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Abstract

Heart failure is highly influenced by heritability, and nearly 100 genes link to familial 

cardiomyopathy. Despite the marked genetic diversity that underlies these complex cardiovascular 

phenotypes, several key genes and pathways have emerged. Hypertrophic cardiomyopathy is 

characterized by increased contractility and a greater energetic cost of cardiac output. Dilated 

cardiomyopathy is often triggered by mutations that disrupt the giant protein titin. The energetic 

consequences of these mutations offer molecular targets and opportunities for new drug 

development and gene correction therapies.
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Heart Failure and Cardiomyopathy

The clinical diagnosis of heart failure (HF) arises when cardiac output is insufficient to 

supply demand. Acute HF can occur from abrupt occlusion of a coronary artery, catastrophic 

valve dysfunction, malignant hypertension, or other states that provoke an urgent mismatch 

between supply and demand. Chronic HF is experienced as a slow decline in function, 

measured over years, as fatigue, breathlessness and often with evidence of end organ 

vascular insufficiency. Fluid overload and arrhythmias contribute to the HF spectrum. The 

timeline of chronic HF is punctuated by acute HF exacerbations, and the annual costs 

associated with HF exceed $30 billion US dollars (Heidenreich et al., 2013). The major costs 

are calculated in repeated hospitalizations, the need for medical and device intervention, and 

lost productivity (Dunlay et al., 2011). Because of the chronic and progressive nature of HF, 

there is opportunity to intervene at early stages.

HF is frequently accompanied by cardiomyopathy, defined as a morphologically abnormal 

heart. In vivo, echocardiography provides critical information regarding chamber 

dimensions and function, while magnetic resonance imaging also provides a more in-depth 

visualization of myocardial tissue composition (Mahrholdt et al., 2005; Rickers et al., 2005). 
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The major forms of cardiomyopathy include hypertrophic, dilated, restrictive, and 

arrhythmogenic (sometimes referred to as right ventricular) cardiomyopathy (Maron et al., 

2006). Each of these forms of cardiomyopathy has a major heritable component and genetic 

testing is now used in the evaluation of individuals with cardiomyopathy (Arndt and 

MacRae, 2014; McNally et al., 2013; Teekakirikul et al., 2013). The genes for which there is 

genetic testing are shown in Figure 1. Overall, there are nearly 100 genes linked to inherited 

forms of cardiomyopathy. More than 20 genes are implicated in hypertrophic 

cardiomyopathy (HCM) while fewer genes are linked to arrhythmogenic right ventricular 

cardiomyopathy (ARVC). Dilated cardiomyopathy (DCM) is the most genetically 

heterogeneous. The same gene may be implicated in multiple forms of cardiomyopathy, 

underscoring the importance of genomic context in the pathophysiology of disease-

associated variants. In addition to genetic causes, ischemia, toxic insult, and valvular defects 

contribute to DCM, and more than one etiology may contribute to any form of 

cardiomyopathy. Despite this heterogeneity, several essential classes of genetic mutations 

are present around which existing and novel therapies can be applied.

Genetic assessment in Cardiomyopathy

The large number of genes responsible for cardiomyopathy, as well as the myriad of diverse 

mutations within each of these genes, produces remarkable heterogeneity for this complex 

disorder. Individual cardiomyopathy-associated genetic variants are infrequent in the general 

population (< 1 in 500), and individual genetic variants associate with a range of 

expressivity causing mild and severe forms of disease. For example, deletion of arginine 14 

in phospholamban (PLN gene) was described with early onset cardiomyopathy and 

accompanying lethal arrhythmias (Haghighi et al., 2006). In one population, this same 

mutation was found in 12% of ARVC and 15% of DCM subjects (van der Zwaag et al., 

2012) and a follow up retrospective evaluation of 295 gene mutations carriers confirmed an 

earlier age of onset of both arrhythmias and cardiomyopathy (van Rijsingen et al., 2014). 

Curiously, this same mutation was described in individuals with late onset DCM without 

evidence of ventricular arrhythmias (DeWitt et al., 2006). The range of outcome with the 

same given variant is consistent with the presence of genetic and environmental factors that 

modify outcome (Arad et al., 2002; Marian, 2000) (Figure 2). Sex is a modifier of 

cardiomyopathy expression. Rare truncating mutations in TTN, the gene encoding the giant 

protein titin, are associated with more severe left ventricular (LV) dysfunction in males 

compared to females (Herman et al., 2012). Sex differences have also been described in 

hypertrophic cardiomyopathy (HCM), where males are usually more affected, and this is 

recapitulated in animal models (Geisterfer-Lowrance et al., 1996; Vikstrom et al., 1996). 

Sex differences are attributed to a number of factors including hormone levels, gene 

expression differences, and basic differences in physiology including heart size. Factors 

other than sex also influence the expression of genetic variants on the pathophysiology of 

heart disease.

Secondary or additional genetic variants also contribute to severity or progression of disease. 

In individuals with more than one mutation, there is often earlier onset and in some cases a 

more rapid progression of disease (Girolami et al., 2010; Golbus et al., 2014; Ingles et al., 

2005; Richard et al., 1999). A recent survey used whole genome sequencing of 11 unrelated 
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individuals to identify the spectrum of cardiomyopathy variants (Golbus et al., 2014). In 9 of 

11 individuals, the primary disease-causing variant was identified, usually because it 

segregated with disease. However, two cases had additional, rare, potentially pathogenic 

variation. Closer inspection of these families revealed that these secondary variants were 

segregating with a more severe phenotype, indicating that multiple rare variants may 

contribute to altered disease course within a family. Common or higher frequency variation 

also impacts the effects of underlying pathogenic variants. Recent work has revealed an 

association between severity of cardiomyopathy and mitochondrial DNA haplogroup 

(Strauss et al., 2013). Human mitochondrial DNA can be divided into groups based on 

shared genealogy. Strauss and colleagues studied a large Mennonite family with autosomal 

recessive myopathy and cardiomyopathy caused by a frameshift mutation in the gene coding 

for adenine nucleotide translocator-1. The authors found considerable variability in the 

progression and severity of the cardiac phenotype that segregated with the maternal lineage. 

Sequencing showed segregation of two mitochondrial haplogroups, one of which conferred 

more severe cardiomyopathy (Strauss et al., 2013).

These data underscore how the expressivity and penetrance of specific cardiomyopathy gene 

variants varies widely (Hershberger et al., 2013). In silico algorithms score pathogenicity on 

numeric scales, relying on conservation data and less so on structural information (Ritchie 

and Flicek, 2014). Based on segregation with clinical phenotype, more highly penetrant 

mutations have been described, but even highly penetrant mutations may require the context 

of specific genetic backgrounds or ethnicities to fully manifest, and this “background effect” 

has been modeled in mice (Semsarian et al., 2001; Suzuki et al., 2002; Wheeler et al., 2009). 

With the emergence of sequence data from large numbers of ethnically diverse humans, it 

has become clear that “pathogenic” variation is found at a higher than expected rate. 

Specifically, previously described pathogenic mutations are present at a frequency higher 

than the prevalence of cardiomyopathy (Andreasen et al., 2013; Golbus et al., 2012; Pan et 

al., 2012). Not all genetic variants induce the same degree of cardiac dysfunction and, for 

primary mutation and secondary modifiers there are “mild” and “severe” mutations. 

Determining the expressivity of given mutations is challenging and computational 

algorithms, however imperfect, are emerging now serve as an adjunct to interpreting the 

pathogenicity of cardiomyopathy mutations. Genetic variation remains a strong predictor of 

risk for developing cardiomyopathy, particularly within families where a primary gene 

mutation has been identified.

Recent work has focused on reclassifying the potential pathogenicity of variants based on 

frequency in the population at large, with higher frequency variants considered less 

pathogenic (MacArthur et al., 2014). This methodology assumes that pathogenic alleles will 

be found in a frequency in the population less than or equal to the disease prevalence and 

assumes that individual variants are sufficient to cause disease. Studies of penetrance and 

expressivity indicate that the entire genomic context as well as the environment, dictate the 

role of particular variants (Hershberger et al., 2013). Pathogenicity of particular variants 

must be considered within the phenotype context, as many cardiomyopathic genetic variants 

are necessary but not sufficient to cause disease. Most large human genetic datasets include 

individuals who have not been specifically evaluated for subtle signs of cardiomyopathy 

and/or individuals who are too young to have yet developed disease. Similarly, it is expected 
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that additional genetic and environmental stimuli are necessary to express the full phenotype 

of cardiomyopathy and heart failure. In addition to these secondary genetic and 

environmental modifiers, epigenetic influences may markedly alter the expression of mutant 

alleles or alternative genetic pathways that diminish or enhance pathogenicity. As sparks do 

not cause fire in the absence of oxygen, cardiomyopathy mutations require context to fully 

manifest. Variants are only pathogenic in a larger context that includes both the susceptible 

genetic and environmental conditions (Figure 2). Exploring and defining the genetic and 

environment stimuli necessary for cardiomyopathy expression is critical, as these modifiers 

influence outcome and are targets for intervention.

Hypertrophic Cardiomyopathy and thick filament gene mutations

Hypertrophic cardiomyopathy (HCM) is estimated at 1:500 in younger individuals and is 

enriched in families. This estimate derives from a population-based survey of individuals 

23-35 years of age (Maron et al., 1995). Given the broad age range of HCM and the 

appreciation that some genetic mutations have later onset, the overall population prevalence 

is higher. An Olmstead County study conducted in 1985 identified a similar prevalence for 

HCM (19.7 per 100,000) and a higher prevalence for DCM (36.5 per 100,000). This study 

and the previous rely on older methods of detection, and as such likely underestimate the 

prevalence of HCM. Hypertrophy of the ventricular myocardium arises in response to 

physiological stimuli, such as exercise, and pathological stimuli such as hypertension or 

aortic stenosis. In genetic HCM, autosomal dominant mutations in the MYH7 and MYBPC3 

genes account for nearly 80% of inherited HCM (Kensler et al., 2011). These genes encode 

the sarcomere thick filament proteins-myosin heavy chain (MYH7) and cardiac myosin 

binding protein-C (cMyBP-C). Although they are both highly associated with HCM, the 

mechanisms of the HCM-causing mutations in these two genes differ. The majority of 

pathogenic variants in MYH7 that cause HCM result in amino acid substitutions in critical 

residues and domains that adversely affect function. In contrast, the majority of pathogenic 

HCM-causing MYBPC3 variants are premature stop codons or frame shifting mutations, 

frequently resulting in absence of protein. MYBPC3 are thought to have a milder disease 

course with later onset then mutations in MYH7 (Charron et al., 1998; Maron et al., 2001), 

which may be attributed to the difference in pathogenic mechanism between mutations in 

these genes.

MYH7 encodes myosin heavy chain ( MHC), the thick filament protein responsible for 

hydrolyzing ATP to produce force. Myosin can be divided into the globular head domain 

and its coiled-coil rod domain. The myosin head is attached to an arm that articulates away 

from the rod region on a flexible hinge to extend into the interfilament space (Figure 3). The 

rod domain mediates the formation of the thick filament with its characteristic periodicity 

(Moore et al., 2012). Mutations in MYH7 have been identified in all regions of the protein, 

with more mutations concentrating in the ATPase domain, actin binding domain, and 

domains responsible for force transmission (Walsh et al., 2010). Although occurring at 

lower frequency, mutations in the rod domain have also been linked to HCM (Blair et al., 

2002). Modeling MYH7 mutations has been achieved using materials from human tissues, in 

vitro or cell-based expression, or genetic engineering in mice. Each of these methods has 

limitations and the results from distinct approaches have not always produced consistent 
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findings. Mice, like other small mammals, express α-MHC as the major cardiac myosin 

(encoded by MYH6), rather than MHC like the larger human heart. MHC, while similar in 

overall structure to MHC, has an intrinsically faster rate of ATP hydrolysis and contractile 

kinetics (Korte et al., 2005). The intrinsic capabilities of α-MHC versus β-MHC can lead to 

the same mutation demonstrating different biophysical characteristics (Lowey et al., 2008).

There are hundreds of distinct missense MYH7 mutations responsible for HCM, and a clear 

unifying hypothesis has been elusive. Clinically, HCM is often characterized by a 

hyperdynamic state in which there is an increase in left ventricular ejection fraction from 

60% to 70% or more. For example, the R453C MYH7 HCM mutation displays an impaired 

catalytic cycle of ATP hydrolysis despite few biochemical alterations in the ATPase domain, 

and this mutation counter-intuitively results in increased contractility (Bloemink et al., 2014; 

Sommese et al., 2013). Increasing evidence suggests that HCM mutations in MYH7 cause 

increased energy usage due to a less efficient myosin motor and that this energetic mismatch 

results in perturbed metabolic state (Crilley et al., 2003). As one indication of this energetic 

mismatch, reduced phospho-creatine levels (PCr) have been observed using 31P NMR 

spectroscopy of animal models of HCM and materials from human HCM patients (Ingwall, 

2014; Witjas-Paalberends et al., 2014a; Witjas-Paalberends et al., 2014b). Human hearts 

expressing the MYH7 R403Q mutation generate increased tension and faster actin sliding 

velocities, but at a higher energetic cost (Alpert et al., 2005). Mice engineered with the 

R403Q HCM-associated mutation had reduced rate of relaxation and increased end diastolic 

pressure after inotropic stimulation (Tyska et al., 2000). A similar decrease in PCr and 

increased ADP was seen in these hearts, consistent with a higher energetic cost of 

contraction (Spindler et al., 1998).

In addition to MYH7 missense mutations in HCM, MYH7 missense variants are also found in 

DCM. DCM-associated MYH7 missense mutations have been modeled in mice, albeit in the 

context of Myh6. However, these mutations show an increased tension cost, with more ATP 

required for a given amount of shortening, depressed actin sliding velocities and gross 

dilation (Schmitt et al., 2006). In contrast to the hypercontractile HCM mutations, DCM 

mutations when modeled in expressed myosin, cause a hypocontractile state and quickly 

lead to HF (Bloemink et al., 2014; Sommese et al., 2013).

The second major thick filament protein implicated in HCM is MYBPC3, which encodes 

cardiac myosin binding protein C (cMyBP-C). MYPBC3 and MYH7 mutations are at nearly 

equal frequency in HCM cohorts, each representing approximately 40% of identified 

mutations. In contrast to MYH7 HCM mutations, which are mainly nonsynonymous single 

nucleotide polymorphisms (nsSNPs), MYBPC3 mutations more commonly disrupt the 

reading frame. By disrupting the carboxyl-terminus of cMybp-C, these mutations alter the 

myosin and titin binding sites and disallow mutant cMyBP-C incorporation in the 

sarcomere. cMyBP-C is incorporated into the thick filament through direct binding of its 

carboxy-terminus to the myosin rod and also to the giant protein titin (Freiburg and Gautel, 

1996; Gilbert et al., 1996). cMyBP-C includes eight immunoglobulin (Ig) domains along its 

length with three fibronectin (Fn) domains towards its carboxy-terminus. cMyBP-C extends 

transversely into the interfilament space where its amino-terminal region interacts with the 

myosin S2 region and actin in a phosphorylation-dependent manner (Barefield and 
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Sadayappan, 2010; Bezold et al., 2013; Kunst et al., 2000). The phosphorylation state of 

three serine residues mediate cMyBP-C’s ability to regulate cross-bridge cycling, and 

dysregulation of these residues results in cardiomyopathy (Sadayappan et al., 2005; 

Sadayappan et al., 2006). Recent work has clearly defined the role of cMyBP-C as a 

“molecular brake” on myosin cross-bridge cycling, resulting in slowing of actin sliding 

velocities while in a dephosphorylated state (Previs et al., 2012). However, phosphorylation 

of cMyBP-C by various upstream pathways, notably PKA, reduces the inhibitory effect of 

cMyBP-C in a graded manner, with phosphorylation of additional sites providing additional 

relief of myosin inhibition, allowing throttling of this effect (Weith et al., 2012a; Weith et 

al., 2012b). In addition, it has been recently shown that cMyBP-C’s interaction with actin 

displaces α-tropomyosin, thus modifying thin-filament activation (Mun et al., 2014)

Oxidative modifications, often accompanying pathological remodeling of the heart, have 

been reported having detrimental effects on cMybp-C and sarcomere function. Using a 

hypertensive mouse model demonstrating diastolic dysfunction prior to hypertrophic 

remodeling, cMyBP-C was determined to be glutathionylated at three cysteine residues 

(Patel et al., 2013). This oxidative modification resulted in increased myofilament calcium 

sensitivity in isolated myofilaments. Treatment with tetrahydrobiopterin prevented cMy-BP-

C glutathionylation and improved relaxation kinetics and diastolic dysfunction (Jeong et al., 

2013). While additional work is required to determine whether these channels are wholly 

mediated by cMyBP-C oxidation, the possibility of treatment prior to the onset of 

hypertrophy with anti-oxidant agents warrants further investigation.

With these data, it is now clear that cMyBP-C regulates contractility and alters sarcomere 

energetics. HCM-associated MYBPC3 mutations, especially those that reduce the amount of 

cMyBP-C, promote a loss of cross-bridge cycling inhibition. The loss of cMyBP-C 

regulation has been shown to decrease maximal force development in samples of human 

tissue from mutation carriers (van Dijk et al., 2014) and in mouse models of disease 

(Barefield et al., 2014a; Harris et al., 2002). However, these MYBPC3 mutations have been 

shown to increase the energetic cost of contraction similar to MYH7 mutations (Witjas-

Paalberends et al., 2014b). Whether MYBPC3 mutations act by haploinsufficiency or 

dominant negative activity has been examined, and evidence for truncated cMyBP-C protein 

has been lacking (Marston et al., 2009). Thus, MYBPC3 mutations appear to act mainly by 

reducing protein content (Barefield et al., 2014b; van Dijk et al., 2009). Treatment has 

therefore focused on restoring protein levels through gene therapy, with some notable recent 

success in a mouse model (Mearini et al., 2014).

In South Asian populations, it is estimated that 4% of the population carries a 25 bp deletion 

in intron 32 of MYBPC3 (Dhandapany et al., 2009). This variant increases the risk for heart 

failure and cardiomyopathy. This deletion induces skipping of the downstream exon near the 

3’ end of MYBPC3. The true prevalence throughout South Asia has been estimated to be 

lower, but larger population samples are likely needed (Simonson et al., 2010). This deletion 

has also been linked to increased left ventricular dysfunction after myocardial infarction 

(Srivastava et al., 2011) consistent with this variant increasing susceptibility to heart failure, 

especially in combination with other cardiac insults. Rare instances of individuals with two 

mutant alleles of MYBPC3 and early onset lethal disease have been described, and often 
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associate with the feature of noncompaction (Dellefave et al., 2009; Lekanne Deprez et al., 

2006; Schaefer et al., 2014; Wessels et al., 2014). There is an emerging view that HCM can 

be subdivided into “sarcomere” vs “nonsarcomere”, and that pathophysiology and outcome 

are different between these groups (Olivotto et al., 2008; Olivotto et al., 2011)

The thin filament

Cross-bridge formation between myosin heads and actin filaments is largely regulated by the 

proteins of the thin filament. The thin filament is composed of actin, tropomyosin, the 

troponin complex including troponin T (the tropomyosin binding subunit), troponin I (the 

inhibitory subunit) and troponin C (the Ca2+ binding subunit). Titin and other Z-disk related 

proteins also contribute to this regulation. Regulation of cross-bridge formation depends on 

the Ca2+ and ATP availability and the conformation of the troponin-tropomyosin complex 

on the actin filament (Lehman et al., 2000). The complex exists in three states each of which 

determines the extent of actin and myosin interaction (McKillop and Geeves, 1993). HCM-

causing mutations have been identified in each of these components and whether these 

proteins exert their effect through changing sarcomere energetics and the cost of contraction 

has been suggested (Tardiff, 2011).

Recently, Moore and colleagues examined the tropomyosin-binding region of cardiac 

troponin T, a region that harbors severe and phenotypically diverse HCM mutations (Moore 

et al., 2014). In vitro motility assays showed that specific mutations in cardiac troponin T 

disrupted weak electrostatic interactions between the thin filament and myosin. 

Complementary in vivo data indicates that these same mutations cause cardiac remodeling 

and disarray of the myofiber, suggesting that the weak cross-bridge formation causes 

destabilization of the myofilament structure ultimately resulting in disease (Moore et al., 

2014).

Titin, the third filament, a gene for DCM

The giant protein titin is necessary for the passive forces that maintain sarcomere integrity, 

and these passive forces play a critical role in left ventricular mechanics, especially filling 

during diastole. Titin is the largest known protein and spans half the sarcomere from Z-disk 

to M-line (Furst et al., 1988). Adjacent to the M-line titin contains a titin kinase domain 

(TK) (Gautel, 2011). The A-band portion of titin is composed of both Ig and fibronectin 

domains (Labeit et al., 1992). The I-band portion is composed of two “spring-like” domains 

in cardiac muscle; the N2B, and PEVK along with tandem immunoglobulin (Ig) segment. 

These “spring-like” domains are responsible for passive force during sarcomere stretch 

(reviewed in (Anderson and Granzier, 2012)).

Several mouse models have been created to dissect titin’s role in the sarcomere. Lee and 

colleagues deleted the region of TTN encoding its N2B region, and found that passive 

tension was elevated triggering an increase in calcium sensitivity at long sarcomere length 

(Lee et al., 2010). Increases in calcium sensitivity result in increased length-dependent 

activation, indicating that passive-tension induced by titin is a factor in the Frank-Starling 

mechanism of the heart (Katz, 2002). In further support of the idea that increased titin-

induced passive tension results in increased length-dependent activation, N2B deleted mice 

McNally et al. Page 7

Cell Metab. Author manuscript; available in PMC 2016 February 03.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



have higher LV diastolic stiffness and diastolic dysfunction (Lee et al., 2010). Truncation of 

the PEVK region, another spring-like element, also exhibited increased passive tension 

along with diastolic dysfunction (Granzier et al., 2009). A mouse lacking the tandem Ig 

segment showed similar physiology (Chung et al., 2013). Disrupting the I-band/A-band 

junction of titin also increased strain of the spring regions of the I-band and caused diastolic 

dysfunction in the mice (Granzier et al., 2014). Currently, mouse models specifically lacking 

the A-band region of titin are lacking. However, a recent study has shown that the A-band of 

titin is not required for thick filament assembly in zebrafish (Myhre et al., 2014). These 

zebrafish have a truncated TTN, lacking the C-terminal, A-band associated rod domain. The 

zebrafish form normal muscle with grossly normal thick and thin filament assembly, and 

only after embryonic development does the sarcomere break down, consistent with TTN 

having a role in sarcomere maintenance (Myhre et al., 2014). The zebrafish also display 

reduced heartbeat and cardiac edema, consistent with cardiac dysfunction.

TTN has recently been identified as a major cardiomyopathy gene in humans (Herman et al., 

2012). Herman et al. captured and sequenced the 360 exons of TTN in large cohorts of more 

than 300 DCM and 200 HCM subjects as well as a control group with normal heart function. 

They identified a large number of missense mutations in TTN, even in the control 

population, making these variants difficult to interpret. Instead, they focused on truncating 

variants that created frameshifts, stops and splice site alterations. Approximately 25% of 

DCM patients had a truncating variant in TTN, while only 1% of HCM and 3% of the 

control population had truncating variants, making TTN mutations the most common genetic 

source of DCM to date. Truncating variants identified in the DCM cohort disproportionately 

occurred in the A-band region of TTN (Herman et al., 2012). A recent study supports that 

DCM-associated TTN truncating variants fall into the A band of titin (Roberts et al., 2015). 

Furthermore, the truncating variants in the general population fall into TTN isoforms 

expressed at much lower levels in the heart.

Implications for gene-based therapy and drug development

Gene-based correction is now possible by targeting RNA using reduction strategies and 

other methods that “bypass” mutations, creating internally truncated proteins. For dominant 

diseases, especially in MYH7, targeting the mutant allele with RNAi is possible in a 

mutation specific manner (Jiang et al., 2013). Developing individualized treatment plans 

with mutation-specific sequences may be cumbersome and require unique validation 

methods. As an alternative, it is possible to target more common variation, present on the 

mutant but not normal allele. In this manner, sequences could be developed to treat larger 

numbers of patients and providing a more feasible regulatory approval pathway. The degree 

to which the mutant allele must be reduced can be guided by data from human hearts, where 

the expression of mutant proteins is often less than 50% (Helms et al., 2014). Genetic 

“bypass” methods are also being developed, and these methods manipulate RNA using anti-

sense sequences to induce alternative splicing to avoid the mutation. This approach, referred 

to as exon skipping, takes advantage of naturally occurring splice forms or creates newly 

engineered, internally truncated proteins (Veltrop and Aartsma-Rus, 2014). As long as there 

is physiological evidence that such internally truncated proteins can compensate, these 

approaches may be useful for some genes linked to cardiomyopathy. Complete functional 
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restoration may not be needed, as even partial improvement may be sufficient to improve 

phenotype. Given the structural data available on β-MHC, it is unlikely that internal 

truncation methods are suitable for MYH7 gene mutations. However, for proteins such as 

titin that are composed of repetitive domains, internal truncations may be a viable alternative 

(Freiburg et al., 2000). Newer DNA-based gene editing methods are an active area of 

research, currently being tested in cell-based models (Li et al., 2014; Xie et al., 2014). These 

methods have been employed to correct muscle disease in the mdx mouse model (Long et 

al., 2014), and are currently being tested in cardiomyopathy models.

The energetic and metabolic deficits in heart failure offer opportunities for small molecule 

based therapy. Modulating contractility can occur by either blunting hypercontractile states, 

or by using positive inotropic agents to improve deficits in contractility. A recent potential 

therapeutic for reduced cardiac performance is omecamtiv mecarbil, which directly activates 

MHC through enhancement of contractility, and with a corresponding improvement in 

cardiac output (Cleland et al., 2011; Malik et al., 2011). Identifying targets that regulate the 

cardiomyocyte metabolic state has also shown some promising preliminary results. Modest 

improvements in the HCM phenotype were observed in a mouse model carrying a MYBPC3 

mutation following the application of perhexiline, a molecule that targets mitochondrial 

palmitoyltransferase-1, altering metabolic substrate usage from fatty acid oxidation to 

glycolysis (Gehmlich et al., 2014). However, more work remains to be done to evaluate the 

efficacy of altering metabolic substrate usage. The differences between the mouse and 

human hearts, reflected by their difference MHC usage, will likely mandate that these 

approaches be validated in larger mammalian hearts.

Conclusions

The genetic complexity underlying cardiomyopathy is challenging the concept of “single 

gene disorders”. The number of genes and individual mutations is greater than had been 

expected, and it has only been through the availability of next generation sequencing that 

such genetic diversity has been appreciated. While this genetic landscape is daunting in 

scope and breadth, key themes have emerged. HCM, with its distinct phenotype, is largely 

linked to two key thick filament proteins. A wealth of data supports an energetically 

inefficient myocardium in HCM. DCM, while more genetically heterogeneous than HCM, 

has one major gene, TTN, which now begins to focus the etiology of a sizable subset of 

disease. With improved DNA sequencing, it is now possible to identify combinations of 

genetic mutations that contribute to cardiomyopathy. HCM can now be subdivided into 

sarcomere and non-sarcomere HCM with clinically meaningful differences in physiology, 

and the same classification will develop for DCM. A better understanding of the molecular 

subtypes of cardiomyopathy will help more precisely apply existing and evolving therapies.
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Figure 1. 
Shown are the genes that have been linked to human inherited cardiomyopathy. Those genes 

responsible for HCM (pink) and DCM (blue). There are a number of genes that cause both 

HCM and DCM (purple). Mutations in genes encoding desmosomal and other proteins cause 

Arrhythmogenic Right Ventricular Cardiomyopathy (ARVC, green) and there is overlap 

between mutations in these genes that lead to other forms of cardiomyopathy.
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Figure 2. 
Familial studies for inherited cardiomyopathy often demonstrate a primary pathogenic 

variant, and pathogenic variants differ in their effect on phenotypic outcome. Each genome 

contains many additional variants that serve to modify the expression of the primary 

pathogenic variant. These secondary modifers may be common or rare in the population. In 

addition to these genetic modifiers, comorbidities, environmental factors, and sex modulate 

the expression of cardiomyopathy. The manifestation of cardiomyopathy varies over the 

lifetime of the individual. Those mutations, or combinations of mutations, with the most 

potent effect on phenotype manifest earlier in life. Milder mutations may not express until 

later in life or may remain subclinical throughout the lifetime of the individual. (Dilated, 

DCM; hypertrophic HCM; arr right ventricular, ARVC).
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Figure 3. 
Myosin heads protrude from the thick filaments (green) to interact with actin containing thin 

filaments (yellow). Multiple sites throughout the sarcomere and cardiomyocyte are now the 

targets for new drug development for heart failure (Red stars). 1. Small molecules like 

omecamtiv are aimed at myosin ATPase activity to increase or decrease contractility. 2. 

Antisense or RNAi approaches are being tested to silence mutant alleles but not normal 

alleles. 3. cMyBP-C phosphorylation can be modified through kinase/phosphatases to 

modulate its “brake effect” on cross-bridge cycling. 4. Calcium handing in the sarcoplasmic 

reticulum is a target in development. 5. Palmitoyltransferase-1 can be altered using 

perhexiline to shift metabolic substrate usage from fatty acid oxidation to glycolysis. 6. The 

regulation of nitric oxide synthase can be used to change cellular redox state and prevent 

glutathionylation and dysregulation of myofilament proteins.
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