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Abstract

Neurocognitive deficits associated with impairments in various brain regions and neural
circuitries, particularly involving frontal lobes, have been associated with chronic alcoholism, as
well as with a predisposition to develop alcohol use and related disorders (AUDs). AUD is a
multifactorial disorder caused by complex interactions between behavioral, genetic, and
environmental liabilities. Neuroelectrophysiological techniques are instrumental in understanding
brain and behavior relationships and have also proved very useful in evaluating the genetic
diathesis of alcoholism. This chapter describes findings from neuroelectrophysiological measures
(electroencephalogram, event-related potentials, and event-related oscillations) related to acute
and chronic effects of alcohol on the brain and those that reflect underlying deficits related to a
predisposition to develop AUDs and related disorders. The utility of these measures as effective
endophenotypes to identify and understand genes associated with brain electrophysiology,
cognitive networks, and AUDs has also been discussed.
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INTRODUCTION

The literature is replete with compelling evidence of brain dysfunction in chronic alcoholics
as well as their high-risk offspring from neuropsychological, neuroimaging,
neuropathological and neurophysiological techniques; in particular frontal lobe changes
have been highlighted (Moselhy et al., 2001; Zahr et al., 2010, 2011). Neuroimaging
methods, such as structural/functional magnetic resonance imaging (MRI) and positron
emission tomography, (PET) have certain advantages that include excellent spatial
resolution; yet they offer relatively poor temporal resolution compared to
electrophysiological methods that evaluate brain function in the millisecond range (Celesia
and Brigell, 1992; Krieger et al., 1995). Neuroelectrophysiological techniques have further
advantages of being non-invasive and relatively inexpensive to implement.
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Electrophysiology has provided several excellent measures of acute and chronic effects of
alcohol on the brain. While it was assumed that these aberrant characteristics in alcoholics
were solely due to the neurotoxic effects of alcohol on the brain, the evidence indicates that
some neuroelectrophysiological characteristics reflect predispositions that antecede the
development of alcoholism and related disorders.

Alcoholism is a complex neuropsychiatric condition with a multifactorial etiology that
warrants the use of diverse neurobiological methods. This disorder not only involves effects
of alcohol on brain structures but also subsequent alteration in brain electrophysiology
potentiated by the addiction cycle. Alcoholism or alcohol use disorder (AUD) is a common
familial disorder with increased risk among biological relatives of alcoholics (Goodwin et
al., 1973; Cadoret et al., 1980; Bohman et al., 1987; Prescott, 2001). Family, twin, and
adoption studies that highlight genetic contributions to AUDs suggest that both genders are
equally vulnerable (Heath et al., 1997; Prescott et al., 1999). Yet AUDs may not be a
specific disease but part of a spectrum of co-occurring disinhibitory disorders with
overlapping genetic factors and shared underlying risk factors (Krueger et al., 2002; Kendler
et al., 2003) and differential expression (Hicks et al., 2004). Thus, these behavioral
phenomena — antisocial, impulsive traits, substance use disorders (SUDs), are variable
expressions of a disinhibitory complex (Gorenstein and Newman, 1980) with AUD as one
possible outcome in this spectrum. Understanding addictive behavior is complex and
involves interactions among behavioral, environmental, and genetic factors;
neuroelectrophysiological techniques allow dissection of some of these issues and provide
hope for finding useful intervention loci.

Ongoing brain activity that comprises action potentials and graded potentials like IPSP
(inhibitory post synaptic potentials) and EPSP (excitatory post synaptic potentials) generated
by a dynamically regulated collection of synapses on excitatory and inhibitory cells results
in an ensemble field of electric activity that can be recorded non-invasively using scalp
electrodes. Since the first recorded human electroencephalogram (EEG), pioneered in 1924
by Hans Berger (1873-1941) (Haas, 2003), digitization methods have revolutionized EEG
acquisition, generating new methods of analysis. Three general approaches can be used to
record and analyze these neuroelectric phenomena: (1) continuous EEG; (2) event-related
potentials (ERPs); and (3) event-related oscillations (EROs).

CONTINUOUS ELECTROENCEPHALOGRAM

Continuous EEG records brain activity when the subject is at rest or in relaxed wakefulness.
Resting-state EEG is primarily analyzed in the frequency domain, as no specific periodicity
can be imposed using fast Fourier transform-based methods. Traditionally, EEG is
decomposed into the following frequency bands: delta (0-3 Hz), theta (4—7 Hz), alpha (8-12
Hz), beta (13-28 Hz), and gamma (>29 Hz), and each band reflects different types of brain
activity. Variations in relative power of these specific frequency bands can indicate level of
consciousness, psychological state, or presence of neurological disorders (Nunez, 1995;
Niedermayer and Lopes Da Silva, 1999). Resting theta rhythm has its maximum power in
the posterior scalp region but is not prevalent in the normal adult waking EEG. Alpha band
is a posterior dominant rhythm that emerges with closing of the eyes and relaxation and
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attenuates with eye opening or mental exertion. Hence, it is described as an index of relaxed
wakefulness. Alpha is slower in young children (closer to theta frequency) and increases
with age into high alpha frequencies and is a key feature of EEG maturation (Niedermayer
and Lopes Da Silva, 1999); alpha power is stable throughout adult life. Beta rhythm is
present all over the scalp but predominantly at frontocentral loci and is enhanced in response
to certain barbiturates, sedatives, and tranquilizers.

EVENT-RELATED POTENTIALS

Event-related potentials (ERPs) are averaged scalp EEG responses time-locked to specific
events in a sensory, motor, or cognitive task. The averaged responses or waveforms are
composed of characteristic negative and positive deflections (i.e., components). They reflect
the summated activity of network ensembles active during the various processes involved in
the task (Luck, 2005). Time domain analysis compares the amplitudes and latencies of these
sequential peaks and troughs. Early components with a latency of less than 100 milliseconds
reflect sensory processes, followed by early components that are associated with attention
processes, while later components reflect higher associative processes. See Figure 23.1 (top
panel) for illustration of various ERP components. Most early studies used “oddball”
paradigms and focused on the P3 or P300 component related to stimulus significance.
Amplitude of P3 is taken to reflect central nervous system (CNS) inhibition (the larger the
P3, the more the inhibition) (Birbaumer et al., 1990). While the P3 component, particularly
in the oddball paradigm, is most widely used to study alcohol, more recent studies have
focused on various other ERP components and cognitive tasks. This review is restricted to
the examination of those ERP components that have proved most significant in the study of
alcoholism and they are described in later sections.

EVENT-RELATED OSCILLATIONS

Event-related oscillations (EROs) are embedded in continuous scalp-recorded EEG activity
acquired during cognitive tasks. A substantial literature indicates that some ERP features
arise from changes in dynamics of ongoing EEG rhythms/oscillations of different frequency
bands that reflect ongoing sensory and/or cognitive processes (see Figure 23.1 (bottom) for
illustration of EROs during P3 response to targets in oddball task). While EROs may be
partitioned into the same frequency bands as spontaneous resting EEG (e.g., delta, theta,
alpha, beta, gamma), they are functionally different from spontaneous rhythms (Klimesch et
al., 2007). Specific frequency oscillatory responses have been attributed to underlie various
cognitive processes, as follows: delta: signal detection and decision making; theta: conscious
awareness, recognition memory, and episodic retrieval; slow alpha: attribution of attentional
resources; fast alpha: semantic memory and stimulus processing; beta and gamma: sensory
integrative processes (Basar, 1999). Newer time by frequency transformations such as S-
transform (Stockwell et al., 1996) or other wavelet-type analyses provide a time-based
decomposition of the EEG signal associated with an event (van Vugt et al., 2007), and
generate amplitude/power measures and phase information. EROs influence the timing of
neural activity and coordinate synchronous activity in groups of active neurons (Fries,
2005). Synchronization of oscillations underlie self-organization of neural networks and are
important indices of maturity and efficiency of these networks, providing an energy-efficient
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mechanism for coordination of distributed neural activity (Buzsaki and Draguhn, 2004).
Phase relationships between signals from different brain regions provide a measure of
temporal interactions between transient active cognitive networks; hence phase synchrony
can be considered as an index of “crosstalk” or communication in the brain (Sauseng and
Klimesch, 2008; Uhlhaas et al., 2010) and aids in the study of functional connectivity. High-
frequency (i.e., beta and gamma) EROs are implicated in short-range communication,
whereas low-frequency (i.e., delta, theta, and alpha) EROs are involved in longer-range
communication between brain areas (von Stein and Sarnthein, 2000).

Advances in analytical techniques that adapt new mathematical methods have aided the
study of complex cognitive processes and neural communication in normal (Hummel and
Gerloff, 2005; Chen et al., 2008b; Chorlian et al., 2009) as well as pathological conditions
(Uhlhaas and Singer, 2006). Important state-of-the-art analysis tools based on mathematical
approaches include: (1) phase synchrony in oscillations (Varela et al., 2001); and (2)
methods of source localization (e.g., SLORETA (low-resolution brain electromagnetic
tomography) which solves the “inverse problem” to generate anatomically constrained
solutions of active sources within the brain that underlie the event-related scalp activity
(Pascual-Marqui, 2002). The ERP and ERO analyses are supplemented by source
localization techniques to infer anatomical substrates and have been successfully used to
study several psychiatric disorders including AUDs (Coutin-Churchman and Moreno, 2008;
Holmes and Pizzagalli, 2008; Kamarajan et al., 2010; Itoh et al., 2011; Pandey et al., 2012).
Hence, these tools are instrumental in translating and comparing findings from
electrophysiological studies with those from imaging methodologies, or using them in
conjunction with each other, to create a multimodal approach.

This review will focus on the effects of alcohol on brain function using non-invasive
electrophysiological techniques described above (EEG, ERP, ERO), and will be restricted to
measures that have proved most significant for the study of AUDs; it will be divided into
four main sections: The first will examine the effects of acute doses of alcohol on brain
function in social drinkers, and will include studies comparing those with a family history of
alcoholism to those without a family history. The second section will address the newer
studies dealing with the effects of binge drinking on brain function. The third section will
review studies on chronic effects of alcohol on brain function, and will try and tease apart
electrophysiological indices of brain dysfunction that antecede the development of AUDs
from those that are a consequence of AUDs. The fourth section will discuss the use of these
electrophysiological measures as endophenotypes for the development of AUDs and will
review results with specific genes that have been identified with these methods.

ACUTE EFFECTS OF ALCOHOL ON THE BRAIN IN SOCIAL DRINKERS

The focus of alcohol challenge studies has been to investigate the effects of alcohol on
normal brain function, as assessed by various electrophysiological measures obtained at rest,
and while engaged in sensory or cognitive tasks. These studies have also been very useful in
examining whether naive offspring of alcoholics who are at high risk (HR) respond
differently to alcohol than offspring of non-alcoholics at low risk (LR), revealing an
underlying neural liability with exposure to alcohol. No differences have been reported

Handb Clin Neurol. Author manuscript; available in PMC 2015 February 17.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

RANGASWAMY and PORJESZ Page 5

between HR and LR subjects in the uptake and clearance of alcohol in the blood on the
blood alcohol curve (Newlin and Thomson, 1990). Past and current longitudinal studies
have shown that a low level of response to alcohol predicted later heavier drinking and
mediated a disposition for developing AUDs (Schuckit, 1994; Volavka et al., 1996; Trim et
al., 2009). A meta-analysis suggests that a diminished response to alcohol is more frequently
seen in family history-positive (FHP)/HR compared with family history-negative (FHN)/LR
subjects (Pollock, 1992), but not all studies concur (see Newlin and Thomson, 1990, for
review).

Acute effects of alcohol on EEG

The prominent effects of low doses of alcohol include increases in slow alpha activity or
lowering of alpha peak frequency, while moderate doses show increases in slow alpha and
theta bands (Ehlers et al., 2004). The effects of alcohol on beta band are more equivocal.
Decreases in beta peak frequency (Ehlers et al., 1989) and increases in beta power have been
reported (Ehlers and Schuckit, 1990; Stenberg et al., 1994); increased beta is also associated
with moderate drinking (Ehlers and Schuckit, 1990). While changes in these frequency
bands were marked at both posterior and frontal scalp loci, the alpha increase was very
prominent in anterior regions (Ehlers et al., 1989). It has been proposed that acute ethanol
administration disrupts the nonlinear structure of EEG oscillations, thus increasing
randomness (Ehlers et al., 1998b). The effects of alcohol on the EEG of subjects at risk for
developing alcoholism as determined by spectral analysis methods are well known (Table
23.1). FHP individuals have shown greater increases than FHN in alpha (Pollock et al.,
1983; Cohen et al., 1993a) and greater decreases of fast alpha after alcohol administration
(Pollock et al., 1983). Alpha activity has also been positively associated with desire to drink
in FHP before and after consumption (Kaplan et al., 1988), and beta power increases are
also prominent (Ehlers and Schuckit, 1990).

Differences in EEG response to alcohol may have ethnic variations; Hispanic FHP young
adults had decreased fast alpha while non-Hispanic adults showed an increase in the same
band. Fast alpha (9-12 Hz) power at baseline was also found to be negatively associated
with level of response to alcohol, with increased EEG alpha power at baseline being
predictive of a less intense response to alcohol (Ehlers et al., 2004). An early prospective
study (Volavka et al., 1996) showed that, in high-risk men, a diminished alpha-frequency
EEG response to alcohol was related to the development of alcohol dependence 10 years
later.

Newer studies using a multimodal approach, transcranial magnetic stimulation along with
EEG, have shown a strong effect of ethanol on cortical connectivity especially over right
frontal and also on left parietal areas (Kahkonen et al., 2001). In a recent interesting
experiment that measured alcohol effects in real-world situations — a cocktail party and
being in a driving simulator — an equation combining the beta and theta power was shown to
be very successful in classifying alcohol and placebo, and the EEG score was significantly
related to breath alcohol content (Gevins et al., 2012).

In summary, alcohol challenge studies in HR and LR subjects uncover a reactive alpha
system. A tendency of slowing of peak frequency within reactive bands and reduced
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nonlinearity of EEG postethanol is suggestive of a widespread synchronization of neuronal
substrates, especially since low frequencies are proposed to be involved in long-range
synchronizations in the brain (von Stein and Sarnthein, 2000). Both slow (theta and slow
alpha) and fast (beta) frequencies appear to be affected postethanol and this is indicative of a
modulation in thalamocortical networks. In their model, Llinas and colleagues (1999) have
proposed that the enhanced low-frequency (theta) oscillations in the thalamocortical module
can affect the lateral inhibitory drive in the cortex and eventually result in high-frequency
coherent activation of cortical modules. Stenberg et al. (1994) also observed that a possible
harmonic relationship may exist between the theta and beta bands affected in their study and
speculated the presence of related or even same oscillators underlying the ethanol effect on
EEG. Hence, these findings provide a strong lead for examining the neurophysiologic and
neurochemical bases of vulnerability to acute alcohol.

Acute effects of alcohol on ERPs

ERPs were the earliest tools used to study the effects of alcohol on the brain and more
recently this has been supplemented by the ERO approach (see next subsection). The early
studies were also interested in understanding the modulatory influence of family history and
risk on ERPs (Porjesz and Begleiter, 1983). Primarily using auditory oddball tasks and male
participants, changes in P3b characteristics after administration of alcohol have been
observed in several studies (Table 23.2). Alcohol administration has the general effect of
slowing latencies and reducing amplitudes of the P3b peak with both auditory and visual
stimuli; a number of studies indicate that HR/FHP subjects manifest less P3b reduction and
have a faster recovery of ERP features to baseline levels (Elmasian et al., 1982; Schuckit et
al., 1988; Porjesz and Begleiter, 1990). Three-stimulus oddball tasks also generate more
anterior P3a components to unattended rare non-target stimuli, which index orienting to
novelty (Courchesne et al., 1975; Squires et al., 1975; Knight and Scabini, 1998).
Decremental effects of alcohol on P3a amplitudes have also been significant (Campbell and
Lowick, 1987; Ehlers et al., 1998a; Jaaskelainen et al., 1999; Marinkovic et al., 2001),
suggesting an effect of alcohol on attention processes.

One fundamental question related to low-voltage P3 in HR offspring concerns the potential
effect of alcohol in subjects with low P3 at baseline, the subjects who are presumably at risk.
Ehlers et al. (1998a) noted that low P3 during a placebo condition was predictive of low
level of change or an actual increase in P3 amplitude after alcohol challenge. However, the
influence of variables such as ethnicity (Ehlers et al., 1998a) and gender has not been
thoroughly explored. Taken together, these findings suggest that, while some
electrophysiological differences between HR and LR individuals are apparent without an
alcohol challenge, others are seen only in response to ethanol challenges, possibly
representing sensitization and tolerance in the HR subjects that may be innate.

The P3 results suggest a multifocal influence of alcohol on cognition, which is supported by
later ERP studies examining the effect of alcohol on several cognitive domains, including
attention and monitoring, leading to effective performance control. These domains are part
of the rubric of executive control, and impairment in these processes has a widespread
influence on cognition. Alcohol-induced changes have been reported in components related
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to visual processing (Colrain et al., 1993; Weschke and Niedeggen, 2012), covert attention
(Jaaskelainen et al., 1995; Kenemans et al., 2010), sustained attention (Rohrbaugh et al.,
1987), motor preparation (Marinkovic et al., 2000), response inhibition (Easdon et al.,
2005), error/action monitoring (Ridderinkhof et al., 2002; Euser et al., 2011), and semantic
memory (Marinkovic et al., 2004).

Among the early ERP components, the N100 amplitude is consistently reduced postalcohol,
suggesting involvement of early sensory or attention-related process, particularly in auditory
paradigms. Reporting on earlier components of the oddball task — N100 and P200 (Fig. 23.1)
— greater sensitization of P2 on the ascending limb of the blood alcohol curve and faster
recovery to baseline on the descending limb for both N1 and P2 in HR was seen (Cohen et
al., 1998), in keeping with the differentiator model of Newlin and Thomson (1990). Some
studies using visual stimuli did not report N1 amplitude reduction postalcohol (Rohrbaugh et
al., 1987; Colrain et al., 1993). A preattentive component to spatial frequency (SFD80),
which appears at 80 ms after the stimulus, was not affected by moderate alcohol (Kenemans
et al., 2010). Alcohol was found to decrease the discrimination ability for visual contrast,
resulting in reduced visual evoked potential amplitudes, but its effects on motion perception
indicated impairment in visuospatial attention (Weschke and Niedeggen, 2012).

Similarly, covert attention is affected by alcohol, as indicated by the reduced mismatch
negativity (MMN) amplitudes for both auditory and visual stimuli (Jaaskelainen et al., 1995,
1996; Kenemans et al., 2010). MMN is an automatic neuronal mismatch between a deviant
auditory input and a sensory-memory trace representing the standard stimuli; it is a
preattentive process engaging covert attention, and provides an objective measure of
auditory discrimination and sensory memory (N&aténen, 1990). (See section on attention —
N100 and mismatch negativity, below, for studies on MMN and chronic alcoholics.)

Two theoretical models have been proposed to evaluate the effects of alcohol on cognition:
Firstly the attention allocation model, which suggests that alcohol enhances the focus and
affects shifts of attention, such that only the most salient cues are attended to and other
available cues are ignored (Steele and Josephs, 1988, 1990). This is supported by results of
studies on overt and covert attention, as described previously (Jaaskelainen et al., 1996). The
second related model is the response inhibition model (Fillmore and VVogel-Sprott, 1999,
2000) based on the theory of cognitive control (Logan and Cowan, 1984), where behavioral
activation and inhibition are two independent processes. Impaired behavioral inhibition
processes underlie deficits of self-control observed postalcohol. The alcohol-related decline
in performance may be related to difficulties in maintaining attention on the task at hand
and/or deficits in inhibiting a prepotent response.

This has been studied with a “reverse oddball” Go/NoGo task, a paradigm widely used to
estimate response inhibition (Jodo and Kayama, 1992; Eimer, 1993; Falkenstein et al., 1999)
wherein a subject has to respond to a given stimulus (Go) and withhold it for another
stimulus (NoGo). The ERPs to the two stimuli were examined to evaluate the neural
correlates of response production and inhibition. Two significant ERP signatures of response
inhibition have been found: an enlarged negative frontocentral N2 component (200-300 ms)
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on NoGo trials, and an augmented positive-going frontocentral “NoGo P3” (300-600 ms)
(Pfefferbaum et al., 1985; Pfefferbaum and Ford, 1988; Eimer, 1993; Filipovic et al., 1999).

Low and moderate doses of alcohol increased the number of errors relative to alcohol-free
performance (Easdon et al., 2005). Success in withholding a prepotent response was
associated with an early-enhanced stimulus-locked negativity (N170) at inferior parietal
sites, which was delayed when participants failed to inhibit the motor command. Moreover,
both doses reduced N170 and P3 amplitudes during Go, NoGo, and error trials. In
comparison with correct responses, errors generated large response-locked negative (Ne)
and positive (Pe) waves at central sites to feedback, components reflecting motivation
significance and recognition of error. Both doses of alcohol reduced Ne amplitude, whereas
Pe amplitude decreased only after moderate doses. These results indicate that behavioral
disinhibition following alcohol consumption involved alcohol-induced deficits in
maintaining and allocating attention, thereby affecting the processing of incoming stimuli
and the recognition that an errant response has been made.

A frontal negativity in the N2 range [variously named as ERN (Error related negativity),
FERN, FMN (Fronto-Medial Negativity), ORN (Outcome related negativity)] has been
identified as the ERP correlate of the feedback response (Nieuwenhuis et al., 2004; Hajcak
et al., 2006). Moderate alcohol has been shown to increase the detrimental effects of
incongruent flankers of a visual target in a response inhibition task (Bartholow et al., 2005),
along with increased ERN and decreased P3 amplitudes, suggesting a restructuring of self-
monitoring processes postalcohol use. To answer the question if alcohol causes a reduction
in the efficiency of control processes in general, a study using the flanker task revealed
impairments in both interference control and error detection (Ridderinkhof et al., 2002). The
investigators found that the frontocentral ERN was attenuated significantly by alcohol
consumption while N2 amplitude was not, indicating that alcohol in moderate doses
produced a significant deterioration in detection of erroneous responses (ERN). Another
study suggested that later stages of outcome processing were affected by alcohol, as
indicated by reduced P300 to loss feedback (Euser et al., 2011). Motor preparation was
evaluated using the lateralized readiness potential (LRP) in trials where the response had to
be withheld (No-Go); the LRP was significantly higher postalcohol ingestion and the
movement-related mu rhythm was also significantly attenuated, suggesting a premature
activation of the motor system (Marinkovic et al., 2000). This also provides evidence for
enhanced motor impulsivity that may be part of the conceptual framework of the response
inhibition model.

Alcohol effects on cognitive domains such as semantic and mnemonic processes have not
been studied extensively; however, one study showed that alcohol ingestion attenuated the
temporoparietal negative potential (N180), revealing an effect of a moderately low alcohol
dose on early prelexical stage of verbal processing (Marinkovic et al., 2004). Alcohol
significantly increased the difficulty of semantic access and integration, as reflected in its
effect on later potentials — larger N450 amplitude and longer P580 latency. This effect was
particularly prominent in arousal-related trials, suggesting that alcohol impairs processes
that modulate cognitive functioning related to semantic and integration systems rather than
via memory processes.
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These studies provide some evidence for both models, suggesting either a multifactorial
pathway or a common upstream factor perhaps relating to structural-functional dynamics of
the brain networks. Studies in the following section have attempted to explore the latter.

Acute effects of alcohol on EROs

More recently, with the use of EROs, a small number of studies have attempted to parse
apart the effects of alcohol on various frequency bands and brain regions involved in aspects
of cognitive processing.

Several studies have examined the effects of alcohol on cognitive processing in the auditory
modality. The dose-related impact of alcohol on auditory transient evoked 40-Hz responses
during a selective attention task was investigated; higher doses of alcohol significantly
suppressed the early evoked gamma responses in both attended and non-attended conditions,
suggesting cognitive impairment or lack of sensory binding (Jaaskelainen et al., 2000).
Administration of alcohol was shown to decrease early synchronization during auditory
encoding and increase later desynchronization in theta (4—6 Hz), low alpha (6-8 Hz), and
high alpha (8-10 Hz) bands (Krause et al., 2002). This indicates that alcohol has
disorganizing effects on the brain’s electric oscillatory systems in theta and lower alpha
frequency ranges during cognitive processing. Similarly, disorganizing effects of alcohol on
phase synchronization of EROs during an auditory oddball task were recently reported in
humans and rats (Ehlers et al., 2012). They demonstrated reduced synchrony within and
between neuronal networks with ethanol, perhaps by increasing the level of noise in key
interactions; reduced alpha-phase synchrony was also correlated with blood alcohol level.

There is also evidence to suggest acute effects of alcohol on theta oscillations during various
cognitive tasks in the visual modality. Moderate alcohol intoxication modulated event-
related theta activity during visual word processing, although alcohol was shown to
attenuate theta power overall (Marinkovic et al., 2012). Moderate alcohol consumption was
particularly deleterious to semantic retrieval since it reduced theta oscillations for real words
but not pseudowords. Event-related theta power was also associated with sources in left-
lateralized frontotemporal areas, reflecting lexical-semantic retrieval processes. This finding
is in agreement with previous studies that suggest that executive functions are especially
vulnerable to alcohol intoxication. Task-related EEG changes were studied during the
performance of a mental arithmetic task for low “social” alcohol dosages with the
presumption that even social drinking may have detrimental effects. While no detrimental
alcohol effect was seen on behavioral indices of task performance, there was an ethanol-
induced attenuation of the task-related frontally dominant theta increase; this effect was
modest (Boha et al., 2009). Alcohol dose had an activating effect on autonomic measures of
heart rate and electrodermal activity, and changes in nonlinear measures — omega
complexity and synchronization likelihood — indicate increased synchrony in the theta band
corresponding to increased working memory effort (Molnar et al., 2009). Moderate alcohol
consumption caused spatiotemporal changes to conflict in both early and late processing
stages during a Stroop task, and attenuated total event-related theta power, suggesting that
alcohol-induced deficits in cognitive control may result from theta suppression in the
executive network (Kovacevic et al., 2012). Slower reaction time was associated with
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attenuated theta power that was attributed to anterior cingulate cortex, indicating an
impairment in top-down control of motor preparation and execution. Alcohol significantly
increased theta activity in subjects who were engaged in performing an attentional motor
task of simulated automobile driving. Hence these results suggest that an alcohol-induced
impairment of top-down strategic processing may underlie poor self-control, which in turn
may affect drinking (Laukka et al., 1995).

Taken together, alcohol studies of EROs during various cognitive tasks indicate reduced-
phase synchrony between and within neural networks in alpha and theta bands, and reduced
theta oscillations, particularly implicating effects on frontal areas. The impact on the
synchrony and generation of oscillations may influence the various cognitive operations
leading to deficits in attention and response inhibition.

EFFECTS OF BINGE DRINKING ON ELECTROPHYSIOLOGY

Binge drinking is a relatively new term in the field of alcoholism and involves short periods
of excessive drinking alternating with abstinence; it is generally defined as consumption of
five or more drinks (four or more in females) during a 2-hour interval (Courtney and Polich,
2009). This behavior is widely prevalent among young adults and is associated with
impairments in executive, visuospatial, and other domains (Hermens et al., 2013).
Understanding the correlates of binge drinking in the developing brain is instrumental to
designing prevention and management protocols. Animal studies have shown more brain
damage from binge drinking in adolescent compared to adult animals. Regional damage to
frontal association cortex and impaired hippocampal neurogenesis are both greater in
adolescent than in adult rats (Crews et al., 2000, 2006). Courtney and Polich (2009) have
provided clear recommendations regarding coherent and precise definitions of binge
drinking in order to pursue a proper evaluation of brain deficits.

Binge drinking and EEG

Investigations of resting EEG in binge drinkers have emerged in recent years, aided by a
clear definition of binge drinking. In earlier studies, moderate drinkers showed greater
spectral power and higher peak frequency in the beta (12-20 Hz) band when compared to
low/social drinkers, suggesting that beta activity might index quantity and frequency of
alcohol consumption (Ehlers et al. 1989, Ehlers and Schuckit, 1990). More recently,
Courtney and Polich (2010) examined male and female non-binge drinkers, low-binge
drinkers, and high-binge drinkers who had been drinking alcohol at their respective levels
for an average of 3 years. The non- and low-binge drinkers exhibited less spectral power
than the high-binge drinkers in the delta (0—4 Hz) and fast beta (20-35 Hz) bands. Although
the causal relationship between binge drinking and increased fast beta power is unclear, the
authors suggest that the alteration of fast beta activity in high-binge drinkers is similar to the
EEG spectral pattern seen in alcoholics (Rangaswamy et al., 2002), and may be a biomarker
for potential future AUDSs, even in the absence of familial alcoholism.

Functional connectivity during eyes-closed EEG was different between light and heavy
drinkers in a study on EEG synchronization in heavy-drinking college students, defined as
those who consume more than 30 units containing 12 grams of alcohol per week (de Bruin
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et al., 2004). Heavy drinkers exhibited abnormally increased synchronization in theta (4-8
Hz) and gamma (30-45 Hz) bands. These frequency bands have been associated with
memory formation involving hippocampo-neocortical connections (Buzsaki, 1996). Altered
synchronization could reflect structural changes in neural networks involving the
hippocampus and cortex, as observed in pathological studies (Harper, 2009). EEG
synchronization in six frequency bands (delta, theta, alpha, slow beta, fast beta, and gamma)
when compared between low, moderate, and heavy drinkers revealed a loss of lateralization
in alpha and slow beta bands in male and female heavy drinkers (de Bruin et al., 2006). In
addition, moderately and heavily drinking males had lower fast beta (20-30 Hz)
synchronization than light-drinking males; synchronization in alpha and beta frequencies
was impaired during rest and mental rehearsal in those drinking in excess of 21 alcoholic
drinks per week.

Binge drinking and ERPs

Studies examining the neurophysiological consequences of binge drinking are revealing
both early and global effects on cognition as evaluated using event-related activity (Maurage
et al., 2012). One of the earliest studies of binge drinking on cognitive changes investigated
ERPs in young adult Southwest California Indians with a history of binge drinking during
adolescence (Ehlers et al., 2007). Using a facial discrimination task, they found that
adolescent binge drinking was associated with lower P450 (like P3b) amplitude and a longer
P350 (like P3a) latency, in those with family histories of ethanol dependence.

Another study using a working memory continuous performance task and a principal
component analysis approach in analyzing ERPs examined attention and working memory
processes (Crego et al., 2009). They reported increased N2 components for matching stimuli
in binge drinkers, interpreting these findings as more effortful processing in the performance
of the task. They also reported no P3 amplitude differences between the matching and non-
matching conditions in binge drinkers, indicating a deficit in differentiating relevant and
irrelevant processes. Employing a similar task in a later study, they revealed reduced
amplitudes of the late positive complex in binge drinkers when compared to controls (Crego
et al., 2010). This was also associated with hypoactivation of right anterior prefrontal cortex,
determined using source localization with eLORETA (exact low-resolution brain
electromagnetic tomography).

A longitudinal study that compared young adult binge drinkers with age-matched non-
drinking controls showed progressive cerebral dysfunction without marked behavioral
deficits (Maurage et al., 2009). The baseline assessments showed no differences; however
after 9 months, the binge drinkers had significantly delayed latencies for all ERP
components (P1, N2, P3b) of emotional auditory processing, reflecting impairments in
perceptive as well as decisional processes. However, a more recent visual oddball study
reported an opposite result of increased P3b amplitudes in binge drinkers when compared to
controls (Crego et al., 2012); participants included only those without a personal or family
history of alcoholism, unlike the previously described Ehlers et al. study (2007), which may
indicate a differential vulnerability in those with and without family history.
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A study that investigated links between response inhibition in a visual Go/NoGo paradigm
in social drinkers found that Go and NoGo N2 showed a strong trend of being smaller
centrally for heavy drinkers compared to light drinkers, but the Go P3 showed no group
differences (Oddy and Barry, 2009). Only the NoGo P3 reduction was correlated with
alcohol consumption. A response inhibition longitudinal study from the same laboratory
(Lopez-Caneda et al., 2012) also reported increased P3 amplitudes for both Go (at baseline
and follow-up) and NoGo (only at follow-up), suggesting a progressing influence of binge
drinking on response inhibition. The authors suggested that increased amplitudes of P3 may
reflect compensatory mechanisms within the adolescent brain.

An alcohol cue reactivity study (Petit et al., 2012) on binge drinkers reported enhanced P100
amplitude for alcohol-related images versus neutral images. This finding is similar to that
seen in adult alcoholics and was not observed in control subjects. The later components (N2
and P3) were not affected, suggesting an early attention bias for alcohol-related cues.
Maurage et al. (2012), in a most detailed study on binge drinking and its ERP correlates,
used a face detection oddball task to evaluate both early and late cognitive processes, effect
of comorbid conditions, and alcohol consumption pattern and amount. The authors reported
massive ERP impairments from the early P100/N100, N170/P2, N2b/P3a, and P3b. Alcohol
intake amount and specific binge-drinking patterns were also associated with these
impairments.

Taken together, these studies suggest an ongoing process of refinement in ascertaining binge
drinking, and as this is still in development, a definitive picture of electrophysiological
deficits is yet to emerge. Binge drinking appears to be associated with a specific pattern of
EEG activity (increased fast beta) in young adults that may reflect the future development of
AUDs. The ERP measures are equivocal, particularly in the context of response inhibition;
however a few studies do indicate deficits in perceptive as well as decisional processes, as
reflected in decrements in early (P1, N1) and late (N2, P3b) ERP components, as well as
changes in frontal sources of these activities.

CHRONIC ALCOHOLISM AND NEUROELECTROPHYSIOLOGY

Chronic alcoholism is associated with a broad spectrum of brain disturbances ranging from
severe symptoms of Wernicke—Korsakoff syndrome to subtle but nonetheless significant
cognitive disturbances characteristic of a majority of alcoholic patients. The etiology of
alcohol-related brain damage/dysfunction is not entirely known, as there are brain changes
during acute and chronic intoxication, as well as during withdrawal; some brain changes
recover with prolonged abstinence and some brain anomalies antecede the development of
AUDs and may be involved in the predisposition to develop AUDs. This section will focus
on EEG, ERP, and ERO measures of brain dysfunction in AUDs in abstinent alcoholics, as
well as in HR offspring of alcoholics, to help determine which are consequences of AUDs
and which antecede its development. (For earlier reviews of other aspects of alcoholism and
electrophysiology (e.g., sensory components), see Porjesz and Begleiter, 1983, 1985, 1993,
1996.)
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Chronic alcoholism and resting EEG

Differences in both EEG power and coherence have been reported in alcoholics; some of
these are the consequence of chronic alcoholism while others antecede its development. This
section will review EEG power and coherence measures in alcoholics and those at risk.

Theta band—Increased resting theta power in alcoholics has been reported in a number of
studies in the literature (Propping et al., 1981; Pollock et al., 1992; Rangaswamy et al.,
2003); no relationship between the length of abstinence and theta power was found (Pollock
et al., 1992). However another study reported a decrease in theta power in female alcoholics
(Propping et al., 1981). Elevated resting theta activity observed in the EEG of alcohol-
dependent individuals is indicative of a dysfunctional neurophysiological status in these
individuals. As suggested previously in this chapter, we can speculate that the increases of
theta produced by the acute administration of alcohol in healthy individuals may
subsequently evolve into a more pervasive increase in theta in chronic alcoholics following
prolonged exposure. No strong evidence of increased resting theta has been reported in
offspring of alcoholics, suggesting that this measure may index a state-dependent condition.

Increases of theta rhythm have been seen in altered neurophysiological states of the brain,
involving altered cholinergic functioning, such as Alzheimer’s disease, aging, and the
transition from wakefulness to sleep (Niedermayer and Lopes Da Silva, 1999). Slow EEG
activity (theta and delta) has been correlated with cholinergic activity and central cholinergic
pathways (Steriade, 1990). Elevated tonic theta power in the EEG may reflect a deficiency
in information-processing capacity of the CNS (Klimesch et al., 2001). The theta power
increase may be an electrophysiological index of the imbalance in the excitation-inhibition
homeostasis in the cortex.

Alpha band—There is extensive literature, dating back to the 1940s, indicating unstable or
poor alpha rhythm in alcoholics; alcoholics manifest less prevalent and lower alpha than do
non-alcoholics (for reviews, see Begleiter and Platz, 1972; Propping et al., 1981). However
some more recent studies did not find the same results (Pollock et al., 1992; Enoch et al.,
1999). A pronounced slow alpha decrease is associated with relapse (Saletu-Zyhlarz et al.,
2004); there is an increase in slow alpha, a decrease in fast alpha, and a deceleration of the
alpha centroid with six months of abstinence. On the other hand, participants who had a
family history of alcoholism had significantly higher spectral power in the slow alpha
frequencies (7.5-9 Hz) (Ehlers and Phillips, 2003); this was found for males with alcoholic
fathers (Ehlers and Schuckit, 1991) and women at high risk for developing alcoholism
(Ehlers et al., 1996). While reduced EEG alpha power in male and female offspring of
alcoholics has been reported (Finn and Justus, 1999), this was not related to comorbid traits
of anxiety or antisocial personality. A distinctive low-voltage alpha variant (LVA), has been
reported to be associated with a subtype of alcoholism that is associated with anxiety
disorder (Enoch et al., 1999). LVA, which is characterized by an absence or very low-
amplitude alpha rhythmicity, is found in 5-10% of individuals (Anokhin et al., 1992; Enoch
et al., 1995). Ethnic variations may exist in the prevalence of LVA, EEG variants, and
association with alcoholism or risk (Ehlers and Phillips, 2003).
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Beta band—Beta frequency rhythms are also known as inhibition-based rhythms.
Increased beta power in the EEG of alcoholics, particularly in the resting condition, has been
well documented (Propping et al., 1981; Costa and Bauer, 1997; Winterer et al., 1998;
Bauer, 2001; Rangaswamy et al., 2002). Increased beta power was observed at all scalp loci
in the large Collaborative Study on the Genetics of Alcoholism (COGA) sample, but was
most prominent in the central region for slow-medium-frequency beta (12-20 Hz) and over
the frontal regions for fast beta (20-28 Hz) (Rangaswamy et al., 2002). Increased beta
activity, particularly fast beta (19.5-39.8 Hz), has proved to be an excellent predictor of
relapse (Bauer, 2001; Saletu-Zyhlarz et al., 2004). Desynchronized beta activity over frontal
areas in relapsers has been suggested as a correlate of functional disturbance of prefrontal
cortex (Winterer et al., 1998).

Increased beta power has also been described in the EEG of relatives of alcoholics (Gabrielli
et al., 1982; Pollock et al., 1995; Finn and Justus, 1999; Rangaswamy et al., 2004b).
However, some studies examining acute effects of alcohol on HR report an absence of pre-
ethanol baseline differences in resting EEG between LR and HR subjects (Pollock et al.,
1983; Kaplan et al., 1988; Cohen et al., 1991). A positive family history of alcoholism was
related to increased beta power in HR (Gabrielli et al., 1982; Pollock et al., 1995; Finn and
Justus, 1999), and when present along with a diagnosis of antisocial personality (ASP), it
was associated with increased frontal beta power (Bauer and Hesselbrock, 1993). In the
COGA study, increased beta power on the resting EEG was demonstrated in a large sample
of offspring of alcoholics (Rangaswamy et al., 2004b). Taken together, as the increase in
beta power in alcoholics was not related to length of abstinence (Rangaswamy et al., 2002)
and was also present in individuals at risk (Rangaswamy et al., 2004b), this suggests that it
may not be an effect of alcohol use, but perhaps antecede the development of AUDs.

Most studies reporting beta band differences in alcoholics and HR offspring also underscore
the issue of gender in electrophysiologic research. In studies evaluating alcoholics and HR
offspring of both genders, beta band changes were more robust in males while females
showed either no elevation or only a modest increase (Gabrielli et al., 1982; Pollock et al.,
1995; Finn and Justus, 1999; Rangaswamy et al., 2002, 2004b). Gender differences were
highlighted in the COGA study, where male HR offspring had elevated slow beta (12-16
Hz), while female HR offspring showed significantly increased faster beta power (16-28
Hz), particularly those with two or more alcoholic first-degree relatives. Existing gender
differences in the progression and pathology of alcoholism and spectral properties of EEG
highlight the importance of studying risk indicators within the context of gender.

I nter hemispheric coherence: EEG in alcoholics also reveals an increased interhemispheric
coherence when compared to unaffected individuals (Kaplan et al., 1985; Michael et al.,
1993). Bilateral intrahemispheric coherences in alpha and beta frequency bands were
increased in both long-term abstinent and non-abstinent alcoholics compared to controls
(Winterer et al., 2003a). These findings were strongest for the high alpha (10.5-12 Hz)
frequency band, and were most pronounced at temporal, parietal, and occipital regions,
particularly when depressiveness was included as a covariate; there was no effect of length
of abstinence on these findings.
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In summary, studies that have investigated the resting EEG composition indicate beta band
increases as a primary characteristic feature in alcoholics and HR subjects, and, less
significantly, theta band increases in the alcoholics. This reactivity of beta band has also
been observed in studies assessing binge drinkers. The alpha band differences in chronic
alcoholism are not conclusive and remain equivocal, although alcohol challenge studies in
HR and LR subjects have uncovered a reactive alpha system that tends to shift to slower
frequencies (see earlier in this chapter). The evidence of elevated beta power also provides
strong support for the excitation-inhibition imbalance model proposed to underlie the
predisposition to alcohol dependence (Begleiter and Porjesz, 1999), and future studies are
required to clarify gender differences in EEG profiles in alcoholism.

Chronic alcoholism and event-related potentials—This section reviews ERP
components reflecting various cognitive functions that are impaired in alcoholics.

Attention — N100 and mismatch negativity (MMN)—Early attention selection
processes are affected in both alcohol-dependent and unaffected HR individuals (Steinhauer
et al., 1987), as indicated by diminished N100 component. Using a bimodal task (auditory
and visual stimuli), a study on abstinent alcoholics, controls, and FHP offspring showed
reduced visual N1 amplitude in alcoholics and reduced auditory N1 amplitude in the FHP
individuals (Patterson et al., 1987). The dampening of N1 amplitudes to repetitive stimuli
may be associated with the refractoriness (Cohen et al., 1996) or may be a reflection of
lateral inhibition at the cortical level (Sable et al., 2004); however they were not very
effective in differentiating HR from LR individuals.

Larger MMN amplitudes have been reported in recently detoxified alcoholics (Kathmann et
al., 1995). The automatic stimulus change detector mechanism associated with MMN
generation is impaired in chronic alcoholics over the age of 40, suggesting that the
neurotoxic effects of chronic consumption of alcohol are more prone to appear after a
critical age (Polo et al., 1999). One study showed no MMN differences between controls and
alcoholics who were abstinent for an average of 6 years (Fein et al., 2004), while another
(Pekkonen et al., 1998) observed that increasing durations of abstinence reduced the MMN
amplitude, perhaps indicating improved efficiency of covert processes upon abstinence.
Ahveninen et al. (2000) found significantly enhanced MMN amplitudes to deviant sounds
that correlated with reaction time lag caused by deviants, indicating pronounced
distractibility and impaired reorienting to the relevant task in alcoholics. The MMN
enhancement predicted poorer hit rates in alcoholics and along with reaction time lag it also
correlated with an early onset of AUDs. Impairment in neural inhibition of involuntary
attention shifting may be more pronounced in early-onset alcoholics. Grau and colleagues
(2001) found that, while the MMN component is abolished with more demanding tasks in
chronic alcoholics, it is present in normal controls. It has been suggested that the
mechanisms to detect auditory differences may be reorganized in the brains of alcoholics, as
revealed by lower scalp current densities in left frontal and right temporal areas during
MMN in alcoholics (Marco-Pallares et al., 2007). However, no group differences in MMN
amplitude have been reported in young HR offspring (van der Stelt et al., 1997; Rodriguez
Holguin et al., 1998).
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In summary, attention effects seem more associated with state-related aspects and provide a
better measure for recovery than a predisposition.

Target detection (oddball tasks)—It is well established that alcoholics manifest
reduced amplitudes of P3b to task-relevant target stimuli, particularly over parietal regions;
similarly, alcoholics manifest low frontally distributed P3a to rare non-target stimuli in both
visual and auditory modalities (for reviews, see Porjesz and Begleiter, 1996; Porjesz et al.,
2005). Koskinen et al. (2011) analyzed auditory P3 in a twin study, and lower P3 to novel
stimuli (P3a) was consistently associated with alcohol use in adolescence. More recent
studies have indicated that low P3b amplitudes are present not only in male alcoholics, but
in female alcoholics as well, though not to the same extent as in males (Hill and Steinhauer,
1993; Prabhu et al., 2001; Suresh et al., 2003). The lower P3 amplitude is also significantly
associated with increased impulsivity and decreased activity of frontal sources in alcoholics
(Chen et al., 2007). However, in an unusual sample of treatment-naive actively drinking
adolescents with alcohol dependence, no reduction of P3b amplitude was observed in
comparison to matched controls (Cuzen et al., 2013), possibly due to absence of any family
history, comorbidity, and short drinking history.

The results for N2 component, especially the amplitude, have been equivocal. Porjesz et al.
(1987b) observed longer N2 latency but no changes in amplitude in a visual discrimination
oddball task conducted on alcoholics. A multimodal study also reported increased N2
latency and P3 latency in an auditory paradigm (Cadaveira et al., 1991). N2 amplitudes in an
auditory oddball task were significantly lower for alcohol-dependent individuals when
compared to controls (Realmuto et al., 1993; Cristini et al., 2003) but contrary findings of
increased N2 amplitude in alcoholics have also been reported (Olbrich et al., 2000).

Recovery with abstinence: The P3 amplitude in alcoholics did not completely recover with
prolonged abstinence (Porjesz and Begleiter, 1985; Glenn et al., 1994) and remained lower
when compared to controls. Also, relapse was associated with longer N2 latency and this
was not modulated by family history (Glenn et al., 1993). Studies evaluating long-term
abstinent alcoholics found that P3b amplitude was reduced even after 3-10 years of
abstinence (Porjesz and Begleiter, 1985) and along with increased P3a and P3b latencies
after an average abstinence of 6 years (Fein and Chang, 2006).

It has been hypothesized that an underlying CNS disinhibition (i.e., hyperexcitablity) is
involved in a predisposition to develop alcoholism (Begleiter and Porjesz, 1999). As
described earlier, low-amplitude P3 in alcoholics is also suggestive of reduced CNS
inhibition. A collection of studies examining offspring of alcoholics who are at greater risk
has helped to understand if the low P3 amplitudes are due to prolonged effects of alcohol on
the brain, or if they are antecedent to its development, indicating an underlying
predisposition. Young HR sons of alcoholics without prior alcohol exposure had
significantly lower P3 voltages compared with matched LR boys from control families
without first- or second-degree alcoholic relatives (Begleiter et al., 1984). These findings
were replicated in many HR/LR samples (older/younger, male/female) under several
experimental conditions (for review, see Porjesz et al., 2005). Furthermore, low P3
amplitude prior to puberty has been found to predict later substance abuse, including alcohol
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abuse in adolescence (Berman et al., 1993; Hill et al., 1995b; lacono et al., 2002, 2003). In
addition to P3b results, offspring of alcoholics also manifested low-amplitude P3a
components in both visual (Rodriguez Holguin et al., 1999) and auditory paradigms (Hada et
al., 2001).

There is evidence that the P3 amplitude is directly related to the number of first-degree
alcoholic relatives and not the drinking history of an alcoholic (Pfefferbaum et al., 1991;
Cohen et al., 1995) or FHP/HR individual (Benegal et al., 1995). In the COGA study, lower
P3 was found in alcoholics and family members from densely affected families compared
with those from control families (Porjesz et al., 1998). Family history was significantly and
selectively associated with lower P3 amplitudes to alcohol-related stimuli in a group of
young adult African American men and women; current use of marijuana and alcohol did
not modify P3 amplitudes (Ehlers et al., 2003). In contrast, some studies have failed to find
relationships between family history and P3b amplitude (Polich and Bloom, 1987; Ehlers et
al., 2001; Houston et al., 2003). Most P3 studies on HR have focused on males; data for
female offspring have been less consistent, suggesting a weaker effect (Hill and Steinhauer,
1993; Hill et al., 1995a). Data from the COGA study also showed lower P3 amplitude in
female offspring from multiplex alcoholism families, yet to a lesser degree than in males
(Porjesz and Begleiter, 1996; Porjesz et al., 1998). In a comprehensive meta-analysis of all
published HR versus LR studies at the time, Polich et al. (1994) found that the strongest P3
group differences were obtained in young male offspring with relatively difficult visual
tasks and concluded that low-voltage P3 may have predictive value as an index of
vulnerability for alcoholism. Thus, the low-voltage P3 component is a robust finding that
characterizes individuals at risk for alcoholism, and provides an excellent phenotypic “trait’
marker.

Response inhibition (Go/NoGo tasks)—Understanding response inhibition lies at the
core of behavioral control, which may be impaired across the spectrum of disinhibitory
disorders (Zucker et al., 2011). Alcoholics not only manifest reduced P3 amplitudes to Go
stimuli, but reduced P3 to NoGo stimuli as well (Pfefferbaum et al., 1991; Cohen et al.,
1997b; Fallgatter et al., 1998; Rodriguez Holguin et al., 1999; Hada et al., 2000).
Furthermore, chronic alcoholics manifest less differentiation between their responses to
task-relevant target stimuli and task-irrelevant non-target stimuli, suggesting less effective
inhibitory processes. Similarly, Cristini et al. (2003) reported reduced N2 in alcoholics in a
Go/NoGo task. A recent study reported significantly reduced N2 amplitudes in alcohol-
dependent subjects for Go and NoGo trials, particularly for NoGo trials in frontal regions
where alcoholics did not show a more frontal distribution (Pandey et al., 2012) (Fig. 23.2);
controls had significantly larger frontal amplitudes for NoGo, in line with a frontal generator
for N2 (van Veen and Carter, 2002; Nieuwenhuis et al., 2004). The anteriorly distributed
NoGo P3 potentials were also markedly reduced in amplitude in alcoholic subjects as well
as in high-risk individuals, indicating impaired inhibitory control in these individuals
(Cohen et al., 19973, b; Kamarajan et al., 2005a, b; Colrain et al., 2011).

Error monitoring and response evaluation—Reward and feedback evaluation as a
behavioral process has come under special scrutiny in the context of addictive and impulsive
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disorders. Correlates of valence attached to the negative and positive consequences of
behavior have been studied using ERPs in alcoholics and those at risk for AUDs. While
there have been very few ERP studies examining reward/feedback processing in alcoholics,
they provide interesting insights. Probably the first study of this kind was done by Porjesz et
al. (1987a), who reported decreased P3 amplitude in response to incentive stimuli in
abstinent alcoholics. More recently, using the balloon analogue risk task (BART), which
measures risk-taking propensity, Fein and Chang (2008) reported smaller amplitude in
feedback negativity in FHP treatment-naive alcoholics compared to controls. Although these
findings support the notion that alcoholics have a specific deficiency in reward evaluation,
the nature of these deficits is still not clear due to the paucity of such studies in alcoholics.
Increased impulsivity and risk taking have been found in alcoholics with reduced
components to outcome/feedback stimuli during a gambling task (Kamarajan et al., 2010).

Studies have shown that the feedback/outcome-related negativity (ORN) is localized to
medial frontal areas (Gehring and Willoughby, 2002; Nieuwenhuis et al., 2004; Masaki et
al., 2006). Source localization in healthy individuals reveals a medial frontal source for
ORN for loss, and a medial posterior source for gain (Kamarajan et al., 2009) (Fig. 23.3).
Alcoholics had significantly lower ORN amplitude than controls for loss trials (Kamarajan
et al., 2010). However, the outcome-related positivity (ORP) was lower for both gain and
loss trials, suggesting that the negative and positive components subserve different aspects
of outcome monitoring. The feedback/outcome related positivity in gambling paradigms
(ORP) is considered to index the subjective evaluation of the magnitude of outcome (Yeung
and Sanfey, 2004; Overbeek et al., 2005; Toyomaki and Murohashi, 2005; Kamarajan et al.,
2009). Contrary results have been noted in studies that tested alcoholics and matched
controls (Schellekens et al., 2010; Padilla et al., 2011); however these studies were
conducted on very small samples. Alcoholics generated larger ERN amplitudes than controls
following incorrect and correct responses on the Eriksen flanker task (Padilla et al., 2011).
Both groups showed evidence of posterror slowing. The amplitudes in the alcoholics were
related to longer reaction time in correct trials, suggesting increased effort in alcoholics.
Smaller negative amplitudes were associated with length of sobriety, suggesting a
normalization of monitoring activity with extended abstinence.

Semantic processing—A negative ERP component, designated as N4 or N400 (300-650
ms) over centroparietal scalp, and initially elicited to semantic incongruency, has been the
cornerstone of semantic ERP studies (Kutas and Hillyard, 1980; Bentin, 1989). The N400
varies systematically with the processing of potentially meaningful stimuli, where the
amplitude is reduced by a number of factors (Kutas and Federmeier, 2000). Increased
latency for N40O0 response to related/incongruent semantic information has been reported in
alcohalics, especially in those with comorbid antisocial personality (ASP) (Ceballos et al.,
2003). Ceballos and colleagues (2005) found significantly less negative N4 amplitudes in
alcohol-dependent individuals relative to non-dependent controls. Another widely used
paradigm is the semantic priming paradigm, in which a word preceded by an unrelated word
(unprimed) produces a larger N400 compared to a word preceded by a related word (primed)
(Bentin, 1989; McCarthy and Nobre, 1993). Reduced N4 amplitude of the difference
waveform between primed and unprimed words has been reported (Nixon et al., 2002).
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Similarly, in a recent semantic decision task there was less attenuation of N400 amplitudes
to primed words when compared to unprimed words in alcoholics, a phenomenon that was
intact in the controls (Porjesz et al., 2002b; Roopesh et al., 2010) (Fig. 23.4). Significant
group differences were not seen for latency; however all subjects had slower reaction time
for unprimed words compared to primed words, but significantly less reaction time savings
between the unprimed and primed condition was noted for alcoholics. This lack of
attenuation for the primed word suggests a deficiency of semantic priming process in the
alcoholics where the expectancy for the second word of the antonym pair is not adequately
generated. Similarly, young adult male HR offspring from alcoholic families manifested a
lack of N40O attenuation, indicating deficits in semantic expectancy and post lexical
semantic processing which may be present prior to alcohol dependence (Roopesh et al.,
2009) (Fig. 23.4). These studies suggest that alcohol-dependent individuals and those at risk
suffer from subtle impairments indicative of a reduced efficiency in resource optimization.

In summary, ERP studies reveal a pattern of deficits that affect primarily the domains of
attention, response inhibition, and performance monitoring. More complex cognitive
processes such as mnemonic, semantic, and lexical processes are also affected; however
these may be associated with underlying attention and executive deficits.

Chronic alcoholism and event-related oscillations—Several studies have
demonstrated that P3 responses are primarily the outcome of theta and delta oscillations
elicited during cognitive processing of stimuli (Basar-Eroglu et al., 1992; Yordanova and
Kolev, 1996; Basar, 1999; Karakas et al., 2000a, b), with delta oscillations more
concentrated in the posterior region, while theta is more centered in the frontocentral region
(Karakas et al., 2000b) (Fig. 23.1). ERO changes in chronic alcoholics reveal a neuronal
state with altered excitability. This has also been suggested by some transcranial magnetic
stimulation (TMS) studies (Conte et al., 2008; Muralidharan et al., 2008).

In a visual oddball paradigm, alcoholics manifested significantly reduced theta and delta
ERO amplitudes while processing the target stimuli (Jones et al., 2006b); theta differences
have a frontal focus while delta tends to be more posterior (Fig. 23.1). Adolescent HR
offspring also showed similar reductions in delta and theta power when compared to LR
adolescents; however, the topography of theta is shifted more posteriorly to vertex and
parietal regions, similar to the topography of delta oscillations (Rangaswamy et al., 2007).
Interestingly, the EROs were superior to P3 amplitude in differentiating between HR and LR
offspring. Similar to the observations from P3 studies, the results suggest that decreased
theta and delta ERO to target stimuli may antecede the development of AUDs and represent
an excellent trait marker.

These findings were replicated more recently (Andrew and Fein, 2010a) for evoked and total
power in delta and theta ERO in long-term abstinent alcoholics; the authors proposed that
P300 and ERO measures provide comparable information. Phase locking enhances signal-
to-noise ratios; however the increase in non-phase locked (induced) theta oscillations was
suggested to be a marker of chronic alcohol abuse on the brain (Gilmore and Fein, 2012).
This effect may recover, at least partially, with extended abstinence. The increased induced
theta was also a strong predictor of alcoholism status (Andrew and Fein, 2010Db).
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Oscillatory responses associated with response inhibition were investigated using a Go/
NoGo paradigm in abstinent alcoholics (Kamarajan et al., 2004). Decreased power in delta
and theta oscillations was observed in alcoholics, particularly during NoGo processing, and
prominent frontally. These changes were confirmed in another study that reported reduced
delta oscillations for No-Go, which was correlated with white-matter degradation in the
cingulate bundles (Colrain et al., 2011). Offspring of alcoholics showed significantly
decreased activity in delta (1-3 Hz), theta (4—7 Hz), and alphal (8-9 Hz) bands during the
NoGo condition, as well as reduced delta and theta activity during the Go condition
(Kamarajan et al., 2006). Similar to alcoholics, differences were more prominent in the
NoGo than in the Go condition. Thus it seems probable that these oscillatory responses may
antecede the development of AUDs.

In a recent study on reward processing in alcoholics during a gambling task, event-related
theta band (3.0-7.0 Hz) oscillations were evaluated during the loss/gain feedback
(Kamarajan et al., 2012). The alcoholic group showed significantly decreased theta power
during reward processing compared to controls, particularly during the evaluation of loss.
Current source density maps of alcoholics revealed weaker and diffuse source activity for all
conditions and weaker bilateral prefrontal sources during loss while the controls manifested
stronger and more focused midline sources. Alcoholics also exhibited increased impulsivity,
risk taking (as revealed by behavioral measures), and a strong association between reduced
anterior theta power and impulsive task performance. Decreased power in theta oscillations
and more diffuse current density may be due to reorganized and inefficient neural reward
network in alcoholics.

Early attention selection impairments have been reported in alcoholics and HR (see section
on attention — N100 and mismatch negativity), while some studies report no differences. The
underlying reason for the variation in results may arise from an enhanced theta phase
resetting in the absence of any N1 amplitude and power changes in alcoholics when
compared to controls (Fuentemilla et al., 2009). The phase resetting defines excitability
windows of phase-locked neurons, which in turn directs information flow, hence implying a
hyperexcited neuronal state in alcoholics. Early phase-locked gamma is an important
processing step for the selection/identification of target stimuli, indicative of a top-down
mechanism involved in selective attention (Fell et al., 2003); it is larger to attended
compared to unattended stimuli, particularly over frontal regions (Basar, 1999; Yordanova et
al., 2001). Neuroimaging studies using attentional tasks have implicated the role of
frontoparietal networks in this top-down control of selective attention (Corbetta et al., 2000;
Giesbrecht et al., 2003). Early gamma (28-45 Hz) band response (1-150 ms) is significantly
attenuated in the frontal region for target processing in abstinent alcoholics
(Padmanabhapillai et al., 2006a) and children of alcoholics (HR) (7-17 years)
(Padmanabhapillai et al., 2006b). Differences were only seen in the parietal region for the
target condition in HR individuals. A dysfunctional frontoparietal attentional network may
be associated with the impaired gamma band response and a deficient frontal top-down
processing mechanism (Rangaswamy et al., 2004a).
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ELECTROPHYSIOLOGICAL MEASURES AS ENDOPHENOTYPES

Alcoholism is a common, complex (non-Mendelian) disorder with contributions from both
genetic and environmental influences and their interactions. As seen in this review,
neuroelectrophysiological measures (e.g., P3, theta ERO, EEG beta) that differentiate
between alcoholics and controls, and between HR offspring from densely affected alcoholic
families and LR controls, serve as effective endophenotypes (intermediate phenotypes that
correlate with diagnosis). These endophenotypes are under genetic control and are highly
heritable, and have been successfully used in the search for genes associated with risk for
AUDs and related disorders (Porjesz and Rangaswamy, 2007; Rangaswamy and Porjesz,
2008a, b). As the genomic technologies have evolved from linkage scans with
microsatellites to candidate gene studies and genomewide association studies (GWAS) these
studies have highlighted targets that have proved to be relevant to understanding the
pathophysiology of AUDs.

EEG phenotypes

Data on the heritability of EEG frequencies are quite compelling. The largest twin study
estimates the heritability of theta and alpha power to be 0.89 and beta to be 0.86 (van
Beijsterveldt and Boomsma, 1994; van Beijsterveldt et al., 1996); these heritability estimates
are higher than those for AUDs and other psychiatric diagnoses. Heritability estimates for
EEG coherence range between 0.5 and 0.7 (Stassen et al., 1988; van Beijsterveldt and
Boomsma, 1994; van Baal et al., 1998; van Beijsterveldt et al., 1998; Chorlian et al., 2007).

Using EEG power as an endophenotype, the COGA project reported genetic linkage and
linkage disequilibrium between beta and a GABA receptor gene (Porjesz et al., 2002a).
Beta rhythm is generated in a network of excitatory pyramidal cells and inhibitory
interneurons involving GABA action as the pacemaker (Whittington et al., 2000). The
same GABAA receptor gene (GABRA2) associated with beta EEG was also associated with
alcohol dependence (Edenberg et al., 2004), a finding that has been replicated (Covault et
al., 2004) and expanded to include other substance dependence in adults and conduct
disorder in adolescents (Agrawal et al., 2006; Dick et al., 2006). The involvement of the
GABAergic system in AUDs is supported by neuroimaging studies, which indicate deficient
GABA benzodiazepine receptors in the brains of alcoholics (Abi-Dargham et al., 1998;
Lingford-Hughes et al., 1998) and HR offspring (Volkow et al., 1995). Dysfunction in
GABA receptor genes may affect neural excitability, or the imbalance between excitation-
inhibition (hyperexcitability) reflected in increased beta observed in alcoholics and HR
offspring; this in turn may be involved in the predisposition to develop AUDs and related
disinhibitory disorders.

A low-voltage alpha (LVA) phenotype, characterized by an absence or very low-amplitude
alpha rhythmicity, is found in 5-10% of individuals (Anokhin et al., 1992; Enoch et al.,
1995). The exon 7 variant of the GABAg receptor gene and EEG alpha voltage (LVA or
normal) was significantly associated for control but not alcoholic subjects (Winterer et al.,
2003b). LVA in females has been associated with a genetic variant resulting in low catechol-
O-methyltransferase activity, which is involved in the dopaminergic system, yielding low
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levels of norepinephrine (Enoch et al., 2003). This may partly explain the association of
LVA and anxiety disorders in alcoholic women.

Increased interhemispheric coherence has been a feature of EEG in alcoholism; when
associated with increased depressiveness, it has been suggested to involve GABAergic
and/or glutamatergic neurotransmission. Winterer et al. (2003c) revealed that three exonic
variants of a GABAg receptor gene influence cortical synchronization (coherence). In the
COGA study, significant linkage for theta (6—7 Hz) interhemispheric coherence at parieto-
occipital regions led to significant association with several single nucleotide polymorphisms
(SNPs) in GABRA2. Another significant linkage peak for theta (6—7 Hz) centroparietal
coherence was significantly associated with SNPs in CHRM2, a cholinergic muscarinic
receptor gene (Porjesz and Rangaswamy, 2007; Rangaswamy and Porjesz, 2008b).

EROs as endophenotypes

EROs have proved to be more useful than ERPs in the search for genes involved in AUDs
and related disorders in COGA. Theta oscillations to targets have been instrumental in
identifying two excellent candidate genes under a significant linkage peak - CHRM2 and
GRM8. Both encode subunits of neurotransmitter receptors: CHRM2 encodes a cholinergic
muscarinic receptor M2, whereas GRM8 encodes the metabotropic glutamate receptor 8 in a
family of G-protein-coupled receptors. Significant associations were observed between the
frontal theta ERO and SNPs in CHRM2, and to parietal delta (Jones et al., 2004, 2006a).
Several of the same SNPs were significantly associated with alcohol dependence along with
depression, drug dependence and externalizing disorders (DSM-1V) (Wang et al., 2004;
Dick et al., 2007), findings that were replicated by other groups (Comings et al., 2002; Luo
et al., 2005). Theta oscillations were also significantly associated with several SNPs in
GRMS, as well as alcohol dependence (Chen et al., 2008a).

Generation of theta and delta oscillations depends on level of activation of M2 muscarinic
autoreceptors (Fellous and Sejnowski, 2000; Tiesinga et al., 2001) that inhibit further
acetylcholine release by presynaptic cells, leading to inhibition of irrelevant networks.
Acetylcholine plays a significant role in stimulus significance (Perry et al., 1999), selective
attention (Mitrofanis and Guillery, 1993), P3 generation, and modified memory performance
(Hammond et al., 1987; Dierks et al., 1994; Frodl-Bauch et al., 1999; Potter et al., 2000).
The GRMB8 gene encodes a presynaptic autoreceptor involved in modulating neuronal
excitability by inhibiting glutamate release at the synapse (Schoepp, 2001). Hence, these
findings implicate CHRM2 and GRMS8 in the generation and modulation of these oscillations
during the P3 response to target stimuli. GABAergic, cholinergic, and glutamatergic system
interactions have been proposed to underlie these rhythms and P300 (Frodl-Bauch et al.,
1999). Thus, the genetic underpinnings of these oscillations influence the excitability in
neural networks.

This is further supported by a recent family GWAS study in COGA with a genomewide
significant finding in another neurotransmitter-related gene — KCNJ6 (a potassium inward
rectifier channel, GIRK2) and frontal theta EROs (Kang et al., 2012). These results suggest
that KCNJ6 or its product GIRK2 may account for some of the variations in theta
oscillations. GIRK2 receptor activation contributes to slow inhibitory postsynaptic potentials
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that modulate neuronal excitability, and therefore influence neuronal networks (Luscher and
Slesinger, 2010). Animal models have shown that GIRK channels are directly activated by
ethanol and are important effectors in both opioid- and ethanol-induced analgesia and are
considered a viable drug target; GIRK2 also modulates opioid effects on analgesia and
addiction in humans. Thus these findings between theta EROs and KCNJ6 have important
implications for neural excitability and alcohol addiction.

Together, these results indicate that the neurophysiological endophenotypes implicate some
of the transmitter genes important for modulating and maintaining neural excitability;
variations in this excitability may underlie the predisposition or susceptibility for AUDs and
related disorders.

CONCLUSION

In conclusion, the vulnerability to alcohol effects and AUDs may be associated with a
modulation of excitability of some neural circuits more than others. These changes affect
networks associated with cognitive domains of attention and self-monitoring that are part of
the rubric of the frontal executive function which is impacted with both acute and chronic
alcohol use. Both ERP and ERO studies discussed here provide evidence for impaired
attention, response inhibition, and monitoring functions. Source localization of these
components highlights impaired loci in frontal lobes, suggesting the utility of a multimodal
approach. Future studies that integrate neuroelectrophysiology and neuroimaging are
essential to understanding these complex structure—function interactions.

Studies conducted so far suggest that there are several common substrates (e.g., theta
oscillations, beta oscillations, P3 amplitude) that are influenced by alcohol in both acute and
chronic use and this in turn may reflect the underlying vulnerability of the brain to alcohol.
The potential to isolate genetic underpinnings of impaired neuroelectrophysiological
features associated with alcohol use is another exciting direction that may provide viable
targets for intervention. Although no functional variant affecting the
neuroelectrophysiological characteristics has yet been identified at the molecular level, a
large body of pharmacological evidence attests to the relevance of these receptors for
aspects of cognitive function. This approach has the unprecedented potential to unravel the
complex interplay of various neural subsystems relevant to the generation of brain
oscillations elicited under different cognitive conditions and in disease states.

Alcohol dependence results from a complex interaction of changing genetic and
environmental liabilities across development. Genetic studies have successfully used these
endophenotypes to reveal significantly associated SNPs from the same genes that are also
associated with alcohol dependence and related disorders. Thus, genes underlying the
variations in endophenotypes are also associated with the disease. Therefore, understanding
genetic control of brain electrical activity can provide clues about cerebral function and also
shed light on mechanisms involved in psychiatric disorders, such as AUDs, where
impairment in brain electrical activity is apparent. Prospective studies of young individuals
with “risk genotypes” can lead to an improved understanding of how neural and cognitive
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changes contribute to susceptibility across development, which in turn can lead to the design
of well-targeted prevention initiatives.
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Fig. 23.1. Visual oddball event-related potential (ERP) and corresponding event-related
oscillations using time frequency transformation. (Data from Jones et al., 2006.)

(A) Responses to rare targets in a visual oddball task at the vertex (Cz electrode): Typical
grand mean waveform from 100 normal control subjects showing the major sequential ERP
components and their topography, namely N100 (N1), P200 (P2), N200 (N2), and P300
(P3). These components are discussed in the text and described here:

The N1 (N100) component, a negative deflection occurring around 100 ms, is involved in an
early attentional selection process; it is dampened to unattended stimuli and enhanced to
attended ones (Hillyard et al., 1973; Nataanen et al., 1978). The vertex P200 component has
been associated with visual feature discrimination (O’Donnell et al., 1997) and is sensitive
to salient features of target stimuli (Luck and Hillyard, 1994a). The posterior N200 reflects
the degree of attention required for processing stimuli and is sensitive to target probability
(Folstein and Van Petten, 2008). The P3 (P300) is a large positive deflection seen 300-700
ms after a rare stimulus embedded in a series of unattended standard stimuli. It is proposed
to reflect attentional allocation and context updating (Polich and Herbst, 2000) and cognitive
closure (Desmedt, 1980; Verleger, 1988), while its time of occurrence (latency) reflects
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mental processing speed; the earlier and larger the P3, the easier the processing. Evidence
indicates that P3 has multiple sources, with contributions from frontal cortex (including
anterior cingulate) and hippocampus (Halgren et al., 1980; Menon et al., 1997; Kiehl and
Liddle, 2001; Ardekani et al., 2002).

(B) Time—frequency transformation using the S-transform (same data from top panel),
illustrating the distribution of power over time during processing of the target. The white
boxes indicate time—frequency regions of interest (TFROI) in specific band widths and their
topography in the head plots at the bottom. It can be seen that during target detection theta
(4-7 Hz) has a frontal distribution while delta (1-2 Hz) has a posterior distribution (Jones et
al., 2006b).
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Fig. 23.2. Event-related potential waveformsand sour ce localization of N2 component with low-
resolution brain electromagnetic tomography (LORETA). (Data from Pandey et al., 2012.)

(Top panel) Waveforms from response inhibition task (Go/NoGo) comparing alcoholics and
normal controls showing enhanced N2 wave and a frontal P3 during response inhibition
(NoGo). Reduced N2 amplitudes are seen to both Go and NoGo condition, particularly for
NoGo at frontal (Fz) lead.

(Bottom panel) SLORETA images for controls (A) and alcoholics (B) indicating areas in the
brain which are significantly more activated for NoGo when compared to Go. Controls show
a strong bilateral activation of anterior cingulate and also right medial frontal cortex.
Alcoholics show a much smaller region of activation in anterior cingulate that does not
involve bilateral areas.
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Fig. 23.3. Event-related potential, event-related oscillations, and theta topography in a gambling
paradigm. (Data from Kamarajan et al., 2012.)

(A) Waveforms to loss and gain feedback stimuli in a gambling task showing erroneous
responses (ERN)/outcome-related negativity (ORN) component and the outcome-related
positivity (ORP) (P3) component in male controls (n = 38)and male alcoholics (n = 38).

(B) Time—frequency transformation of electroencephalogram epochs describing the total
power in controls and alcoholics for loss and gain trials. Box indicates the region of interest
— theta (3-7 Hz) band, 200-500 ms.

(C) Theta band response corresponding to the event-related potential traces in the above
panel. Note differences between normal controls and alcoholics in the gray-shaded area.
(D) Theta power topography: note the sharply anterior peak for loss and a more diffuse
slightly posterior spread for gain. Alcoholics have lower theta power, and the reduction is of
greater magnitude for loss.

Handb Clin Neurol. Author manuscript; available in PMC 2015 February 17.



1duosnue Joyiny vd-HIN 1duosnue Joyiny vd-HIN

1duosnuely Joyny vd-HIN

RANGASWAMY and PORJESZ Page 42

N400 component PRIMED - UNPRIMED (Cz)

ALCOHOLICS CONTROLS

Fig. 23.4. Event-related potential waveforms from the semantic priming task. (Data from
Roopesh et al., 2009, 2010.)

Waveforms from a semantic decision task for primed and unprimed words. The dotted circle
marks the N400 component that is prominent in the case of unprimed words and highly
attenuated for primed words, as seen in controls (n = 57) and low-risk (n = 28) individuals;
alcoholics (n = 87) and high-risk (n = 23) individuals have less attenuation of this
component.

N400 is a negative response seen between 200 and 600 ms in response to semantic
incongruency (Kutas and Federmeier, 2011). The semantic priming task has been one of the
most extensively used event-related potential paradigms to study the effect of priming on
N400 (Bentin, 1989).
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