Table 2. Characteristics and study findings from studies on allostatic load (AL) in the workforce.
First author (year) | Country, Industry | Original biomarkers comprising Allostatic Load Index |
Original biomarkers used (%) |
Other biomarkers assessed |
AL, mean | Study design | Participants, n | Gender male, % | Age in years | Associations (AL↑) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SBP | DBP | WHR | HDL | TC | HbA1c | DHEA-S | Cortisol | Epi | Norepi | mean | SD** | range** | |||||||||
Bellingrath (2009) | Germany, Teachers |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 100 | body fat, CRP, D-Dimer, Fibrinogen, Glucose, TG, TNFα |
5.0 | cross-sectional | 104 | 0 | 45.0 | ±9.75 | 25-61 | effort-reward imbalance↑, exhaustion↑ |
De Castro (2010) | USA, Latino day workers |
✔ | ✔ | ✔ | 30 | BMI, CRP, salivary cortisol | 1.57 | cross-sectional | 30 | 100 | 45.8 | ±13.2 | - | SES↓, work safety↓, smoking↑, alcohol consumption↑, physical health↓ |
|||||||
Fischer (2009) | Germany, Aircraft industry workers |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 60 | CRP, D-Dimer, LDL | not described | cross-sectional | 468 | 89 | 41.2 | - | 18-61 | progenitor cells↓ (smoker >46 years) |
||||
Hasson (2009) | Sweden, Health Care (A) and IT (B) |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 70 | LDL, LDL/HDL, Prolactin, Pulse, TG |
3.20 A: 3.09 B: 3.46 | cross-sectional | 339 A: 241 B: 98 | 0 | A: 46.5 B: 41.2 | A: ±9.9 B: ±10.7 | - | A+B: age↑, educational attainment↓, self-rated health↓ |
|||
Johansson (2007) | Sweden, various | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 60 | Peak expiratory airflow | 1.97 | longi-tudinal | 369 | 0 | 43 | - | - | no characteristics under study |
||||
Juster (2011) | Canada, various | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 80 | α-Amylase, Albumin, Creatinine, CRP, Fibrinogen, Insulin, TG |
2.69 | cross-sectional | 30 | 36.7 | 45.4 | ±2.12 | 27-65 | cortisol↓, chronic stress↑, burnout↑, not depression |
||
Juster (2012) | Canada, various | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 80 | α-Amylase, Albumin, Creatinine, CRP, Fibrinogen, Insulin, TG |
2.69 | cross-sectional | 30 | 36.7 | 45.4 | ±2.12 | 27-65 | physical complaints↑, masculinity↑ |
||
Juster (2013) | Canada, various male (A), female (B) |
✔ | ✔ | ✔ | ✔ | ✔ | 50 | BMI, CRP, glucose, heart rate variability, HOMA, insulin, interleukin-6, LDL, TG, TNFα, |
not described | cross-sectional | 199 | 40.7 | A: 39.4 B: 42.8 | A: ±11.31 B: ±11.38 | 20-64 | occupational status↑(A) ↓(B), age↑, decision latitude↓(B) |
|||||
Langelaan (2007) | Netherlands, Telecom managers |
✔ | ✔ | ✔ | ✔ | ✔ | 50 | BMI, CRP, Glucose | 1.72-2.03* | cross-sectional | 290 | 100 | 43.0 | ±8.0 | - | age↑, not burnout, not exhaustion |
|||||
Li (2007) | China, Industrial workers |
✔ | ✔ | ✔ | ✔ | 40 | Adiponectin, BMI, HOMA ß-cell function, HOMA-IR, LDL, TG, Visfatin, |
2.50-3.15* | cross-sectional | 504 | 50 | 37.94 | ±9.47 | - | age↑, men, job control↓ | ||||||
Li (2007) 1 | China, Industrial workers, 4 different branches |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 70 | BMI, Cholesterol/HDL, CRP, HOMA, Prolactin, TG |
3.85-4.78* | cross-sectional | 963 | 49.4 | 36.91 | ±10.4 | - | work-related stress↑, job demands↑, job control↓ |
|||
Lipowicz (2013) | Poland, various | ✔ | ✔ | ✔ | 30 | alkaline phosphatase, bilirubin, body fat, creatinine clearance, erythrocyte sedimentation rate, glucose, Peak expiratory airflow, total plasma protein |
2.54 | cross-sectional | 3887 | 100 | - | - | 25-60 | education↓, urbanite↑, married, SES↓, physical activity↓, ex-smoker |
|||||||
Näswall (2011) | Sweden, various | ✔ | ✔ | ✔ | ✔ | ✔ | 50 | TC/HDL, Peak expiratory airflow, |
1.89 | cross-sectional | 159 | 0 | - | - | - | self-rated health↓, not job insecurity |
|||||
Schnorpfeil (2003) | Germany, Aircraft industry workers |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 100 | Albumin, BMI, CRP, TNFα | 3.15 | cross-sectional | 324 | 83.9 | 40.6 | ±9.3 | 21.3-60.5 | men, age↑, job demands↑ |
Sun (2007) | China, 5 different industrial branches |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 70 | BMI, TC/HDL, CRP, Fibrinogen, IGR, TG |
3.69-4.54* | cross-sectional | 1219 | 52 | 38.08 | ±9.17 | 23-58 | age↑, decision latitude↓, job demands↑, Type A personality↑, educational attainment↓ |
|||
Von Thiele (2006) | Sweden, Health care workers |
✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 70 | Glucose, LDL, LDL/HDL, Prolactin, Pulse, TG |
3.43 | cross-sectional | 241 | 0 | 45.8 | ±9.75 | - | exhaustion↑, age↑, insufficient recovery from work-stress↑ |
|||
Use of original biomarkers (%) | 94 | 94 | 88 | 88 | 63 | 75 | 44 | 44 | 25 | 19 |
SBP: systolic blood pressure; DBP: diastolic blood pressure; WHR: waist-to-hip ratio; HbA1c: glycosylated hemoglobin; HDL: serum high-density-lipoprotein; TC: total cholesterol; DHEA-S: dehydroepiandrosterone sulfate; Cortisol: urine levels of cortisol; Epi: epinephrine; Norepi: norepinephrine; BMI: body mass index, CRP: C-reactive protein, HOMA: homeostasis model assessment, IGR: insulin-glucose ratio, LDL: low-density-lipoprotein, TG: triglycerides, TNFα: tumor-necrosis factor alpha, SES: socioeconomic status
*indicates range of means when multiple subgroups were under study
**presented if information provided in the study