result gives the 

correlation between the top eigenvectors of Σn and Σ0 for given settings of SNR and p/n. It 

follows from this result that if the SNR is sufficiently high compared to √p/n, then the top 

eigenvector of Σn is a useful approximation of the top eigenvector of Σ0. If generalized to 

the case of nontrivial P , this result would be a useful guide for using the estimator Σn to 

solve practical problems, such as Problem 1.2. In this section, we first discuss the existing 

high-dimensional PCA literature, and then raise some open questions about how these 

results generalize to the case of nontrivial P .

Given independently and identically distributed (i.i.d.) samples I1,… , In ∈ Rp from a 

centered distribution I with covariance matrix  (called the population covariance matrix), 

the sample covariance matrix  is defined by

(2.18)
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We use the new tilde notation because in the context of Problem 1.1,  is the signal-plus-

noise covariance matrix, as opposed to the covariance of the signal itself. High-dimensional 

PCA is the study of the spectrum of  for various distributions of I in the regime where n, 

p →∞ with p/n → γ.

The first case to consider is X = 0, i.e., I = E, where E ~ N (0, σ2Ip). In a landmark paper, 

Marc ̆cenko and Pastur [35] proved that the spectrum of  converges to the Marc̆cenko– 

Pastur (MP) distribution, which is parameterized by γ and σ2:

(2.19)

The above formula assumes γ ≤ 1; a similar formula governs the case γ > 1. Note that there 

are much more general statements about classes of I for which this convergence holds; see, 

e.g., [54]. See Figure 2(a) for MP distributions with a few different parameter settings.

Johnstone [21] took this analysis a step further and considered the limiting distribution of 

the largest eigenvalue of . He showed that the distribution of this eigenvalue converges to 

the Tracy–Widom distribution centered on the right edge of the MP spectrum. In the same 

paper, Johnstone considered the spiked covariance model, in which

(2.20)

where E is as before and , so that the population 

covariance matrix is . Here, X is the signal and E 
is the noise. In this view, the goal is to accurately recover the top r eigenvectors, as these 

will determine the subspace on which X is supported. The question then is the following: for 

what values of τ1,… , τr will the top r eigenvectors of the sample covariance matrix be good 

approximations to the top eigenvectors of the population covariance? Since we might not 

know the value of r a priori, it is important to first determine for what values of τ1,… , τr we 

can detect the presence of “spiked” population eigenvalues. In [5], the spectrum of the 

sample covariance matrix in the spiked model was investigated. It was found that the bulk of 

the distribution still obeys the MP law, whereas for each k such that

(2.21)

the sample covariance matrix will have an eigenvalue tending to . The 

signal eigenvalues below this threshold tend to the right edge of the noise distribution. Thus, 

(2.21) defines a criterion for detection of signal. In Figure 2(b), we illustrate these results 

with a numerical example. We choose p = 800, n = 4000, and a spectrum corresponding to r 

= 3, with τ1, τ2 above, but τ3 below, the threshold corresponding to γ = p/n = 0.2. Figure 
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2(b) is a normalized histogram of the eigenvalues of the sample covariance matrix. The 

predicted MP distribution for the bulk is superimposed. We see that indeed we have two 

eigenvalues separated from this bulk. Moreover, the eigenvalue of  corresponding to τ3 

does not pop out of the noise distribution.

It is also important to compare the top eigenvectors of the sample and population covariance 

matrices. Considering the simpler case of a spiked model with r = 1, [4, 37] showed a 

“phase transition” effect: as long as τ1 is above the threshold in (2.21), the correlation of the 

top eigenvector (VPCA) with the true principal component (V ) tends to a limit between 0 and 

1:

(2.22)

Otherwise, the limiting correlation is zero. Thus, high-dimensional PCA is inconsistent. 

However, if  is sufficiently high compared to , then the top eigenvector of the 

sample covariance matrix is still a useful approximation.

While all the statements made so far have concerned the limiting case n, p → ∞, similar 

(but slightly more complicated) statements hold for finite n, p as well (see, e.g., [37]). Thus, 

(2.21) has a practical interpretation. Again considering the case r = 1, note that the quantity 

 is the SNR. When faced with a problem of the form (2.20) with a given p and SNR, 

one can determine how many samples one needs in order to detect the signal. If V represents 

a spatial object as in the cryo-EM case, then p can reflect the resolution to which we 

reconstruct V . Hence, if we have a dataset with a certain number of images n and a certain 

estimated SNR, then (2.21) determines the resolution to which V can be reconstructed from 

the data.

This information is important to practitioners (e.g., in cryo-EM), but as of now, the above 

theoretical results only apply to the case when P is trivial. Of course, moving to the case of 

more general P brings additional theoretical challenges. For example, with nontrivial P , the 

empirical covariance matrix of X is harder to disentangle from that of I, because the operator 

Ln becomes nontrivial (see (2.6) and (2.8)). How can our knowledge about the spiked model 

be generalized to the setting of Problem 1.1? We raise some open questions along these 

lines.

1. In what high-dimensional parameter regimes (in terms of n, p, q) is there hope to 

detect and recover any signal from Σn? With the addition of the parameter q, the 

traditional regime p ≈ n might no longer be appropriate. For example, in the 

random coordinate-selection case with the (extreme) parameter setting q = 2, it is 

expected that n = p2 log p samples are needed just for Ln to be invertible (by the 

coupon collector problem).

2. In the case when there is no signal (X = 0), we have I = E. In this case, what is the 

limiting eigenvalue distribution of Σn (in an appropriate parameter regime)? Is it 
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still the MP law? How does the eigenvalue distribution depend on the distribution 

of P ? This is perhaps the first step towards studying the signal-plus-noise model.

3. In the no-signal case, what is the limiting distribution of the largest eigenvalue of 

Σn? Is it still Tracy–Widom? How does this depend on n, p, q, and P ? Knowing 

this distribution can provide p-values for signal detection, as is the case for the 

usual spiked model (see [21, p. 303]).

4. In the full model (1.1), if X takes values in a low-dimensional subspace of Rp, is the 

limiting eigenvalue distribution of Σn a bulk distribution with a few separated 

eigenvalues? If so, what is the generalization of the SNR condition (2.21) that 

would guarantee separation of the top eigenvalues? What would these top 

eigenvalues be, in terms of the population eigenvalues? Would there still be a 

phase-transition phenomenon in which the top eigenvectors of Σn are correlated 

with the principal components as long as the corresponding eigenvalues are above a 

threshold?

Answering these questions theoretically would require tools from random matrix theory 

such as the ones used by [21, 5, 37]. We do not attempt to address these issues in this paper, 

but remark that such results would be very useful theoretical guides for practical 

applications of our estimator Σn. Our numerical results show that the spectrum of the cryo-

EM estimator Σn has qualitative behavior similar to that of the sample covariance matrix.

At this point, we have concluded the part of our paper focused on the general properties of 

the estimator Σn. Next, we move on to the cryo-EM heterogeneity problem.

3. Covariance estimation in cryo-EM heterogeneity problem

Now that we have examined the general covariance matrix estimation problem, let us 

specialize to the cryo-EM case. In this case, the matrices P have a specific form: they are 

finite-dimensional versions of P (defined in (1.2)). We begin by describing the Fourier-

domain counterpart of P, which will be crucial in analyzing the cryo-EM covariance 

estimation problem. Our Fourier transform convention is

(3.1)

The following classical theorem in tomography (see, e.g., [38] for a proof) shows that the 

operator P takes on a simpler form in the Fourier domain.

Theorem 3.1 (Fourier projection slice theorem)

Suppose Y ∈ L2(R3)∩L1(R3) and J : R2 → R. Then

(3.2)

where P : C(R3) → C(R2) is defined by
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(3.3)

Here, Ri is the ith row of R.

Hence, p̂ rotates a function by R and then restricts it to the horizontal plane ẑ = 0. If we let ξ 

= (x̂, ŷ, ẑ), then another way of viewing p̂ is that it restricts a function to the plane ξ · R3 = 0.

3.1. Infinite-dimensional heterogeneity problem

To build intuition for the Fourier-domain geometry of the heterogeneity problem, consider 

the following idealized scenario, taking place in Fourier space. Suppose detector technology 

improves to the point that images can be measured continuously and noiselessly and that we 

have access to the full joint distribution of R and Î. We would like to estimate the mean m̂ 0 : 

R3 → C and covariance function Ĉ0: R3 × R3 → C of the random field X , defined by

(3.4)

Heuristically, we can proceed as follows. By the Fourier projection slice theorem, every 

image I provides an observation of X (ξ) for ξ ∈ R3 belonging to a central plane 

perpendicular to the viewing direction corresponding to P. By abuse of notation, let ξ ∈ p̂ if 

p ̂ carries the value of P(ξ), and let P(ξ) denote this value. Informally, we expect that we can 

recover m̂ 0 and Ĉ0

(3.5)

Now, let us formalize this problem setup and intuitive formulas for m̂ 0 and Ĉ0 .

Problem 3.2—Let  be a random field, where (Ω, F , ν) is a probability 

space. Here X (ω, ·) is a Fourier volume for each ω ∈ Ω. Let R : Ω → SO(3) be a random 

rotation, independent of P , having the uniform distribution over SO(3). Let P= P(R) be the 

(random) projection operator associated with R via (3.3). define the random field I : Ω × R2 

→ C by

(3.6)

Given the joint distribution of I and R, find the mean mC 0 and covariance function X̂ of P , 

defined in (3.4). Let X̂ be regular enough that

(3.7)
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In this problem statement, we do not assume that X̂ has a discrete distribution. The 

calculations that follow hold for any Î satisfying (3.7).

We claim that m̂ 0 and Ĉ can be found by solving

(3.8)

and

(3.9)

equations whose interpretations we shall discuss in this section. Note that (3.8) and (3.9) can 

be seen as the limiting cases of (2.5) and (2.6) for σ2 = 0, p → ∞, and n → ∞.

In the equations above, we define 

 is 

the space of continuous linear functionals . Thus, both sides of (3.8) are elements 

of . To verify this equation, we apply both sides to a test function Ŷ:

(3.10)

Note that

(3.11)

from which it follows that in the sense of distributions,

(3.12)

Intuitively, this means that P * P inputs the volume m̂ and outputs a “truncated” volume that 

coincides with m̂ on a plane perpendicular to the viewing angle and is zero elsewhere. This 

reflects the fact that the image Î = PX only gives us information about X̂ on a single central 

plane. When we aggregate this information over all possible R, we obtain the operator Â:
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(3.13)

We used the fact that R3 is uniformly distributed over S2 if R is uniformly distributed over 

SO(3). Here, dθ is the surface measure on S2 (hence the normalization by 4π). The last step 

holds because the integral over S2 is equal to the circumference of a great circle on S2, so it 

is 2π.

By comparing (3.8) and (2.7), it is clear that P is the analogue of APn for infinite n and p. 

Also, (3.8) echoes the heuristic formula (3.5). The backprojection operator Ĉ simply 

“inserts” a 2D image into 3D space by situating it in the plane perpendicular to the viewing 

direction of the image, and so the RHS of (3.8) at a point ξ is the accumulation of values 

Ĉ(ξ). Moreover, the operator P is diagonal, and for each ξ, P reflects the measure of the set ξ 

∈ Ĉ; i.e., the density of central planes passing through ξ under the uniform distribution of 

rotations. Thus, (3.8) encodes the intuition from the first equation in (3.5). Inverting P 

involves multiplying by the radial factor 2|ξ|. In tomography, this factor is called the ramp 

filter [38]. Traditional tomographic algorithms proceed by applying the ramp filter to the 

projection data and then backprojecting. Note that solving  implies 

performing these operations in the reverse order; however, backprojection and application of 

the ramp filter commute.

Now we move on to (3.9). Both sides of this equation are continuous linear functionals on 

. Indeed, for , the LHS of (3.9) operates on 

 through the definition

(3.14)

where we view  as operating on pairs (η1, η2) of elements in 

via

(3.15)

Using these definitions, we verify (3.9):
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(3.16)

Substituting (3.12) into the last two lines of the preceding calculation, we find

(3.17)

This reflects the fact that an image Î gives us information about P (ξ ,ξ ) for ξ ,ξ ∈ Ĉ.

Taking the expectation over R, we find that

(3.18)

Like Â, the operator P is diagonal. P is a fundamental operator in tomographic inverse 

problems involving variability; we term it the projection covariance transform. In the same 

way that (3.8) reflected the first equation of (3.5), we see that (3.9) resembles the second 

equation of (3.5). In particular, the kernel value K(ξ1, ξ2) reflects the density of central 

planes passing through ξ1, ξ2.

To understand this kernel, let us compute it explicitly. We have

(3.19)

For fixed ξ1, note that δ(ξ1 · θ) is supported on the great circle of S2 perpendicular to ξ1. 

Similarly, δ(ξ2 · θ) corresponds to a great circle perpendicular to ξ2. Choose ξ1, ξ2 ∈ R3 so 

that |ξ1 × ξ2| /= 0. Then, note that these two great circles intersect in two antipodal points θ = 

±(ξ1 × ξ2)/|ξ1 × ξ2|, and the RHS of (3.19) corresponds to the total measure of δ(ξ1 · θ)δ(ξ2 · 

θ) at those two points.

To calculate this measure explicitly, let us define the approximation to the identity 

. Fix E1, E2 > 0. Note that δ1 (ξ1 · θ) is supported on a strip of width 

2E1/|ξ1| centered at the great circle perpendicular to ξ1. δ2 (ξ2 · θ) is supported on a strip of 

width 2E2/|ξ2| intersecting the first strip transversely. For small E1, E2, the intersection of 
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the two strips consists of two approximately parallelogram-shaped regions, S1 and S2 (see 

Figure 3).

The sine of the angle between the diagonals of each of these regions is |ξ1 × ξ2|/|ξ1||ξ2|, and a 

simple calculation shows that the area of one of these regions is 2E12E2/|ξ1 × ξ2|. It follows 

that

(3.20)

This analytic form of K sheds light on the geometry of Ĉ. Recall that K(ξ1, ξ2) is a measure 

of the density of central planes passing through ξ1 and ξ2. Note that this density is nonzero 

everywhere, which reflects the fact that there is a central plane passing through each pair of 

points in R3. The denominator in K is proportional to the magnitudes |ξ1| and |ξ2|, which 

indicates that there is a greater density of planes passing through pairs of points nearer the 

origin. Finally, note that K varies inversely with the sine of the angle between ξ1 and ξ2; 

indeed, a greater density of central planes pass through a pair of points nearly collinear with 

the origin. In fact, there is a singularity in K when ξ1, ξ2 are linearly dependent, reflecting 

the fact that infinitely many central planes pass through collinear points. As a way to sum up 

the geometry encoded in K, note that except for the factor of 1/4π, 1/K is the area of the 

triangle spanned by the vectors ξ1 and ξ2. For this reason, we call 1/K the triangular area 

filter.

Note that the triangular area filter is analogous to the ramp filter: it grows linearly with the 

frequencies |ξ1| and |ξ2| to compensate for the loss of high frequency information incurred by 

the geometry of the problem. So, this filter is a generalization of the ramp filter appearing in 

the estimation of the mean to the covariance estimation problem. The latter has a somewhat 

more intricate geometry, which is reflected in K.

The properties of K translate into the robustness of inverting P (supposing we added noise to 

our model). In particular, the robustness of recovering P (ξ ,ξ ) grows with K(ξ ,ξ ). For 

example, recovering higher frequencies in Ĉ is more dificult. However, the fact that K is 

everywhere positive means that P is at least invertible. This statement is important in 

proving theoretical results about our estimators, as we saw in section 2.2. Note that an 

analogous problem of estimating the covariance matrix of 2D objects from their one-

dimensional line projections would not satisfy this condition, because for most pairs of 

points in R2, there is not a line passing through both points as well as the origin.

3.2. The discrete covariance estimation problem

The calculation in the preceding section shows that if we could sample images continuously 

and if we had access to projection images from all viewing angles, then P would become a 

diagonal operator. In this section, we explore the modifications necessary for the realistic 

case where we must work with finite-dimensional representations of volumes and images.

Katsevich et al. Page 22

SIAM J Imaging Sci. Author manuscript; available in PMC 2015 February 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Our idea is to follow what we did in the fully continuous case treated above and estimate the 

covariance matrix in the Fourier domain. One possibility is to choose a Cartesian basis in the 

Fourier domain. With this basis, a tempting way to define PPs would be to restrict the 

Fourier 3D grid to the pixels of a 2D central slice by nearest-neighbor interpolation. This 

would make PPs a coordinate-selection operator, making LPn diagonal. However, this 

computational simplicity comes at a great cost in accuracy; numerical experiments show that 

the errors induced by such a coarse interpolation scheme are unacceptably large. Such an 

interpolation error should not come as a surprise, considering similar interpolation errors in 

computerized tomography [38]. Hence, we must choose other bases for the Fourier volumes 

and images.

The finite sampling rate of the images limits the 3D frequencies we can hope to reconstruct. 

Indeed, since the images are sampled on an N × N grid confining a disc of radius 1, the 

corresponding Nyquist bandlimit is ωNyq = Nπ/2. Hence, the images carry no information 

past this 2D bandlimit. By the Fourier slice theorem, this means that we also have no 

information about X past the 3D bandlimit ωNyq. In practice, the exponentially decaying 

envelope of the CTF function renders even fewer frequencies possible to reconstruct. 

Moreover, we saw in section 3.1 and will see in section 6.2 that reconstruction of Σ0 

becomes more ill-conditioned as the frequency increases. Hence, it often makes sense to 

take a cuto? ωmax < ωNyq. We can choose ωmax to correspond to an effective grid size of 

Nres pixels, where Nres ≤ N . In this case, we would choose ωmax = Nresπ/2. Thus, it is 

natural to search for X in a space of functions bandlimited in Bωmax (the ball of radius ωmax) 

and with most of their energy contained in the unit ball. The optimal space B with respect to 

these constraints is spanned by a finite set of 3D Slepian functions [56]. For a given 

bandlimit ωmax, we have

(3.21)

This dimension is called the Shannon number, and is the trace of the kernel in [56, eq. 6].

For the purposes of this section, let us work abstractly with the finite-dimensional spaces VP 

⊂ C0(Bωmax ) and IP ⊂ C0(Dωmax ), which represent Fourier volumes and Fourier images, 

respectively (Dωmax ⊂ R is the disc of radius ωmax). For example, VP could be spanned by 

the Fourier transforms of the 3D Slepian functions. Let

(3.22)

with dim(VĈ) = pP and dim(IĈ) = qP. Assume that for all R, Ĉ(VĈ) ⊂ IP (i.e., we do not 

need to worry about interpolation). Denote by PP the matrix expression of Ĉ . Thus, PP ∈ 

CqP×pP. Let XP1,… , XPn be the representations of P ,… , Ĉ in the basis for VĈ.

Since we are given the images Is in the pixel basis Rq , let us consider how to map these 

images into IĈ. Let Q1 : Rq → IP be the mapping which fits (in the least-squares sense) an 

element of IP to the pixel values defined by a vector in Rq. It is easiest to express Q1 in 
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terms of the reverse mapping Q2 : IP → Rq . The ith column of Q2 consists of the 

evaluations of gi at the real-domain grid points inside the unit disc. It is easy to see that the 

least-squares method of defining 

Now, note that

(3.23)

The last approximate equality is due to the Fourier slice theorem. The inaccuracy comes 

from the discretization operator S. Note that . We 

would like the latter matrix to be a multiple of the identity matrix so that the noise in the 

images remains white. Let us calculate the entries of  in terms of the basis functions 

gi. Given the fact that we are working with volumes hi which have most of their energy 

concentrated in the unit ball, it follows that gi have most of their energy concentrated in the 

unit disc. If x1,… , xq are the real-domain image grid points, it follows that

(3.24)

It follows that in order for  to be (approximately) a multiple of the identity matrix, we 

should require {gPi} to be an orthonormal set in L2(R2). If we let cq = 4π3/q, then we find 

that

(3.25)

It follows that, if we make the approximations in (3.23) and (3.25), we can formulate the 

heterogeneity problem entirely in the Fourier domain as follows:

(3.26)

where Var[EĈ] = σ2cq IqP. Thus, we have an instance of Problem (1.1) with σ2 replaced by 

σ2cq , q replaced by qP, and p replaced by pP. We seek μP0 = E[XP] and ΣP 0 = Var[XP]. 

Equations (2.5) and (2.6) become

(3.27)

and
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(3.28)

3.3. Exploring AP and LĈ

In this section, we seek to find expressions for AP and LĈ like those in (3.13) and (3.18). 

The reason for finding these limiting operators is twofold. First of all, recall that the 

theoretical results in section 2.2 depend on the invertibility of these limiting operators. 

Hence, knowing AP and LP in the cryo-EM case will allow us to verify the assumptions of 

Propositions 2.1 and 2.2. Second, the law of large numbers guarantees that for large n, we 

have APn ≈ AP and LPn ≈ LĈ. We shall see in section 5 that approximating APn and LPn by 

their limiting counterparts makes possible the tractable implementation of our algorithm.

In section 3.1, we worked with functions m̂ : R3 → C and P : R3 × R3 → C. Now, we are in 

a finite-dimensional setup, and we have formulated (3.27) and (3.28) in terms of vectors and 

matrices. Nevertheless, in the finite-dimensional case we can still work with functions as we 

did in section 3.1 via the identifications

(3.29)

where we define

(3.30)

and VP ⊗ VP = span{hPi ⊗ hPj }. Thus, we identify CpP and CpP×pP with spaces of 

bandlimited functions. For these identifications to be isometries, we must endow VP with an 

inner product for which the hPi are orthonormal. We consider a family of inner products, 

weighted by radial functions w(|ξ|):

(3.31)

The inner product on VP ⊗ VP is inherited from that of VĈ.

Note that APn and LPn both involve the projection-backprojection operator PPH PPs. Let us 

see how to express PPH PPs as an operator on VĈ. The ith column of PPs is the 

representation of in the orthonormal basis for I . Hence, using the isomorphism CqP ↔ I and 

reasoning along the lines of (3.11), we find that
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(3.32)

Note that here and throughout this section, we perform manipulations (like those in section 

3.1) that involve treating elements of VP as test functions for distributions. We will 

ultimately construct VP so that its elements are continuous, but not in C∞(R3), as assumed 

in section 3.1. Nevertheless, since we are only dealing with distributions of order zero, 

continuity of the elements of VP is sufficient.

From (3.32), it follows that if μP ∈ CpP ↔ m̂

(3.33)

where 

(3.34)

is a projection onto the finite-dimensional subspace VĈ.

In analogy with (3.8), we have

(3.35)

Note AP resembles the operator P obtained in (3.8), with the addition of the “low-pass filter” 

πVP. As a particular choice of weight, one might consider w(|ξ|) = 1/|ξ| in order to cancel the 

ramp filter. For this weight, note that

(3.36)

where  is the orthogonal projection onto VP with respect to the weight w. Thus, for this 

weight we find that 

A calculation analagous to (3.33) shows that for ΣP ∈ CpP×pP ↔ Ĉ
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(3.37)

Then, taking the expectation over R3, we find that

(3.38)

This shows that between LĈ is linked to P via the low-pass-filter π P analogously to (3.34).

3.4. Properties of AP and LĈ

In this section, we will prove several results about AP and LĈ, defined in (3.35) and (3.38). 

We start by proving a useful lemma.

Lemma 3.3—For  and Ŷ Ĉ, we have

(3.39)

Likewise, if , we have

(3.40)

Proof: Indeed, we have

(3.41)

The proof of the second claim is similar.

Note that AP and LP are self-adjoint and PSD because each APn and LPn satisfies this 

property. In the next proposition, we bound the minimum eigenvalues of these two operators 

from below.

Proposition 3.4—Let Mw(ωmax) = max|ξ|≤ωmax |ξ|w(|ξ|). Then,

(3.42)

Proof: Let μP ∈ CpP ↔ m̂ find
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(3.43)

The bound on the minimum eigenvalue of LP follows from a similar argument, using (3.38) 

and the following bound:

(3.44)

By inspecting Mw (ωmax), we see that choosing w = 1/|ξ| leads to better conditioning of both 

AP and LĈ, as compared to w = 1. This is because the former weight compensates for the 

loss of information at higher frequencies. We see from (3.36) that for w = 1/|ξ|, AP is 

perfectly conditioned. This weight also cancels the linear growth of the triangular area filter 

with radial frequency. However, it does not cancel K altogether, since the dependency on sin 

γ in the denominators in (3.44) remains, where γ is the angle between ξ1 and ξ2.

The maximum eigenvalue of LP cannot be bounded as easily, since the quotient in (3.44) is 

not bounded from above. A bound on λmax(LĈ) might be obtained by using the fact that a 

bandlimited P can only be concentrated to a limited extent around the singular set {ξ1, ξ2 : |

ξ1 × ξ2| = 0}.

Finally, we prove another property of AP and LĈ: they commute with rotations. Let us 

define the group action of SO(3) on functions R3 → C as follows: for R ∈ SO(3) and P : R3 

→ C, let R. Ĉ(ξ) = Ĉ(RT ξ). Likewise, define the group action of SO(3) on functions P : R3 × 

R3 → C via R. Ĉ(ξ1, ξ2) = Ĉ(RT ξ1, RT ξ2).

Proposition 3.5—Suppose that the subspace VP is closed under rotations. Then, for any Y 

∈ V , C ∈ V ⊗ V , and R ∈ SO(3), we have

(3.45)

where APX and LPX are understood via the identifications (3.29).

Proof: We begin by proving the first half of (3.45). First of all, extend the group action of 

SO(3) to the space , via

(3.46)

We claim that for any , we have R.(π Pη) = π P(R.η). Since VP is closed under 

rotations, both sides of this equation are elements of VĈ. We can verify their equality by 
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taking an inner product with an arbitrary element Ĉ VĈ. Using Lemma 3.3 and the fact that 

VP is closed under rotations, we obtain

(3.47)

Next, we claim that for any Ĉ VĈ, we have R.( P P) = Ĉ(R. Ĉ). To check whether these two 

elements of  are the same, we apply them to a test function :

(3.48)

Putting together what we have, we find that

(3.49)

which proves the first half of (3.45). The second half is proved analogously.

This property of AP and LP is to be expected, given the rotationally symmetric nature of 

these operators. This suggests that LP can be studied further using the representation theory 

of SO(3).

Finally, let us check that the assumptions of Propositions 2.1 and 2.2 hold in the cryo-EM 

case. It follows from Proposition 3.4 that as long as Mw (ωmax) < ∞, the limiting operators 

AP and LP are invertible. Of course, it is always possible to choose such a weight w. In 

particular the weights already considered, w = 1, 1/|ξ| satisfy this property. Moreover, by 

rotational symmetry, lPĈ(R)l is independent of R, and so of course this quantity is uniformly 

bounded. Thus, we have checked all the necessary assumptions to arrive at the following 

conclusion.

Proposition 3.6—If we neglect the errors incurred in moving to the Fourier domain and 

assume that the rotations are drawn uniformly from SO(3), then the estimators μPn and ΣP n 

obtained from (3.27) and (3.28) are consistent.

4. Using  to determine the conformations

To solve Problem 1.2, we must do more than just estimate μP0 and ΣP 0. We must also 

estimate C, XP c, and pc, where XP c is the coefficient vector of Pc in the basis for VĈ. Once 

we solve (3.27) and (3.28) for μPn and ΣP n, we perform the following steps.

From the discussion on high-dimensional PCA in section 2.3, we expect to determine the 

number of structural states by inspecting the spectrum of ΣP n. We expect the spectrum of 

ΣP n to consist of a bulk distribution along with C − 1 separate eigenvalues (assuming the 
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SNR is sufficiently high), a fact confirmed by our numerical results. Hence, given ΣP n, we 

can estimate C.

Next, we discuss how to reconstruct XP 1,… , XP C and p1,… , pC . Our approach is similar to 

Penczek, Kimmel, and Spahn’s [43]. By the principle of PCA, the leading eigenvectors of 

 span the space of mean subtracted volumes 

 are the leading eigenvectors of , we can 

write

(4.1)

Note that there is only approximate equality because we have replaced the mean μP0 by the 

estimated mean μPn, and the eigenvectors of ΣP 0 by those of ΣP n. We would like to recover 

the coefficients αs = (αs,1,… , αs,C−1), but the XPs are unknown. Nevertheless, if we project 

the above equation by PPs, then we get

(4.2)

For each s, we can now solve this equation for the coefficient vector αs in the least-squares 

sense. This gives us n vectors in CC−1. These should be clustered around C points 

 for c = 1,… ,C, corresponding to the C underlying volumes. At this 

point, Penczek, Kimmel, and Spahn propose to perform K-means clustering on αs in order to 

deduce which image corresponds to which class. However, if the images are too noisy, then 

it would be impossible to separate the classes via clustering. Note that in order to reconstruct 

the original volumes, all we need are the means of the C clusters of coordinates. If the mean 

volume and top eigenvectors are approximately correct, then the main source of noise in the 

coordinates is the Gaussian noise in the images. It follows that the distribution of the 

coordinates in CC−1 is a mixture of Gaussians. Hence, we can find the means αc of each 

cluster using either an EM algorithm (of which the K-means algorithm used by Penczek is a 

limiting case [8]) or the method of moments, e.g., [23]. In the current implementation, we 

use an EM algorithm. Once we have the C mean vectors, we can reconstruct the original 

volumes using (4.1). Putting these steps together, we arrive at a high-level algorithm to solve 

the heterogeneity problem (see Algorithm 1).
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5. Implementing Algorithm 1

In this section, we confront the practical challenges of implementing Algorithm 1. We 

consider different approaches to addressing these challenges and choose one approach to 

explore further.

5.1. Computational challenges and approaches

The main computational challenge in Algorithm 1 is solving for ΣP n in

(5.1)

given the immense size of this problem. Two possibilities for inverting LPn immediately 

come to mind. The first is to treat (5.1) as a large system of linear equations, viewing ΣP n as 

a vector in CpP2 and LĈ as a matrix in CpP2×pP2 . In this scheme, the matrix LĈcould be 

computed once and stored. However, this approach has an unreasonably large storage 

requirement. Since , it follows that LPn has size . Even for a small 

Nres value such as 17, each dimension of LPn is 1.8 × 106. Storing such a large LPn requires 

over 23 terabytes. Moreover, inverting this matrix naively is completely intractable.

The second possibility is to abandon the idea of forming LPn as a matrix, and instead to use 

an iterative algorithm, such as the conjugate gradient (CG) algorithm, based on repeatedly 

applying LPn to an input matrix. From (3.28), we see that applying LPn to a matrix is 

dominated by n multiplications of a qP × pP matrix by a pP × pP matrix, which costs 

. If κn is the condition number of LPn , then CG will converge in O(√κn ) 

iterations (see, e.g., [58]). Hence, while the storage requirement of this alternative algorithm 

is only , the computational complexity is O(nN 8 √κn). Thus, the price to pay 

for reducing the storage requirement is that n matrix multiplications must be performed at 

each iteration. While this computational complexity might render the algorithm impractical 

for a regular computer, one can take advantage of the fact that the n matrix multiplications 

can be performed in parallel.

We propose a third numerical scheme, one which requires substantially less storage than the 

first scheme above and does not require O(n) operations at each iteration. We assume that 

the Rs are drawn from the uniform distribution over SO(3), and so for large n, the operator 

LPn does not differ much from its limiting counterpart LP (defined in (3.38)). Hence, if we 

replace LPn by LP in (5.1), we would not be making too large an error. Of course, LP is a 

matrix of the same size as LPn, so it is also impossible to store on a computer. However, we 

leverage the analytic form of LĈ in order to invert it more efficiently. At this point, we have 

not yet chosen the spaces VP and IĈ, and by constructing these carefully we give LP a 

special structure. This approach also entails a tradeo?: in practice the approximation LPn ≈ 

LĈ is accurate to the extent that R3,… , R3 are uniformly distributed on S2. Hence, we must 

extract a subset of the given rotations whose viewing angles are approximately uniformly 

distributed on the sphere. Thus, the sacrifice we make in this approach is a reduction in the 

sample size. Moreover, since the subselected viewing directions are no longer statistically 
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independent, the theoretical consistency result stated in Proposition 3.6 does not necessarily 

extend to this numerical scheme.

Nevertheless, the latter approach is promising because the complexity of inverting LP is 

independent of the number of images, and this computation might be tractable for 

reasonable values of Nres if LP has enough structure. It remains to construct VP and IP to 

induce a special structure in LĈ, which we turn to next.

5.2. Choosing VP to make LP sparse and block diagonal—In this section, we 

write down an expression for an individual element of LĈ, and discover that for judiciously 

chosen basis functions Ĉhi, the matrix LP becomes sparse and block diagonal.

First, let us fix a functional form for the basis elements hPi: let

(5.2)

where fi : R+ → R are radial functions and ai : S2 → C are spherical harmonics. Note, for 

example, that the 3D Slepian functions have this form [56, eq. 110]. If the hPi are orthogonal 

with respect to the weight w, then

(5.3)

where we use  as a shorthand for . The 3D Slepian functions satisfy the above 

condition with w = 1, because they are orthogonal in L2(R3).

Next, we write down the formula for an element LPi1 ,i2,j1,j2 (here, j1, j2 are the indices of the 

input matrix, and i1, i2 are the indices of the output matrix). From (3.38) and Lemma 3.3,

we find

(5.4)

Thus, to make many of the radial inner products in LP correct weight is vanish, we see from 

(5.3) that the

(5.5)

Recall that this is the weight needed to cancel the ramp filter in AP (see (3.36)). We obtain a 

cancellation in LP as well because the kernel of this operator also grows linearly with radial 
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frequency. From this point on, w will represent the weight above, and we will work in the 

corresponding weighted L2 space.

What are sets of functions of the form (5.2) that are orthonormal in L2 (R3)? If we chose 3D 

Slepian functions, we would get the functional form

(5.6)

However, these functions are orthonormal with weight w = 1 instead of w = 1/r. Consider 

modifying this construction by replacing the fk,R(r) by the radial functions arising in the 2D 

Slepian functions. These satisfy the property

(5.7)

With this property (5.6) becomes orthonormal in L2 (R3). This gives LP a certain degree of 

sparsity. However, note that the construction (5.6) has different families of L2-orthogonal 

radial functions corresponding to each angular function. Thus, we only have orthogonality 

of the radial functions fk1,R1 and fk2,R2 when l1 = .e2. Thus, many of the terms fj , fi)L2 in 

(5.4) are still nonzero.

A drastic improvement on (5.6) would be to devise an orthogonal basis in L2 that used one 

set of r-weighted orthogonal functions fk for all the angular functions, rather than a separate 

set for each angular function. Namely, suppose we chose

(5.8)

where J is some indexing set. Note that fk and J need to be carefully constructed so that 

span{hk,R,m}≈ B (see section 5.3 for this construction). We have

(5.9)

Here, we assume that each fk is either even or odd at the origin, and we extend fk(r) to r ∈ R 

according to this parity. The above calculation implies that fk should have the same parity 

as .e. Let us suppose that fk has the same parity as k. Then, it follows that (k, .e, m) ∈ J only 

if k = .e mod 2. Thus, hk,R,m will be orthonormal in L2 if

(5.10)

If we let ki be the radial index corresponding to i, then we claim that the above construction 

implies
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(5.11)

This statement does not follow immediately from (5.10), because we still need to check the 

case when ki1 /= kj1 mod 2. Note that in this case, the dependence on α in the integral over 

S2 × S2 is odd, and so indeed LPi ,i ,j ,j = 0 in that case as well. If VĈ is the space spanned by 

fk(r)Y m(α) for all .e, m, then the above implies that LP operates separately on each VPk ⊗ 

VPk2 . In the language of matrices, this means that if we divide ΣP n into blocks ΣP k1,k2 

based on radial indices, LP operates on these blocks separately. We denote each of the 

corresponding “blocks” of LP by LPk1,k2 . Let us reindex the angular functions so that ak 

denotes the ith angular basis function paired with fk. From (5.11), we have

(5.12)

This block diagonal structure of LP makes it much easier to invert. Nevertheless, each block 

LPk1,k2 is a square matrix with dimension . Hence, inverting the larger blocks of LĈ 
can be dificult. Remarkably, it turns out that each block of LP is sparse. In Appendix C, we 

simplify the above integral over S2 × S2. Then, (5.12) becomes

(5.13)

where the constants c(.e) are defined in (C.8) and CR,m(ψĈ) is the .e, m coefficient in the 

spherical harmonic expansion of ψP : S2 → C. It turns out that the above expression is zero 

for most sets of indices. To see why, recall that the functions ak are spherical harmonics. It is 

known that the product Y mY m* can be expressed as a linear combination of harmonics Y M , 

where M = m + m1 and |.e − .e1|≤ L ≤ .e + .e1. Thus, Cm (aiaj ) are sparse vectors, which 

shows that each block LPk1,k2 is sparse. For example, LP15,15 has each dimension 

approximately 2 × 104. However, only about 107 elements of this block are nonzero, which 

is only about 3% of its total number of entries. This is about the same number of elements as 

a 3000 × 3000 full matrix.

Thus, we have found a way to tractably solve the covariance matrix estimation problem: 

reconstruct ΣP n (approximately) by solving the sparse linear systems

(5.14)

where we recall that BPn is the RHS of (3.28). Also, using the fact that , we 

can estimate μPn from
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(5.15)

In the next two sections, we discuss how to choose the radial components fk(r) and define IP 

and VP more precisely.

5.3. Constructing fk(r) and the space VP—We have discussed so far that

(5.16)

with (k, .e, m) ∈ J only if k = .e mod 2. Moreover, we have required the orthonormality 

condition (5.10). However, recall that we initially assumed that the real-domain functions Xs 

belonged to the space of 3D Slepian functions B. Thus, we must choose VP to approximate 

the image of B under the Fourier transform. Hence, the basis functions fk(r)Y m(θ, ϕ) should 

be supported in the ball of radius ωmax and have their inverse Fourier transforms 

concentrated in the unit ball. Moreover, we must have dim(VĈ) ≈ dim(B). Finally, the basis 

functions hPi should be analytic at the origin (they are the truncated Fourier transforms of 

compactly supported molecules). We begin by examining this condition.

Expanding hPi in a Taylor series near the origin up to a certain degree, we can approximate 

it locally as a finite sum of homogeneous polynomials. By [57, Theorem 2.1], a 

homogeneous polynomial of degree d can be expressed as

(5.17)

where each YR represents a linear combination of spherical harmonics of degree .e. Hence, if 

(k, .e, m) ∈ J , then we require that fk(r) = αRrR + αR+2rR+2 + ··· , where some coefficients 

can be zero. We satisfy this requirement by constructing f0, f1,… so that

(5.18)

for small r with αk,k /= 0, and combine fk with Y m if k = .e mod 2 and .e ≤ k. This leads to 

the following set of 3D basis functions:

(5.19)

Written another way, we define

(5.20)

Following the reasoning preceding (5.17), it can be seen that near the origin, this basis spans 

the set of polynomial functions up to degree K.
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Now, consider the real- and Fourier-domain content of hPi. The bandlimitedness requirement 

on Xs is satisfied if and only if the functions fk are supported in the interval [0, ωmax]. To 

deal with the real domain requirement, we need the inverse Fourier transform of fk(r)Y m(θ, 

ϕ). With the Fourier convention (3.1), it follows from [2] that

(5.21)

Here, jR is the spherical Bessel function of order .e, and SR is the spherical Hankel 

transform. Also note that (r, θ, ϕ) are Fourier-domain spherical coordinates, while (rx, θx, 

ϕx) are their real-domain counterparts. Thus, satisfying the real-domain concentration 

requirement amounts to maximizing the percentage of the energy of SRfk that is contained in 

[0, 1] for 0 ≤ k ≤ K, 0 ≤ .e ≤ k, .e = k mod 2.

Finally, we have arrived at the criteria we would like fk(r) to satisfy:

1. supp fk ⊂ [0, ωmax];

2. {fk : k even} and {fk : k odd} orthonormal in L2(R+, r);

3. fk(r) = αk,krk + αk,k+2rk+2 + ··· near r = 0;

4. under the above conditions, maximize the percentage of the energy of SRfk in [0, 1], 

for 0 ≤ k ≤ K, 0 ≤ .e ≤ k, .e = k mod 2.

While it might be possible to find an optimal set of such functions {fk } by solving an 

optimization problem, we can directly construct a set of functions that satisfactorily satisfies 

the above criteria.

Note that since .e ranges in [0, k], it follows that for larger k, we need to have higher-order 

spherical Hankel transforms SRfk remain concentrated in [0, 1]. Since higher-order spherical 

Hankel transforms tend to be less concentrated for oscillatory functions, it makes sense to 

choose fk to be less and less oscillatory as k increases. Note that the functions fk cannot all 

have only few oscillations because the even and odd functions must form orthonormal sets. 

Using this intuition, we construct fk as follows. Since the even and odd fk can be constructed 

independently, we will illustrate the idea by constructing the even fk. For simplicity, let us 

assume that K is odd, with K = 2K0 + 1. define the cuto? χ = χ([0, ωmax]). First, consider the 

sequence

(5.22)

where zk,m is the mth positive zero of Jk (the kth-order Bessel function). Note that the 

functions in this list satisfy criteria 1 (by construction) and 3 (due to the asymptotics of the 

Bessel function at the origin). Also note that we have chosen the scaling of the arguments of 

the Bessel functions so that the number of zero crossings decreases as the list goes on. Thus, 

the functions become less and less oscillatory, which is the pattern that might lead to 

satisfying criterion 4. However, since these functions might not be orthogonal with respect 
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to the weight r, we need to orthonormalize them with respect to this weight (via Gram–

Schmidt). We need to be careful to orthonormalize them in such a way as to preserve the 

properties that they already satisfy. This can be achieved by running the (r-weighted) Gram–

Schmidt algorithm from higher k towards lower k. This preserves the supports of the 

functions, their asymptotics at the origin, and the oscillation pattern. Moreover, the 

orthogonality property now holds as well. See Figure 4 for the first several even radial basis 

functions. Constructing the odd radial functions requires following an analogous procedure. 

Also, changing the parity of K requires the obvious modifications.

It remains to choose K. We do this based on how well criterion 4 is satisfied. For example, 

we can calculate how much energy of SRfk is contained in the unit interval for all 0 ≤ k ≤ K, 

0 ≤ .e ≤ k, .e = k mod 2. Numerical experiments show that K = Nres − 2 is a reasonable value. 

For each value of Nres that we tested, this choice led to SRfk having at least 80% of its energy 

concentrated in the unit interval for each relevant (.e, k), and at least 95% on average over 

all such pairs (.e, k). Thus our experiments show that for our choice of fk, choosing roughly 

K ≈ Nres leads to acceptable satisfaction of criterion 4. A short calculation yields

(5.23)

(5.24)

Hence, we have pP/p = 6/π2 ≈ 0.6. Hence, the dimension of the space VP we have 

constructed is within a constant factor of the dimension of B. This factor is the price we pay 

for the computational simplicity VP provides.

Note that a different construction of fk might have even better results. Choosing better radial 

functions can be the topic of further research. In any case, the specific choice of fk does not 

affect the structure of our algorithm at all because LP is independent of these functions, as 

can be seen from (5.12). Thus, the selection of the radial basis functions can be viewed as an 

independent module in our algorithm. The radial functions we choose here work well in 

numerical experiments; see section 7.

5.4. Constructing IP—Finally, the remaining piece in our construction is the finite 

dimensional space of Fourier images, IĈ. To motivate our construction, consider applying Ps 

to a basis element of V . The first observation to make is that the radial components fk(r) 

factor through Ĉ completely:

Recall from (3.21) that

(5.25)
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Note that the Ĉon the LHS should be intepreted as C(R3) → C(R2), whereas the one on the 

RHS is the restricted map C(S2) → C(S1), which we also call P . The correct interpretation 

should be clear in each case. Viewed in this new way, Ĉ : C(S2) → C(S1) rotates a function 

on the sphere by Rs ∈ SO(3), and then restricts the result to the equator.

By the rotational properties of spherical harmonics, a short calculation shows that

(5.26)

where the constants cR,m,m* depend on the Wigner D matrices DR [36]. Hence, P (VĈ) ⊂ IP 

if

(5.27)

Thus, we construct IP by pairing fk with  if k = m mod 2 and m ≤ k. This leads to 

the 2D basis functions

(5.28)

Written another way, we construct

(5.29)

If IPk is the subspace of IP spanned by the basis functions with radial component fk, (5.24) 

shows that P (VP ) ⊂ IĈ for each k. Thus, PĈ has a block diagonal structure, as depicted in 

Figure 5.

Let us now compare the dimension of IP to that of the corresponding space of 2D Slepian 

functions, as we did the previous section. We have

(6.1)

The Shannon number in 2D corresponding to the bandlimit ωmax is ω2 4. Thus, we are short 

of this dimension by a constant factor of 8/π2 ≈ 0.8. Another comparison to make is that the 

number of grid points in the disc inscribed in the Nres × Nres grid is π N 2 = ω2/π. Thus, 

dim(IĈ) is short of this number by a factor of 2 . Note that this is the same factor that was 

obtained in a similar situation in [69], so IP is comparable in terms of approximation to the 

Fourier–Bessel space constructed there.
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Thus, by this point we have fully specified our algorithm for the heterogeneity problem. 

After finding ΣP n numerically via (5.14), we can proceed as in steps 6–9 of Algorithm 1 to 

solve Problem 1.2.

6. Algorithm complexity

In this section, we explore the consequences of the constructions of VP and IP for the 

complexity of the proposed algorithm. We also compare this complexity with that of the 

straightforward CG approach discussed in section 5.1.

To calculate the computational complexity of inverting the sparse matrix LPk1,k2 via the CG 

algorithm, we must bound the number of nonzero elements of this matrix and its condition 

number.

6.1. Sparsity of LP and storage complexity—Preliminary numerical experiments 

confirm the following conjecture.

Conjecture 6.1

(6.2)

where nnz(A) is the number of nonzero elements in a matrix A, and the term involving the 

square is the total number of elements in LPk1,k2 .

Hence, the percentage of nonzero elements in each block of LĈ decays linearly with the 

frequencies associated with that block. This conjecture remains to be verified theoretically.

We pause here to note the storage complexity of the proposed algorithm, which is dominated 

by the cost of storing LĈ. In fact, since we process all the blocks separately, only storing one 

LPk1,k2 at a time will suffice. Hence, the storage complexity is the memory required to store 

the largest block of LĈ, which is nnz(LPK,K ) = O(K7) = O(N 7 required storage for a full 

matrix of the size of LĈ, which is . Compare this to the 

required storage for a full matrix of the size of L, which is .

6.2. Condition number of LĈ—Here we find the condition number of each LPk1 ,k2 . We 

already proved in Proposition 3.4 that λmin(LĈ) ≥ 1/2π. For any k1, k2, this implies that 

λmin(LPk1 ,k2 ) ≥ 1/2π. This is confirmed by a numerical experiment: in Figure 6(a) are 

plotted the minimum eigenvalues of LPk,k for 0 ≤ k ≤ 15. Note that the eigenvalues actually 

approach the value 1/2π (marked with a horizontal line) as k increases. We remarked in 

section 3.4 that an upper bound on the maximum eigenvalue is harder to find. Nevertheless, 

numerical experiments have led us to the following conjecture.

Conjecture 6.2: The maximal eigenvalue of LPk1,k2 grows linearly with min(k1, k2).

Moreover, a plot of the maximal eigenvalue of LPk,k shows a clear linear dependence on k. 

See Figure 6(b). The line of best fit is approximately
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(6.3)

Taken together, Proposition 3.4 and Conjecture 6.2 imply the following conjecture about the 

condition number of LPk1,k2 , which we denote by κ(LPk1 ,k2 ).

Conjecture 6.3

(6.4)

In particular, this implies that

(6.5)

6.3. Algorithm complexity—Using the above results, we estimate the computational 

complexity of Algorithm 1. We proceed step by step through the algorithm and estimate the 

complexity at each stage. Before we do so, note that due to the block diagonal structure of 

PPs (depicted in Figure 5), it can be easily shown that an application of PPs or PPH costs 

O(K4).

Sending the images from the pixel domain into IP requires n applications of the matrix Q1 ∈ 

CqP×q , which costs O(nqqP) = O(nN 2N 2). Note that this complexity can be improved using 

an algorithm of the type [39], but in this paper we do not delve into the details of this 

alternative.

Finding μPn from (5.15) requires n applications of the matrix , and so has complexity 

.

Next, we must compute the matrix BPn. Note that the second term in BPn can be replaced by 

a multiple of the identity matrix by (3.36), so only the first term of BPn must be computed.

Note that BPn is a sum of n matrices, and each matrix can be found as the outer product of Ps 

(IPs − PPsμPn) ∈ CpP with itself. Calculating this vector has complexity O(K4), from which it 

follows that calculating BPn costs O(nK4) = O(nN 4 ).

Next, we must invert LĈ. As mentioned in section 5.1, the inversion of a matrix A via CG 

takes √κ(A) iterations. If A is sparse, than applying it to a vector has complexity nnz(A). 
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Hence, the total complexity for inverting a sparse matrix is √κ(A)nnz(A). Conjectures 6.1 

and 6.3 imply that

(6.6)

Since LP has size of the order K6 × K6, note that the complexity of inverting a full matrix of 

this size would be K18. Thus, our efforts to make LP sparse have saved us a K8.5 complexity 

factor. Moreover, the fact that LP is block diagonal makes its inversion parallelizable.

Assuming that C = O(1), solving each of the n least-squares problems (4.2) is dominated by 

a constant number of applications of PPs to a vector. Thus, finding αs for s = 1,… ,n costs 

Next, we must fit a mixture of Gaussians to αs to find αc. An EM approach to this problem 

requires O(n) operations per iteration. Assuming that the number of iterations is constant, 

finding αc has complexity O(n).

Finally, reconstructing XP c via (4.1) has complexity O(N 3 ).

Hence, neglecting lower-order terms, we find that the total complexity of our algorithm is

(6.7)

6.4. Comparison to straightforward CG approach—We mentioned in section 5.1 

that a CG approach is possible in which at each iteration, we apply LPn to ΣĈ using the 

definition (3.28). This approach has the advantage of not requiring uniformly spaced 

viewing directions. While the condition number of LPn depends on the rotations R1,… , Rn, 

let us assume here that κ(LPn) ≈ κ(LĈ). We estimated the computational complexity of this 

approach in section 5.1, but at that point we assumed that each PPs was a full matrix. If we 

use the bases VP and IĈ, we reap the benefit of the block diagonal structure of PPs. Hence, 

for each s, evaluating PPH PPsΣP PPH PPs is dominated by the multiplication PPsΣP , which 

has complexity N 7. Hence, applying LPn to ΣĈ has complexity nN 7. By (6.4), we assume 

that κ(LPn) = O(Nres). Hence, the full complexity of inverting LP using the conjugate 

gradient approach is (6.7) O(nN 7.5).

(7.1)

Compare this to a complexity of O(N 9.5) for inverting LĈ. Given that n is usually on the 

order of 105 or 106, for moderate values of Nres we have N 9.5 ≤ nN 7.5. Nevertheless, both 

algorithms have possibilities for parallelization, which might change their relative 

complexities. As for memory requirements, note that the straightforward CG algorithm only 
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requires O(N 6 ) storage, whereas we saw in section 6.1 that the proposed algorithm requires 

O(N 7 ) storage.

In summary, these two algorithms each have their strengths and weaknesses, and it would be 

interesting to write parallel implementations for both and compare their performances. In the 

present paper, we have implemented and tested only the algorithm based on inverting LĈ.

7. Numerical results

Here, we provide numerical results illustrating Algorithm 1, with the bases IP and VP 

chosen so as to make LĈ sparse, as discussed in section 5. The results presented below are 

intended for proof-of-concept purposes, and they demonstrate the qualitative behavior of the 

algorithm. They are not, however, biologically significant results. We have considered an 

idealized setup in which there is no CTF effect, and have assumed that the rotations Rs (and 

translations) have been estimated perfectly. In this way, we do not perform a “full-cycle” 

experiment, starting from only the noisy images. Therefore, we cannot gauge the overall 

effect of noise on our algorithm because we do not account for its contribution to the 

misspecification of rotations; we investigate the effect of noise on the algorithm only after 

the rotation estimation step. Moreover, we use simulated data instead of experimental data. 

The application of our algorithm to experimental datasets is left for a separate publication.

7.1. An appropriate definition of SNR—Generally, the definition of SNR is

(7.2)

where P denotes power. In our setup, we will find appropriate definitions for both P (signal) 

and P (noise). Let us consider first the noise power. The standard definition is P (noise) = 

σ2. However, note that in our case, the noise has a power of σ2 in each pixel of an N × N 

grid, but we reconstruct the volumes to a bandlimit ωmax, corresponding to Nres. Hence, if 

we downsampled the N × N images to size Nres × Nres, then we would still obey the Nyquist 

criterion (assuming the volumes actually are bandlimited by ωmax). This would have the 

effect of reducing the noise power by a factor of N 2 /N 2. Hence, in the context of our 

problem, we define

(7.3)

Now, consider P (signal). In standard SPR, a working definition of signal power is

(7.4)

However, in the case of the heterogeneity problem, the object we are trying to reconstruct is 

not the volume itself, but rather the deviation from the average volume, due to 
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heterogeneity. Thus, the relevant signal to us is not the images themselves, but the parts of 

the images that correspond to projections of the deviations of Xs from μ0. Hence, a natural 

definition of signal power in our case is

(7.5)

Using the above definitions, let us define SNRhet in our problem by

(7.6)

Even with the correction factor  values are lower than the SNR values usually 

encountered in structural biology. Hence, we also define

(7.7)

We will present our numerical results primarily using SNRhet, but we will also provide the 

corresponding SNR values in parentheses.

To get a sense of the difference between this definition of SNR and the conventional one, 

compare the signal strength in a projection image to that in a mean-subtracted projection 

image in Figure 7.

7.2. Experimental procedure—We performed three numerical experiments: one with 

two heterogeneity classes, one with three heterogeneity classes, and one with continuous 

variation along the perimeter of a triangle defined by three volumes. The first two 

demonstrate our algorithm in the setup of Problem 1.2, and the third shows that we can 

estimate the covariance matrix and discover a low-dimensional structure in more general 

setups than the discrete heterogeneity case.

As a first step in each of the experiments, we created a number of phantoms analytically. We 

chose the phantoms to be linear combinations of Gaussian densities:

(A.1)

For the discrete heterogeneity cases, we chose probabilities p1,… , pC and generated X1,… , 

Xn by sampling from X 1,… , X C accordingly. For the continuous heterogeneity case, we 
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generated each Xs by choosing a point uniformly at random from the perimeter of the 

triangle defined by X 1, X 2, X 3.

For all of our experiments, we chose n = 10000, N = 65, Nres = 17, K = 15, and selected the 

set of rotations Rs to be approximately uniformly distributed on SO(3). For each Rs, we 

calculated the clean continuous projection image PsXs analytically, and then sampled the 

result on an N × N grid. Then, for each SNR level, we used (7.5) to find the noise power σ2 

to add to the images.

After simulating the data, we ran Algorithm 1 on the images Is and rotations Rs on an Intel 

i7-3615QM CPU with 8 cores, and 8 GB of RAM. The runtime for the entire algorithm with 

the above parameter values (excluding precomputations) is 257 seconds. For the continuous 

heterogeneity case, we stopped the algorithm after computing the coordinates αs (we did not 

attempt to reconstruct individual volumes in this case). To quantify the resolution of our 

reconstructions, we use the Fourier shell correlation (FSC), defined as the correlation of the 

reconstruction with the ground truth on each spherical shell in Fourier space [48]. For the 

discrete cases, we calculated FSC curves for the mean, the top eigenvectors, and the mean-

subtracted reconstructed volumes. We also plotted the correlations of the mean, top 

eigenvectors, and mean-subtracted volumes with the corresponding ground truths for a range 

of SNR values. Finally, we plotted the coordinates αs. For the continuous heterogeneity 

case, we tested the algorithm on only a few different SNR values. By plotting αs in this case, 

we recover the triangle used in constructing Xs.

7.3. Experiment: Two classes—In this experiment, we constructed two phantoms X 1 

and X 2 of the form (7.7), with M1 = 1, M2 = 2. Cross sections of X 1 and X 2 are depicted in 

the top row panels (c) and (d) in Figure 8. We chose the two heterogeneity classes to be 

equiprobable: p1 = p2 = 1/2. Note that the theoretical covariance matrix in the two-class 

heterogeneity problem has rank 1, with dominant eigenvector proportional to the difference 

between the two volumes.

Figure 8 shows the reconstructions of the mean, top eigenvector, and two volumes for 

SNRhet = 0.013, 0.003, 0.0013 (0.25, 0.056, 0.025). In Figure 9, we display eigenvalue 

histograms of the reconstructed covariance matrix for the above SNR values. Figure 10 

shows the FSC curves for these reconstructions. Figure 11 shows the correlations of the 

computed means, top eigenvectors, and (mean-subtracted) volumes with their true values for 

a broader range of SNR values. In Figure 12, we plot a histogram of the coordinates αs from 

step 7 of Algorithm 1.

Our algorithm was able to meaningfully reconstruct the two volumes for SNRhet as low as 

about 0.003 (0.06). Note that the means were always reconstructed with at least a 94% 

correlation to their true values. On the other hand, the eigenvector reconstruction shows a 

phase-transition behavior, with the transition occurring between SNRhet values of 0.001

Regarding the coefficients αs depicted in Figure 12, note that in the noiseless case, there 

should be a distribution composed of two spikes. By adding noise to the images, the two 

spikes start blurring together. For SNR values up to a certain point, the distribution is still 
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visibly bimodal. However, after a threshold the two spikes coalesce into one. The 

proportions pc are reliably estimated until this threshold.

7.4. Experiment: Three classes—In this experiment, we constructed three phantoms 

X 1, X2, X 3 of the form (7.7), with M1 = 2, M2 = 2, M3 = 1. The cross sections of X 1, X 2, X 

3 are depicted in Figure 13 (top row, panels (d)–(f)). We chose the three classes to be 

equiprobable: p1 = p2 = p3 = 1/3. Note that the theoretical covariance matrix in the three-

class heterogeneity problem has rank 2.

Figures 13, 14, 15, 16, 17 are the three-class analogues of Figures 8, 9, 10, 11, 12 in the two-

class case.

Qualitatively, we observe behavior similar to that in the two-class case. The mean is 

reconstructed with at least 90% accuracy for all SNR values considered, while both top 

eigen-vectors experience a phase-transition phenomenon (Figure 16(a)). As with the two-

class case, we see that the disappearance of the eigengap coincides with the phase-transition 

behavior in the reconstruction of the top eigenvectors. However, in the three-class case we 

have two eigenvectors, and we see that the accuracy of the second eigenvector decays more 

quickly than that of the first eigenvector. This reflects the fact that the top eigenvalue of the 

true covariance ΣP 0 is 2.1 × 105, while the second eigenvalue is 1.5 × 105. These two 

eigenvalues differ because X 13 has greater norm than X 2 −X , which means that the two 

directions of variation have different associated variances. Hence, recovering the second 

eigenvector is less robust to noise. In particular, there are SNR values for which the top 

eigenvector can be recovered, but the second eigenvector cannot. SNRhet = 0.0044 (0.03) is 

such an example. We see in Figure 14 that for this SNR value, only the top eigenvector pops 

out of the bulk distribution. In this case, we would incorrectly estimate the rank of the true 

covariance as 1, and conclude that C = 2.

The coefficients αs follow a similar trend to those in the two-class case. For high SNRs, 

there is a clearly defined clustering of the coordinates around three points, as in Figure 

17(a). As the noise is increased, the three clusters become increasingly less defined. In 

Figure 17(b), we see that in this threshold case, the three clusters begin merging into one. As 

in the two-class case, this is the same threshold up to which the pc are accurately estimated. 

By the time SNR = 0.0044 (0.03), there is no visible cluster separation, just as we observed 

in the two-class case. Although the SNR threshold for finding pc from the αs coefficients 

comes earlier than the one for the eigengap, the quality of volume reconstruction roughly 

tracks the quality of the eigenvector reconstruction. This suggests that the estimation of 

cluster means is more robust than that of the probabilities pc.

7.5. Experiment: Continuous variation—In this experiment, we sampled Xs uniformly 

from the perimeter of the triangle determined by volumes X 1, X 2, X 3 (from the three-class 

discrete heterogeneity experiment). This setup is more suitable to model the case when the 

molecule can vary continuously between each pair X i and X j . Despite the fact this 

experiment does not fall under Problem 1.2, Figure 18 shows that we still recover the rank 

two structure. Indeed, it is clear that all the clean volumes still belong to a subspace of 

dimension 2. Moreover, we can see the triangular pattern of heterogeneity in the scatter plots 
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of αs (Figure 19). However, note that once the images get moderately noisy, the triangular 

structure starts getting drowned out. Thus, in practice, without any prior assumptions, just 

looking at the scatter plots of αs will not necessarily reveal the heterogeneity structure in the 

dataset. To detect continuous variation, a new algorithmic step must be designed to follow 

covariance matrix estimation. Nevertheless, this experiment shows that by solving the 

general Problem 1.1, we can estimate covariance matrices beyond those considered in the 

discrete case of the heterogeneity problem.

8. Discussion

In this paper, we proposed a covariance matrix estimator from noisy linearly projected data 

and proved its consistency. The covariance matrix approach to the cryo-EM heterogeneity 

problem is essentially a special case of the general statistical problem under consideration, 

but has its own practical challenges. We overcame these challenges and proposed a 

methodology to tractably estimate the covariance matrix and reconstruct the molecular 

volumes. We proved the consistency of our estimator in the cryo-EM case and also began 

the mathematical investigation of the projection covariance transform. We discovered that 

inverting the projection covariance transform involves applying the triangular area filter, a 

generalization of the ramp filter arising in tomography. Finally, we validated our 

methodology on simulated data, producing accurate reconstructions at low SNR levels. Our 

implementation of this algorithm is now part of the ASPIRE package at 

spr.math.princeton.edu. In what follows, we discuss several directions for future research.

As discussed in section 2.3, our statistical framework and estimators have opened many new 

questions in high-dimensional statistics. While a suite of results are already available for the 

traditional high-dimensional PCA problem, generalizing these results to the projected data 

case would require new random matrix analysis. Our numerical experiments in the cryo-EM 

case have shown many qualitative similarities between the estimated covariance matrix in 

the cryo-EM case and the sample covariance matrix in the spiked model. There is again a 

bulk distribution with eigenvalues separated from it. Moreover, there is a phase-transition 

phenomenon in the cryo-EM case, in which the top eigenvectors of the estimated covariance 

lose correlation with those of the population covariance once the corresponding eigenvalues 

are absorbed by the bulk distribution. Answering the questions posed in section 2.3 would 

be very useful in quantifying the theoretical limitations of our approach.

As an additional line of further inquiry, note that the optimization problem (2.4) for the 

covariance matrix is amenable to regularization. If n ≥ f (p, q) is the high-dimensional 

statistical regime in which the unregularized estimator still carries a signal, then of course 

we need regularization when n ≤ f (p, q). Here, f is a function depending on the distribution 

of the operators Ps. Moreover, regularization increases robustness to noise, so in 

applications like cryo-EM, this could prove useful. Tikhonov regularization does not 

increase the complexity of our algorithm, but has the potential to make LPn invertible. Under 

what conditions can we still achieve accurate recovery in a regularized setting? Other 

regularization schemes can take advantage of a priori knowledge of Σ0, such as using 

nuclear norm regularization in the case when Σ0 is known to be low rank. See [25] for an 

application of nuclear norm minimization in the context of dealing with heterogeneity in 
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cryo-electron tomography. Another special structure Σ0 might have is that it is sparse in a 

certain basis. For example, the localized variability assumption in the case of the 

heterogeneity problem is such an example; in this case, the covariance matrix is sparse in the 

real Cartesian basis or a wavelet basis. This sparsity can be encouraged using a matrix 1-

norm regularization term. Other methods, such as sparse PCA [22] or covariance 

thresholding [7] might be applicable in certain cases when we have sparsity in a given basis.

We developed our algorithm in an idealized environment, assuming that the rotations Rs 

(and in-plane translations) are known exactly and correspond to approximately uniformly 

distributed viewing directions, and that the molecules belong to B. Moreover, we did not 

account for the CTF effect of the electron microscope. In practice, of course rotations and 

translations are estimated with some error. Also, certain molecules might exhibit a 

preference for a certain orientation, invalidating the uniform rotations assumption. Note that 

as long as LPn is invertible, our framework produces a valid estimator, but without the 

uniform rotations assumption, the computationally tractable approach to inverting this 

matrix proposed in section 5 no longer holds. Moreover, molecules might have higher 

frequencies than those we reconstruct, which could potentially lead to artifacts. Thus, an 

important direction of future research is to investigate the stability of our algorithm to 

perturbations from the idealized assumptions we have made. An alternative research 

direction is to devise numerical schemes to invert LPn without replacing it by LĈ, which 

could allow incorporation of CTF and obviate the need to assume uniform rotations. We 

proposed one such scheme in section 5.1.

As we discussed in the introduction, our statistical problem (1.1) is actually a special case of 

the matrix sensing problem. In future work, it would be interesting to test matrix sensing 

algorithms on our problem. In the cryo-EM case, it would be useful to compare our 

approach with matrix sensing algorithms. It would also be interesting to explore the 

applications of our methodology to other tomographic problems involving variability. For 

example, the field of four-dimensional (4D) electron tomography focuses on reconstructing 

a 3D structure that is a function of time [26]. This 4D reconstruction is essentially a movie 

of the molecule in action.

The methods developed in this paper can in principle be used to estimate the covariance 

matrix of a molecule varying with time. This is another kind of “heterogeneity” that is 

amenable to the same analysis we used to investigate structural variability in cryo-EM.
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Appendix A. Matrix derivative calculations

The goal of this appendix is to differentiate the objective functions of (2.3) and (2.4) to 

verify formulas (2.5) and (2.6). In order to differentiate with respect to vectors and matrices, 

we appeal to a few results from [17]. The results are as follows:

(A.

2)

Here, the lowercase letters represent vectors and the uppercase letters represent matrices. 

Also note that z* denotes the complex conjugate of z. The general term of (2.3) is

(A.3)

We can differentiate this with respect to μ* by using the first two formulas of (A.1). We get

Summing in s gives us (2.5).

If we let As = (Is − Psμn)(Is − Psμn)H − σ2I, then the general term of (2.4) is

Using the last two formulas of (A.1), we find that the derivative of this expression with 

respect to Σ is

(B.1)

Taking a Hermitian and summing in s gives us (2.6).

Appendix B. Consistency of µn and Σn

In this appendix, we will prove the consistency results about μn and Σn stated in section 2.2. 

Recall μn and Σn are defined nontrivially if IA−1I ≤ 2 IA−1I and IL−1I ≤ 2 IL−1I. As a 

necessary step towards our consistency results, we must first prove that the probability of 
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these events tends to 1 as n → ∞. Such a statement follow from a matrix concentration 

argument based on Bernstein’s inequality [59, Theorem 1.4], which we reproduce here for 

the reader’s convenience as a lemma.

Lemma B.1 (matrix Bernstein’s inequality)

Consider a finite sequence Ys of independent, random, self-adjoint matrices with dimension 

p. Assume that each random matrix satisfies

(B.2)

Then, for all t ≥ 0,

(B.3)

Next, we prove another lemma, which is essentially the Bernstein inequality in a more 

convenient form.

Lemma B.2

Let Z be a symmetric d × d random matrix, with lZl≤ B almost surely. If Z1,… , Zn are i.i.d. 

samples from Z, then

(B.4)

Moreover,

(B.5)

where C is an absolute constant.

Proof

The proof is an application of the matrix Bernstein inequality. Let . Then, 

note that E[Ys] = 0 and

(B.

6)

Next, we have
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(B.

7)

It follows that

(B.

8)

Now, by the matrix Bernstein inequality, we find that

(B.9)

(B.10)

This proves (B.3). The bound (B.4) follows from [59, Remark 6.5].

PHPs, where P1,… , Pn are i.i.d. samples from P . Then,

Corollary B.3

Let P be a random q × p matrix such that lP l ≤ BP almost surely. Let A = E[PHP ] and let

(B.11)

Moreover,

(B.12)

where the last equality holds if n ≥ 4 log p.

Proof

These bounds follow by letting Z = PHP in Lemma B.2 and noting that lZl≤ B2 almost 

surely.
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Corollary B.4

Let P be a random q × p matrix such that lP l ≤ BP almost surely. Let 

, where P1,… , Pn are i.i.d. 

samples from P . Then,

(B.13)

(B.14)

Moreover,

where the last equality holds if n ≥ 8 log p.

Proof

We wish to apply Lemma B.2 again, this time for ZΣ = PHP ΣPHP . In this case we must be 

careful because Z is an operator on the space of p × p matrices. We can view it as a p2 × p2 

matrix if we represent its argument (a p × p matrix Σ) as a vector of length p2 (denoted by 

vec(Σ)). Then, almost surely,

(B.

15)

In the penultimate inequality above we used the fact that lAlF ≤ √rank(A) lAl for an arbitrary 

matrix A. Now, (B.11) follows from (B.3) by setting B = q2B4 and d = p2.

Proposition B.5

Let E A be the event that IA−1I ≤ 2 IA−1I, and let E L be the event that

(B.

16)

where

(B.17)

Proof

Note that λmin(An) ≥ λmin(A) − lAn − Al. It follows that
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(B.18)

By Corollary B.3, it follows that

(B.19)

Analogously, Corollary B.4 implies that

(B.20)

Now, we prove the consistency results, which we restate for convenience. In the following 

propositions, define

(B.21)

Note that

(B.22)

Also, recall the following notation introduced in section 2.2:

(B.

23)

where V is a random vector. For example, (B.20) can be written as .

Proposition B.6

Suppose A (defined in (2.10)) is invertible, that lP l≤ BP almost surely, and that |||X|||2, |||E|||2 

< ∞. Then, for fixed p, q we have

(B.

24)

Hence, under these assumptions, μn is consistent.
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Proof

Since P[lµn − μ0l ≥ t] ≤ t−1E[lµn − μ0l] by Markov’s inequality, it is sufficient to prove that 

E[lµn − μ0l] → 0 as n → ∞. Note that by the definition of µn and Proposition B.5,

(B.25)

(B.26)

where these summands are i.i.d., we find

Since

(B.27)

Putting together what we have, we arrive at

(B.28)

Inspecting this bound reveals that E[lµn − μ0l] → 0 as n → ∞, as needed.

Remark B.7

Note that with a simple modification to the above argument, we obtain

(B.29)

This bound will be useful later.

Before proving the consistency of Σn, we state a lemma.

Lemma B.8

Let V be a random vector on Cp with E[VVH ] = ΣV , and let V1,… , Vn be i.i.d. samples 

from V . Then, for some absolute constant C,
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(B.

30)

provided the RHS does not exceed lΣV l.

Proof

This result is a simple modification of [47, Theorem 1].

Proposition B.9

Suppose A and L (defined in 2.10) are invertible, that lP l≤ BP almost surely, and that there 

is a polynomial Q for which

(B.

31)

Then, for fixed p, q, we have

(B.

32)

Hence, under these assumptions, Σn is consistent.

Proof

In parallel to the proof of Proposition B.6, we will prove that E[lΣn − Σ0l] → 0 as n → ∞. 

We compute

(B.

33)

Now, we will bound E . To do this, we write
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(B.34)

Let us consider each of these four difference terms in order. Note that

(B.

35)

Moreover,

(B.36)

Using the Cauchy–Schwarz inequality and (B.26), we find

(B.

37)

Here, we used (B.26). This bound also holds for the second term in the last line of (B.33). 

As for the third term,

(B.

38)

Putting these bounds together, we arrive at

(B.

39)

(B.40)

Next, we move on to analyzing D2. If V = PH (I − P μ0), note that

(B.

41)

By Lemma (B.8), we find (B.38)
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Since Σ0 = E[(X − μ0)(X − μ0)H ], it follows that lΣ0l ≤ E[lX − μ0l ] = |||X|||2. Further, the 

calculation (B.13) implies that

(B.42)

Also, it is clear that . Furthermore, Minkowski inequality implies that

(B.43)

Hence, (B.38) becomes

(B.44)

Next, a bound for D3 follows immediately from (B.10):

(C.1)

Similarly, (B.12) gives

(C.2)

Combining the four bounds (B.36), (B.39), (B.42), (B.43) with (B.30) and (B.31), we arrive 

at

(C.

3)

Fixing all the variables except n, we see that the largest term is the one in the second line, 

and it decays as Q(log n)/√n due to the moment growth condition (B.28).

Appendix C. Simplifying (5.12)

Here, we simplify the expression for an element of LPk1,k2:
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(C.

4)

Let . Then, (C.1) becomes

(C.5)

Recall from section 5.3 that  is a spherical harmonic of order up to k. It follows that 

has a spherical harmonic expansion up to order 2k1 (using the formula for the product of two 

spherical harmonics, which involves the Clebsch–Gordan coefficients). The same holds for 

, where the order goes up to 2k2. Let us write  for the l, m coefficient of the 

spherical harmonic expansion of . Thus, we have

(C.6)

It follows that

(C.7)

Since K(α, β) depends only on α · β, by an abuse of notation we can write K(α, β) = K(α · 

β). Thus, the Funk–Hecke theorem applies [38], so we may write

(C.8)

where

(C.9)

Note that the PR are the Legendre polynomials. Since K is an even function of t and PR has 

the same parity as .e, it follows that c(.e) = 0 for odd .e. For even .e, we have
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(C.9)

It follows from formula 3 on p. 423 of [45] that

(C.9)

Using Stirling’s formula, we can find that c(.e) ~ .e−1 for large .e.

Finally, plugging the result of Funk–Hecke into (C.4), we obtain

(C.9)

Thus, we have verified (5.13).
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Figure 1. 
Classical (left) and hybrid (right) states of 70S E. Coli ribosome (image source: [29]).
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Figure 2. 
Illustrations of high-dimensional PCA
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Figure 3. 
The triangular area filter. ξ1 induces a strip on S2 of width proportional to 1/|

ξ1 | (blue); ξ2 induces a strip of width proportional to 1/|ξ2 | (red). The strips intersect in two 

parallelogram-shaped regions (white), each with area proportional to 1/|

ξ1 × ξ2|. Hence, K(ξ1 , ξ2) is inversely proportional to the area of the triangle spanned by ξ1, ξ2 

(cyan).
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Figure 4. 
The even basis functions up to f14 (r). Note that they become less oscillatory as k increases, 

and that fk (r) ~ rk at the origin. The odd basis functions have a similar structure and so are 

not pictured.

Katsevich et al. Page 65

SIAM J Imaging Sci. Author manuscript; available in PMC 2015 February 17.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. 
Block diagonal structure of PPs. The shaded rectangles represent the nonzero entries. For an 

explanation of the specific pairing of angular and radial functions, see (5.27) and (5.19) and 

the preceding discussion. A short calculation shows that the kth block of PĈs has size 

.
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Figure 6. 
The smallest and largest eigenvalues of (the continuous version of ) LPk,k, for 0 ≤ k ≤ 15. 

The smallest eigenvalues approach their theoretical lower bound of 1/2π as k increases. The 

largest eigenvalues show a clear linear dependence on k.
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Figure 7. 
This figure depicts the effect of mean subtraction on projection images in the context of a 

two-class heterogeneity. The bottom row projections are obtained from the top row by mean 

subtraction. Columns (a) and (b) are clean projection images of the two classes from a fixed 

viewing angle. Columns (c) and (d) are both noisy versions of column (a). The image in the 

top row of column (c) has an SNR of 0.96, but the SNR of the corresponding mean-

subtracted image is only 0.05. In column (d), the top image has an SNR of 0.19, but the 

mean-subtracted image has SNR 0.01. Note: the SNR values here are not normalized by 

N 2 /N 2 in order to illustrate the signal present in a projection image.
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Figure 8. 
Cross-sections of reconstructions of the mean, top eigenvector, and two volumes for three 

different SNR values. The top row is clean, the second row corresponds to SNRhet = 0.013 

(0.25), the third row to SNRhet = 0.003 (0.056), and the last row to SNRhet = 0.0013 (0.025). 

(a) SNRhet = 0.013(0.25) (b) SNRhet = 0.003(0.056) (c) SNRhet = 0.0013(0.025)
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Figure 9. 
Eigenvalue histograms of ΣP n xin the two-volume case for three SNR values. Note that as 

the SNR decreases, the distribution of eigenvalues associated with noise comes increasingly 

closer to the top eigenvalue that corresponds to the structural variability, and eventually the 

latter is no longer distinguishable.
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Figure 10. 
FSC curves for the mean volume, top eigenvector, and one mean-subtracted volume at the 

same three SNRs as in Figure 8. Note that the mean volume is reconstructed successfully for 

all three SNR levels. On the other hand, the top eigenvector and volume are recovered at the 

highest two SNR levels but not at the lowest SNR.
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Figure 11. 
Correlations of computed quantities with their true values for different SNRs (averaged over 

10 experiments) for the two-volume case. Note that in the two-volume case, the mean-

subtracted volume correlations are essentially the same as the eigenvector correlation (the 

only small discrepancy is that we subtract the true mean rather than the computed mean to 

obtain the former).
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Figure 12. 
Histograms of αs for two-class case. Note that (a) has a bimodal distribution corresponding 

to two heterogeneity classes, but these two distributions merge as SNR decreases. (0.002) 

and 0.003 (0.006). Note that this behavior is tied to the spectral gap (separation of top 

eigenvalues from the bulk) of ΣP n. Indeed, the disappearance of the spectral gap going from 

panel (b) to panel (c) of Figure 9 coincides with the estimated top eigenvector becoming 

uncorrelated with the truth, as reflected in Figures 10(b) and 11(a). This phase transition 

behavior is very similar to that observed in the usual high-dimensional PCA setup, described 

in section 2.3.
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Figure 13. 
Cross sections of clean and reconstructed objects for the three-class experiment. The top row 

is clean, the second row corresponds to SNRhet = 0.044 (0.3), the third row to SNRhet = 

0.0044 (0.03), and the last row to SNRhet = 0.0015 (0.01).
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Figure 14. 
Eigenvalue histograms of reconstructed covariance matrix in the three-class case for three 

SNR values. Note that the noise distribution initially engulfs the second eigenvalue, and 

eventually the top eigenvalue as well.
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Figure 15. 
FSC curves for the mean volume, top eigenvector, and one mean-subtracted volume at the 

same three SNRs as in Figure 13. Note that the mean volume is reconstructed successfully 

for all three SNR levels, and that the second eigenvector is recovered less accurately than 

the first.
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Figure 16. 
Correlations of computed means, eigenvectors, and mean-subtracted volumes with their true 

values for different SNRs (averaged over 30 experiments). Note that the mean volume is 

consistently recovered well, whereas recovery of the eigenvectors and volumes exhibits a 

phase-transition behavior.
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Figure 17. 
The coordinates αs for the three-class case, colored according to true class. The middle 

scatter plot is near the transition at which the three clusters coalesce.
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Figure 18. 
Eigenvalue histograms of covariance matrix reconstructed in continuous variation case.
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Figure 19. 
Scatter plots (with some outliers removed) of αs for high SNR values.
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