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Effects of ecological engineered oxygenation on the
bacterial community structure in an anoxic fjord in
western Sweden
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Oxygen-depleted bodies of water are becoming increasingly common in marine ecosystems.
Solutions to reverse this trend are needed and under development, for example, by the Baltic deep-
water OXygenation (BOX) project. In the framework of this project, the Swedish Byfjord was chosen
for a pilot study, investigating the effects of an engineered oxygenation on long-term anoxic bottom
waters. The strong stratification of the water column of the Byfjord was broken up by pumping
surface water into the deeper layers, triggering several inflows of oxygen-rich water and increasing
oxygen levels in the lower water column and the benthic zone up to 110 lmol l�1.We used molecular
ecologic methods to study changes in bacterial community structure in response to the oxygenation
in the Byfjord. Water column samples from before, during and after the oxygenation as well as from
two nearby control fjords were analyzed. Our results showed a strong shift in bacterial community
composition when the bottom water in the Byfjord became oxic. Initially dominant indicator species
for oxygen minimum zones such as members of the SUP05 clade declined in abundance during the
oxygenation event and nearly vanished after the oxygenation was accomplished. In contrast,
aerobic species like SAR11 that initially were restricted to surface waters could later be detected
deep into the water column. Overall, the bacterial community in the formerly anoxic bottom waters
changed to a community structure similar to those found in oxic waters, showing that an engineered
oxygenation of a large body of anoxic marine water is possible and emulates that of a natural
oxygenation event.
The ISME Journal (2015) 9, 656–669; doi:10.1038/ismej.2014.172; published online 19 September 2014

Introduction

Oxygen-limited or -depleted bodies of marine water
have become increasingly common in recent years
(Stramma et al., 2008). These hypoxic zones
(O2o2 ml l� 1 or o90mmol l� 1), also called oxygen
minimum zones (OMZs), have been observed all
around the globe (Stramma et al., 2008) and have
been extensively studied off the coasts of Chile (for
example, Morales et al., 1999; Stevens and Ulloa,
2008; Canfield et al., 2010), Benguela (for example,
Kuypers et al., 2005; Woebken et al., 2007), Oregon
(for example, Chan et al., 2008) and the Arabian Sea
(for example, Morrison et al., 1999; Fuchs et al., 2005).
In OMZs, the biogeochemical cycling of elements
changes significantly, which, in the case of the water
turning completely anoxic, also has potential effects

on the climate. For example, it has been shown that
anoxia (Naqvi et al., 2000) and sulfidic conditions
(Dalsgaard et al., 2013) can increase the production of
the greenhouse gas N2O. Further it has been estimated
that up to 50% of the fixed nitrogen in oceans can be
lost in OMZs, and therefore expanding OMZs poten-
tially affects future primary production and carbon
cycling (Codispoti et al., 2001; Lam et al., 2009; Ward
et al., 2009). Climate models predict an overall decline
in dissolved oxygen in the oceans due to an increase
in water temperature in the future (Matear and Hirst,
2003), which will further intensify the development of
OMZs.

Hypoxia is not only a problem on upwelling-
prone shelves, in coastal areas and the open ocean,
but also large masses of bottom waters in marine
basins are affected. Examples are found in Saanich
Inlet (Anderson and Devol 1973), the Cariaco Basin
(Scranton et al., 2001), the Black Sea (Jorgensen
1982) and the Baltic Sea (Conley et al., 2009), where
naturally occurring hypoxia is intensified by anthro-
pogenic eutrophication (Diaz and Rosenberg, 2008;
Conley et al., 2011).
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Prokaryotic community structure in OMZs
Microbial community structures are studied in
many OMZs (for example, Stevens and Ulloa,
2008; Ward et al., 2008; Woebken et al., 2008;
Jayakumar et al., 2009; Zaikova et al., 2010). Wright
et al. (2012) summarized the current knowledge
about the bacterial diversity in OMZs and found that
there are conserved patterns between all different
OMZs studied. The authors also identified the most
abundant bacterial phyla in OMZs to be Proteobac-
teria, Bacteroidetes, Actinobacteria, Planctomycetes
and the candidate phylum SAR406 (Marine Group A)
(Wright et al., 2012). Most of the phylogenetic
groups of bacteria in OMZs are found in other
environments as well; however, some microbial
clades seem to be rather specific to OMZs, for
example, the SUP05 clade (Walsh et al., 2009).

Microbes in the Baltic Sea have been studied for
many years, but only recently have analyses of the
total bacterial community structure been under-
taken. They revealed unique communities adapted
to the brackish water prevalent in the Baltic Sea
(Riemann et al., 2008; Koskinen et al., 2011). The
knowledge of bacterial diversity in the Baltic Sea
has further been improved with two studies gen-
erating high-resolution bacterial community profiles
from the seasonal samples at one station (Andersson
et al., 2010) and a transect along the salinity gradient
of the Baltic (Herlemann et al., 2011).

The Baltic Sea OMZ
The special geological features of the Baltic Sea,
with sills at its entrance and its characteristic deep
basins, make it prone to hypoxia, which has already
occurred during previous climatic warm periods
(Zillen et al., 2008). In the past B100 years, hypoxia
has been increasingly observed in the Baltic Sea,
which is probably caused by nutrient-driven eutro-
phication (Conley et al., 2009).

During the 1990s, a natural event decreased the
phosphorus content in the Baltic proper substan-
tially. It coincided with a decrease in the anoxic
deepwater volume, manifested in a lowering of the
top of the halocline from 60 to 100 m, which
increased the oxygen contents between 80 and
120 m depth. After a few years, the halocline rose,
and the oxygen content below 80 m depth
decreased. The Baltic proper went back to a state
with high phosphorus content and strong sum-
mertime blooms of cyanobacteria. This event
demonstrated that it should be possible to counter-
act hypoxia and restore the Baltic proper into a
less eutrophic state by using artificial oxygenation
of the deepwater by enforced mixing (Stigebrandt
and Gustafsson, 2007). These authors estimated
that the deepwater of the Baltic proper may be
kept oxygenated by pumping about 10 000 m3 s�1

of cold, oxygen saturated water from B50 m depth
down to B120 m depth in the deepwater.
It was suggested that the pumping should be

performed by B100 floating windmills equipped
with pumps.

Because the dynamics of phosphorus is not
sufficiently understood (for example, Gustafsson
and Stigebrandt, 2007), it is not known if it would
be possible to keep the Baltic proper in a less
eutrophic state by a continuous supply of oxygen to
the deepwater. This was one of the main topics to be
investigated within the frame of the Baltic deep-
water OXygenation (BOX) project (http://www.
marsys.se/lang/gb/about-us/research/baltic-deepwater-
oxygenation-box/).

The study site
Part of the BOX project is a pilot oxygenation study
in the Swedish Byfjord in order to determine the
effects of oxygenation on long-term anoxic bottom
waters. The Byfjord, located on the Swedish west
coast with the city Uddevalla at its end, is in a
similar trophic condition as the Baltic Sea. It is
about 4 km long, 1.5 km wide, and its greatest depth
is 51 m. The entrance of the fjord has a sill at a depth
of 13.5 m, connecting it to the Havstensfjord
(Supplementary Figure S1). The fjord has a strong
permanent halocline just below the sill depth due to
the vertical stratification in the Havstensfjord and
the coastal water outside of the fjord, which is
dominated by an B15-m-thick layer of relatively
fresh surface water from the Kattegat flowing north-
wards along the coast. Further strengthening of the
stratification comes from the river Bäveån, which
brings B80% of all freshwater into the fjord. Owing
to the weak vertical mixing, stagnant conditions
prevail in the Byfjord and the degradation of organic
matter leads to oxygen deficits in the unventilated
deep water. Over the past 40 years, anoxic
(o1mmol l�1 O2) conditions prevailed at 30 m
interrupted by short periods every 2–5 years
where oxygen levels were increased to hypoxic
(o90 mmol l� 1 O2) or higher (180 mmol l� 1,
Supplementary Figure S2) due to inflows of dense
water from Havstensfjord. Anoxic periods were
accompanied by the accumulation of hydrogen
sulfide (Supplementary Figure S3). The Byfjord is
the only Swedish fjord that has long-term anoxia in
deepwater like the Baltic proper. This and the fact
that it is relatively small, which made oxygenation
by pumping manageable, were the main reasons for
choosing it for the pilot oxygenation study.

The goal was to permanently increase the oxygen
concentration of the water column to reduce the
leakage of nutrients (mainly phosphorus) from the
sediments. Computations described in Stigebrandt
and Liljebladh (2011) showed that it should be
sufficient to pump about 2 m3 s� 1 of surface water
to the deeper layers (35 m) to keep these oxic.
Depending on season, the pumping can supply
30–100% of the oxygen consumed. It, however,
should weaken the stratification, resulting in an
increased frequency and intensity of natural
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occurring inflows from the oxic Havstensfjord.
When implemented, this proved to be correct and
a stronger mixing of the water column was observed
during times of pumping as predicted in Stigebrandt
and Liljebladh (2011). There have been four
complete and a few partial water exchanges of the
basin water (below sill level) between the first
pumping in October 2010 and spring 2012
(Stigebrandt et al., 2014).

Here we present our analysis of microbial com-
munity dynamics during the oxygenation process.
In contrast to all the currently available studies from
OMZs of permanently anoxic and seasonally
hypoxic sites, the study presented here documents
changes in the microbial community that occurred
when a long-term anoxic basin became oxic as a
result of a geo-engineering experiment.

Materials and methods

Sample collection
Samples from the Byfjord (BF: 58120.109N, 11152.799
O), Havstensfjord (HF: 58118.72 N, 11146.25 O) and
Koljöfjord (KF: 58113.733 N, 11134.559 O) were collected
with Niskin bottles aboard the R/V Skagerak during
eight time points between March 2010 and April 2012,
covering times before, during and after the oxygenation
(see Figure 1 and Supplementary Table S1 for details).
Between 5 and 20l of water per depth from multiple
depths (spanning oxic, oxycline and anoxic waters; see
Supplementary Table S1 for details) were filtered
through 0.22mm Supor PES Membrane Disc Filters
(PALL, Dreieich, Germany) to collect the biomass. Each
membrane was stored in 5ml sucrose lysis buffer
(0.75M sucrose, 0.4M NaCl, 50mM Tris pH 9.0 and
200mM EDTA pH 8.0) at � 20 1C until DNA extraction.

Nutrient collection and analysis
The Orust–Tjörn fjord system, to which the studied
fjords belong to, has been monitored monthly since
1990 by the Bohuskustens Vattenvårdsförbund
(www.bvvf.se) in collaboration with subcontractors
(mainly the Swedish Meteorological and Hydrologi-
cal Institute, SMHI). Sampling frequency has been
doubled during the BOX project. All samples were

taken using a Seabird rosette sampler (Sea-Bird
Electronics, Bellevue, WA, USA) with a SB19þ CTD
(Conductivity, Temperature and Depth probe). Initial
accuracy of conductivity is 0.005mSm� 1 and of
temperature 0.0051C. The hydrographic parameters
used in this study and their accuracy are oxygen
(iodometric titration, 0.6� 63±10%, 63� 469±5%
mmol l�1), hydrogen sulfide (1–300±9% mmol l� 1),
phosphate (0.02� 0.2±12%, 0.2� 10±3% mmol l� 1),
nitrate (0.1–1.5±7%, 1.5� 50±4%mmol l�1), nitrite
(0.02� 0.2±11%, 0.2� 10±3%) and ammonium
(0.2� 100±14%mmol l� 1) (Grasshof et al., 1999). See
Supplementary Table S2 for details.

DNA extraction
DNA was extracted as described previously
(Giovannoni et al., 1996; Treusch et al., 2009) with
minor modifications. Membranes were allowed to
thaw at RT, 500 ml 10% (w/v) sodium dodecyl sulfate
(SDS) and 500 ml Proteinase K (10 mg ml� 1) were
added, followed by incubation steps at 37 1C for
30 min and 55 1C for 30 min under continuous
mixing. Nucleic acids were purified by using
phenol:chloroform:isoamylalcohol (IAA) (25:24:1)
and chloroform:IAA (24:1) extractions, each fol-
lowed by a centrifugation at 2500 r.c.f. for 10 and
5 min, respectively. Genomic DNA was precipitated
with 0.1 volume of 2 M sodium acetate and 2
volumes of 96% ethanol, incubation at � 20 1C for
8 h and centrifugation at 10 000 r.c.f. for 45 min.
DNA pellets were washed with 70% ice-cold
ethanol and centrifuged at 10 000 r.c.f. for 30 min.
The DNA was air dried at 28 1C and resuspended in
500 ml TE buffer (pH 7.5). Impurities were removed
with the PowerClean Clean-Up Kit (MoBio,
Carlsbad, CA, USA) according to the manufacturer’s
instructions. DNA concentrations, quality and
purity were quantified spectrophotometrically
(NanoDrop, Wilmington, DE, USA) and by agarose
gel electrophoresis.

Terminal restriction fragment length polymorphism
(T-RFLP)
To profile the bacterial community we used terminal
restriction fragment length polymorphism (T-RFLP)
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Figure 1 Changes in oxygen concentrations in the water column of the Byfjord between 2010 and 2012. Pumping water from the
halocline to 35 m (pump run times are indicated by red lines at the bottom of the plot) triggered several inflows. In the beginning of 2010
also a small natural inflow occurred. Oxygen is plotted in mg/l, with negative values indicating the oxygen necessary to oxidize the
hydrogen sulfide present. Black dots indicate time and depths of sampling for molecular work.
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(Liu et al., 1997) targeting the first B500 bp of the
16S rRNA gene with the fluorescence-labeled for-
ward primer B27F FAM (50-AGRGTTYGATYMTGG
CTCAG-30) and reverse primer 519R (50-GWATTACC
GCGGCKGCTG-30). Polymerase chain reaction (PCR)
conditions were as follows: 1 min at 94 1C followed
by 29 cycles of 94 1C for 15 s, 54 1C for 45 s, 72 1C for
45 s and a final extension at 72 1C for 5 min. Each
50 ml PCR reaction contained 5–10 ng template DNA,
20 pmol of each primer, 1.25 U Taq polymerase
(Thermo Scientific, Slangerup, Denmark), 40 nmol
deoxynucleotides and 125 nmol MgCl2 in 1� Taq
reaction buffer (Thermo Scientific). Ten microliters of
each PCR product were hydrolyzed with 5 U of BsuRI
(Thermo Scientific) at 37 1C for 8 h, followed by
purification with the GeneJET PCR Purification Kit
(Thermo Scientific). One hundred nanograms DNA of
each sample were sent to the Uppsala Genome Center
(Uppsala, Sweden) for capillary electrophoresis.

Pretreatment of T-RFLP data
The Peak Scanner software (Applied Biosystems,
Foster City, CA, USA) was used to determine T-RF
sizes. Noise filtration (factor: 1.0) and binning
(clustering threshold factor: 0.8) were performed
with T-RFLP analysis Expedited (http://trex.biohpc.
org/; Culman et al., 2009). Operational taxonomic
units (OTUs) that were present in only one sample
and had a relative abundance of less than 1% were
removed manually.

Statistical analysis
The T-RFLP data were analyzed with the Primer-E
software package (PRIMER-E Ltd, Ivybridge, UK;
Clarke and Gorley, 2006). To down-weigh highly
abundant species, the matrix was log transformed.
Similarities between samples were calculated using
the Bray–Curtis algorithm. The resulting resem-
blance matrix was finally illustrated through
non-metric multi-dimensional scaling (MDS)
(Clarke and Ainsworth, 1993) in a two-dimensional
plot. Analysis of similarities (ANOSIM) and ana-
lyses for species contributions (SIMPER) for a priori
defined groups of samples were performed on the
Bray–Curtis resemblance matrix.

Clone libraries
To identify OTUs observed in the T-RFLP analysis,
clone libraries of bacterial 16S rRNA genes were
constructed from two samples (BF April 2010 18 m,
BF June 2011 3 m), which covered the observed
diversity best. Five to ten nanograms of template
DNA were amplified in 50-ml PCR reactions that
contained 20 pmol (each) of the primers B27F
(50-AGRGTTYGATYMTGGCTCAG-30) and U1492R
(50-GGYTACCTTGTTACGACTT-30), 5 U Taq poly-
merase (Sigma-Aldrich, St Louis, MO, USA) and
25 nmol deoxynucleotides in 1� Taq reaction buffer
including MgCl2 (Sigma-Aldrich) with the following

conditions: 2 min at 94 1C followed by 30 cycles of
94 1C for 1 min, 54 1C for 1 min, 72 1C for 2 min and a
final extension at 72 1C for 10 min.

Four microliters of each PCR product were cloned
into a pCR4-TOPO vector using the TOPO TA
Cloning Kit for Sequencing (Invitrogen, Carlsbad,
CA, USA) and chemically transformed into TOP10
cells according to the manufacturer’s instructions.

A total of 200 clones were screened by colony PCR
with the primers M13F (50-GTAAAACGACGGCCAG-30)
and M13R (50-CAGGAAACAGCTATGAC-30) under
the following PCR conditions: 10 min at 94 1C
followed by 30 cycles at 94 1C for 30 s, 50 1C for
30 s, 72 1C for 2 min and a final extension at 72 1C for
10 min. Each 50ml reaction contained 20 pmol of
each primer, 1 U Taq polymerase (Thermo Scientific),
40 nmol deoxynucleotides and 125 nmol MgCl2 in
1� Taq reaction buffer (Thermo Scientific). Obtained
PCR products were digested with 5 U BsuRI (Thermo
Scientific) for 8 h and analyzed by 2% agarose gel
electrophoresis in 1� TAE along with 5mg BsuRI
hydrolyzed FX174 DNA (Thermo Scientific) as a size
standard. Clones with similar RFLPs were grouped
together and representative clones from each group
were sequenced by Macrogen Europe (Amsterdam,
Netherlands) using the primers T3 (50-ATTAACCCTC
ACTAAAGGGA-30) and T7 (50-TAATACGACTCACTA
TAGGG-30). In total, 96 clones were sequenced.

Phylogenetic analysis
Forward and reverse reads were assembled,
screened for chimeras using Bellerophon (Huber
et al., 2004) and imported into the SSU Reference
111 SILVA database (Pruesse et al., 2007). Phyloge-
netic reconstructions were performed using the ARB
software package (Ludwig et al., 2004). TRF-CUT
(Ricke et al., 2005) was used for in silico T-RF
predictions. All sequences have been submitted to
GenBank under the accession numbers KC545702–
KC545786.

Results

Oxygenation of the Byfjord
Water from the surface layer of the Byfjord was mixed
in the anoxic bottom water by several pump runs
starting in October 2010. This triggered inflows of
oxygen-rich water from the Havstensfjord into the
Byfjord (Figure 1). The whole water column turned
oxic, but during 2011 the oxycline started to rise and
the bottom water turned anoxic again. A second
inflow in April 2011 was observed, but with minor
impact on the oxygen concentrations. The oxycline,
however, remained deeper in the water column than
in the previous years and a third inflow in the
beginning of 2012 lowered the oxycline again. After a
fourth inflow in March 2012, the whole water column
was oxic with oxygen levels up to 180mmol� l� 1 and
metal oxides were traceable in the upper 2 cm of the
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sediment (P Hall, unpublished results). As a result of
these inflows from the Havstensfjord, B50% of the
water in the Byfjord below 15 m has been successively
replaced by the water originating from the Havstens-
fjord. For detailed information about the physical
background of the oxygenation, please refer to
Stigebrandt et al. (2014).

Bacterial community fingerprinting
To analyze the response of the bacterial community
to the oxygenation process, we generated community
fingerprints from water column biomass samples
using 16S rRNA gene-based T-RFLP. In addition to
the 40 Byfjord samples, eight samples from the
Havstensfjord and seven samples from the Koljöfjord
were analyzed. Havstensfjord served as control
station because of its role as source of the oxic water
inflows into the Byfjord and for the fact that no
artificial mixing was performed here. Koljöfjord was
the second control station without artificial mixing.

We identified a total of 188 OTUs in the T-RFLP
dataset, of which 152 were detected in all three fjords
and contributed to 90% (BF), 97% (KF) and 98%
(HF) of the total bacterial abundances observed. The
number of OTUs varied from 42 to 84 per sample
without any observed correlation between number of
OTUs and depths or oxygen concentrations.

To compare the different community fingerprints,
we used the PRIMER-E software package to visualize
the similarities and differences between the samples
as distances between them in a two-dimensional
MDS plot (Figure 2). Samples with similar microbial
composition were thereby clustered together,
whereas samples with different microbial composi-
tions ordinated farther apart. Environmental data
were overlain as vectors onto the resulting MDS plot
to display which samples or clusters are associated
with which environmental parameter.

Four clusters could be distinguished, defined by
samples with 445% similarity in OTU composi-
tion. The surface cluster (S) included exclusively
samples from 3 and 5 m, whereas samples below
these depths were split up between the other three
clusters independent of their actual depth. Samples
from 2010 taken below 5 m in the Byfjord were
mainly affiliated with the deep hypoxic cluster I
(DH I), while samples from the same depths taken in
2011 were evenly distributed between the chemo-
cline (C) and the DH I cluster. Samples from 2012
were all affiliated with the C cluster except the
surface samples, which ordinated in the surface
cluster. Samples from the control fjords were found
in the surface and the C cluster but not in the DH I
cluster, instead forming a separate deep hypoxic
cluster (DH II). Although in 2011 the hypoxic
communities were different in BF and HF, we
observed that the 30- and 40-m samples from 2012
clustered together after the water column in both
fjords turned oxic. This is notable considering the
different microbial and geochemical histories of
both fjords.

Vectors for environmental parameters showed that
salinity and oxygen concentrations were mainly
responsible for separating the surface and the
chemocline cluster from the deep hypoxic clusters.
Ammonium, hydrogen sulfide and phosphate were
part of this differentiation as well and could
additionally explain the differences between DH I
and DH II. Higher concentrations of nitrate and nitrite
were mainly affiliated with the DH II and C clusters.

In order to confirm the separation of samples into
different clusters, we used an ANOSIM. All samples
were therefore a priori divided into three groups
according to oxygen and hydrogen sulfide concen-
trations: oxic (4 90 mmol l� 1 O2), hypoxic (o
90mmol l�1 O2) and sulfidic (H2S detected). These
groups were comparable but not identical to the
groups found in the cluster analysis (Supplementary
Figure S4), which could not be used in the ANOSIM
analysis in order to avoid circular argumentation.
The ANOSIM revealed a global R-value of 0.569,
supporting that the samples in the three defined
groups have different microbial communities with
some overlap. Pairwise comparison of the sulfidic
group with the hypoxic resp. oxic group revealed
R-values of 0.593 and 0.798, indicating differences
between the sulfidic and hypoxic groups, with some
overlap and clear distinction between the sulfidic
and oxic groups. The oxic and hypoxic groups
shared the highest overlap, as indicated by an
R-value of 0.238.

Environmental data
To obtain a detailed picture of how the environmental
data match the microbial community, we displayed
the biogeochemical data as a heat map separately for
each sample (Supplementary Figure S5).

The surface cluster was mainly associated with
the highest oxygen levels, but lowest salinity and
nutrient concentrations. Moderate to high oxygen
and low nutrients but the highest nitrate concentra-
tions defined the chemocline cluster. Salinity and
phosphate levels were also sporadically elevated in
this cluster. Finally, low oxygen and nitrate con-
centrations in combination with high ammonium,
sulfide, phosphate and salinity levels characterize
the deep hypoxic cluster I. The deep hypoxic cluster
II seemed to be lower in hydrogen sulfide, moderate
in ammonium, oxygen and nitrate concentrations,
but higher than average in nitrite. However, only
five samples were present in this cluster, and
considering the variation in some of the environ-
mental data between those samples it remains
unclear how representative they are.

Spatial and temporal abundance of individual OTUs
To reveal the most abundant bacterial species before,
during and after the oxygenation, we analyzed the
relative abundance of individual OTUs within the
T-RFLP data set. As we were aware that oxygen is
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most likely the main shaping factor, we first divided
samples from each water column profile into oxic
(490mmol l� 1 O2) and hypoxic (o90mmol l�1 O2)
zones to assess these very different layers separately.
Relative abundances of each OTU were then
integrated among samples from the same profile
and zone and finally sorted after the most abundant
OTUs (Supplementary Table S4). The five most
abundant OTUs from each integrated area were
assembled among all samples. This led to a total of
38 different OTUs, which we considered to have the
highest contribution to the microbial community in
the Byfjord and the two control fjords. Within
individual samples, the summarized relative abun-
dance of these 38 OTUs reached 74% on average,
with at least 57% and at most 83%, supporting our
assumption. Repeating this analysis with the 10
most abundant OTUs in each sample added only 8
OTUs to the previously mentioned 38 OTUs.
Furthermore, the additional 8 OTUs increased the
average relative abundance only by B5% and were
generally close to the detection limit of our method
(B1% of the total fluorescence) (Nocker et al., 2007)
in individual samples. Hence we focus on the 38
most important OTUs. Additional analyses for
species contributions (SIMPER) confirmed that the
chosen 38 OTUs included the most abundant OTUs

in the Byfjord (Supplementary Table S3), represent a
major part of the bacterial community and are
mainly responsible for the differentiation of oxic,
hypoxic and sulfidic communities displayed in the
MDS plot (Figure 2).

We furthermore predicted a phylogenetic place-
ment for the observed OTUs with 16S rDNA
sequences obtained from the clone libraries.
Sequences were therefore placed into phylogenetic
trees and in silico digested with BsuRI
(Supplementary Table S5). This showed that the
two clones BFB006 and BFB022 were affiliated with
the SUP05 cluster within the gamma proteobacteria
(Figure 3a). The SUP05 clones from the Byfjord
clustered neither with SUP05 subclades observed in
the Saanich Inlet (SI-1 and SI-2) nor within those
from the Baltic Sea (BBAL-1 also SI-2), but were
closest related to sequences from a seawater reverse
osmosis pre-treatment system. We furthermore
identified several SAR11 clones that, interestingly,
originated from three different subclades (Surface 1,
Deep 1 and Chesapeake Bay) but could be separated
in the T-RFLP dataset based on the differences in
their terminal restriction fragment sizes (Figure 3b).

Combined results from the phylogenetic trees and
the T-RFLP analyses showed that during the time-
frame of this study members of the SAR11 Surface 1
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clade (OTU 113 bp) were the most abundant bacter-
ial species in the oxic zone independent of season
and fjord, whereas members of the SUP05 cluster
(OTU 193 bp) were dominating the hypoxic parts.
Owing to the oxygenation in 2011 and 2012, the
hypoxic parts declined or disappeared, which was
also reflected in the depression of SUP05 and
proliferation of SAR11 Surface 1 and Chesapeake
Bay subclade populations.

SAR11 subclades, SUP05 and the remaining
OTUs that were revealed to be highly abundant
were furthermore analyzed in detail for spatial and
temporal abundance and directly related to environ-
mental data. Representative OTUs are shown in
Figure 4, while all 38 OTUs are shown in
Supplementary Figure S6. This showed that all
three SAR11 subclades and SAR86 (Supplementary
Table S5) were mainly present in regions where
oxygen was detectable in significant amounts
(425mmol/l). These OTUs were initially restricted
to layers above 15 m but were later, following
oxygenation, also highly abundant below this depth.
In contrast, SUP05, uncultured members of the
Flavobacteriaceae and Spirochaetes, Arcobacter,
Sulfurimonas, Chlorobium and Desulfocapsa were
mainly highly abundant in oxygen-free areas and
became lower in abundance when oxygen concen-
trations increased. However, the high abundance of
SUP05 above the oxycline in April 2010 seems to be
inconsistent with this observation.

Arcobacter, Desulfocapsa, Flavobacteriaceae,
Chlorobium, Sulfurimonas and SUP05 were further-
more absent or in low abundance in the hypoxic
region of the Havstensfjord. Additionally, this
region was different from the hypoxic zone in the
Byfjord due to the absence of sulfide in Havstens-
fjord, while the remaining geobiochemical data were
comparable. Spriochaetes were found to be more
abundant in the Havstensfjord as long as ammonium
was detectable and sulfide absent.

Unidentified OTUs 405 and 324 bp were close to
the detection limit in 2010 but became highly
abundant in 2011/2012 and were restricted to areas
where nitrate and/or nitrite were present. This is
strongly supported by their increased relative
abundance in June 2011 and April 2012, when
nitrite levels in the water column were elevated. The
same observation was made in Havstensfjord.

Four OTUs were identified as chloroplasts and
exclusively observed in samples from 3 and 5 m
where light conditions promote phototrophic
growth. The OTUs 263, 278, 393, 485 and 519 bp
were also exclusively observed in the surface but
could not be identified. Individual OTUs showed
strong seasonal changes, whereas the summarized
abundance of all OTUs in this group of potential
phototrophic organisms behaved more consistent
and was well inversely and directly correlated with
silica and chlorophyll a, respectively (Figure 5). In
December 2011 the abundance of this group strongly
decreased, whereas in March 2012 it increased to

41%. March 2012 was also the first time during the
oxygenation experiment at which the sediment
surface turned oxic. We could not show the further
development of this group owing to the fact that the
surface sample from April 2012 was an outlier.

Discussion

Changes in the microbial community structure
Oxygen is known to be a major shaping factor for
microbial communities in marine ecosystems.
Although studies on OMZs often only capture snap-
shots of the community structure, these communities
constantly change in response to changing oxygen
levels. The fate of anoxic microbial communities in
response to enhanced oxygen levels, however, is
rarely described in marine systems. The transition of
the anaerobic community to a common aerobic
community is always assumed but has yet not been
observed. To study these transitions, a controlled
experimental setup with continuous sampling is
required and the Byfjord oxygenation pilot provided
this opportunity. Because of the pumping and
subsequently triggered inflows of oxygen-rich water,
the oxygen levels in the Byfjord rose to an extent that
the anoxic bottom water first regressed and even-
tually entirely disappeared. The MDS analysis
(Figure 2) and the ANOSIM results showed that the
amount of oxygen available shaped the bacterial
communities, regardless of the depths they were
collected from or the season they were collected in.
This observation is similar to earlier studies in which
the composition of OMZ, surface and deep oxycline
communities were compared (for example, Stevens
and Ulloa, 2008). In the Byfjord, a bacterial commu-
nity similar to the communities previously observed
in the oxycline replaced the declining hypoxic
community.

Considering that water from 20 m depths of the
Havstensfjord is the main source of water for the
inflows into the Byfjord, it is reasonable that
the communities in both fjords showed greater
similarity during the inflow periods. The fact that
the community structure in the Byfjord was still
similar, but not identical, to the Havstensfjord in
March 2012, several weeks after the inflow hap-
pened, shows that this community could establish
itself. That environmental parameters, and not the
inoculum, shape the microbial community was also
recently shown by Sjostedt et al. (2012).

Interestingly, hypoxic samples from the Byfjord
and from the control fjords form distinct clusters in
the MDS analysis (DH I and DH II, Figure 2). This
separation can be explained by higher sulfide and
nutrient concentrations in the Byfjord. Sulfide,
ammonium and phosphate were four, six and two
times, respectively, higher in the hypoxic samples
from the Byfjord compared with the control stations
(Supplementary Table S2). Other environmental
parameters (salinity, temperature and oxygen) could
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not explain the differences in microbial commu-
nities observed.

In our analysis, it became obvious that the
microbial communities in the surface cluster are
shaped by high oxygen, low salinity and low
nutrient levels. Although there are no data for light,
OTUs associated with chloroplasts and their corre-
lations with the chlorophyll data (Figure 5) are good
indications that eukaryotic phototrophs play a role
in separating the surface cluster from the other
clusters.

Identification of observed OTUs
T-RFLP is a well-established method that was
recently shown to be as reliable as 454 pyrotaq
sequencing (Pilloni et al., 2012), although the
detection limit is higher and the resolution lower.
For example, OTUs that are lower abundant than
1% cannot be detected reliably (Nocker et al., 2007)
and not in all cases clear separations between
subclades can be observed. Further, the construction
of clone libraries is necessary in order to determine
the organisms represented by the OTUs. Clones can
be analyzed either by in silico predictions of T-RF
lengths or by T-RF determination using T-RFLP or a
combination of both. This leads to reliable identifi-
cations of the observed OTUs. Pure in silico
predictions based on public 16S rRNA databases
are feasible but often have ambiguous results.

We could identify most of the abundant OTUs
with our clone libraries. The comparison of the
environmental T-RFLP data set with predicted T-RF
lengths from the clones led in most cases to a direct
match. However, for some OTUs we observed a
phenomenon known as T-RF drift (Kaplan and Kitts,
2003), where the predicted T-RF size from the clone
is different from the observed OTU in the environ-
mental data. Hence, we allowed for 1 base pair
difference between predicted and actual fragment
size. The only exception was the SAR11 Surface 1
clade OTU, where we observed a 4-bp difference.
This phenomenon is documented in the literature
(Morris et al., 2005) and was also confirmed by T-RF
analysis of one of our SAR11 Surface 1 clones (data
not shown).

Spatial and temporal distribution of species before the
oxygenation
Our survey shows that the bacterial community in
the Byfjord before the oxygenation was comparable
with communities observed in other OMZs, which
normally comprise SAR11, SAR86, SUP05 and other
sulfur oxidizers, sulfur reducers and Flavobacteria-
ceae (Stevens and Ulloa, 2008; Canfield et al., 2010;
Stewart et al., 2012).

Members of the SAR11 Surface 1 and SAR86
clades were dominant in the oxygen-rich layers of
the Byfjord, showing abundances of up to 38% and
12%, respectively. These results are in line with
previous reports that describe both clades as
important members of aerobic marine microbial
communities (for example, Giovannoni and Rappé,
2000; Stevens and Ulloa, 2008).

The hypoxic layers were dominated by members of
the SUP05 clade, similar to reports from other OMZs
(Wright et al., 2012). In April 2010, however, they
were also surprisingly abundant (47%) above the
oxycline. It has been reported that members of the
SUP05 clade have genes for a sulfur-oxidizing (SOX)
pathway, which potentially enables S2O3 reduction
after abiotic oxidation of hydrogen sulfide with
oxygen (Walsh et al., 2009). In the Byfjord, we
observed high sulfide concentrations just below the
oxycline, which could have led to significant S2O3

concentrations above the oxycline where enhanced
SUP05 growth was observed. In addition, the
simultaneous decline in nitrate concentrations
supports this assumption since nitrate serves as an
electron acceptor for SUP05 members (Stevens and
Ulloa, 2008; Walsh et al., 2009). It is also possible that
members of the SUP05 clade present here can use
oxygen as electron acceptor, similar to SUP05
bacteria observed in hydrothermal vent plumes in
the Guaymas Basin (Anantharaman et al., 2013), or as
indicated by the presence of genes for a complete
oxidative phosphorylation complex in a SUP05/
ARCTIC96BD-19 metagenome in the eastern South
Pacific (Murillo et al., 2014). However, the two types
of cytochrome c oxidase genes observed in the SUP05
clam symbionts and the Guaymas Basin were not
found in the SUP05 metagenome from the hypoxic
waters of the Saanich Inlet (Walsh et al., 2009;
Anantharaman et al., 2013), making the use of oxygen
by OMZ SUP05 highly speculative. It might be that
the high SUP05 population above the oxycline in the
Byfjord represents an ecotype of the SUP05 cluster
that we were not able to differentiate from the other
Byfjord SUP05 members by using T-RFLP; hence
further studies will be needed to resolve this
observation in detail.

An additional observation from April 2010 shows
that SUP05 abundance decreased to 15% directly
below the oxycline and rose back to 43% at 35 m.
This was most likely due to a small natural inflow of
oxygen-rich water 1 month earlier that created
conditions at 35 m that were comparable to the
region above the oxycline. Nitrification at this depth
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was enhanced as well, indicated by a small but
significant nitrite peak and the decline of ammo-
nium. Missing accumulation of nitrate indicated a
faster reduction of nitrate than oxidation of nitrite. It
is, however, surprising that we could observe
significant SUP05 abundance in layers with high
hydrogen sulfide concentrations (up to 82 mmol/l),
while recent findings from the Baltic Sea indicate
that the abundance of SUP05 members is negatively
correlated with hydrogen sulfide (Glaubitz et al.,
2013). That some Byfjord SUP05 members seem to
behave differently may indicate a not described
ecotype, which is furthermore supported by our
phylogenetic analysis where Byfjord SUP05
sequences were not affiliated with the subcluster
BBAL-1 (also known as SI-2) described in the Baltic
Sea (Glaubitz et al., 2013). As mentioned earlier,
further experiments are necessary to resolve poten-
tial SUP05 ecotypes and their ecological function in
the Byfjord.

We could further detect sulfide oxidizers like
Arcobacter (Wirsen et al., 2002), Sulfurimonas
(Inagaki et al., 2003) and Chlorobium (Musat et al.,
2008) in sulfidic areas but also, with significant lower
abundances, above the oxycline. Sievert et al. (2007)
showed in culture experiments that Arcobacter grows
as a microaerophile in the vicinity of oxic–anoxic
interfaces, supporting our findings. Arcobacter has
been described previously in hypoxic and anoxic
estuary regions like the Saanich Inlet (Wright et al.,
2012) and the Baltic Sea (Koskinen et al., 2011).

Sulfurimonas has been previously detected in the
oxycline of the Baltic Sea (Labrenz et al., 2005) and
one strain, Sulfurimonas gotlandica GD1T, has been
isolated and characterized (Labrenz et al., 2013).
The strain showed chemolithoautotrophical growth,
performing dark CO2 fixation while coupling deni-
trification with the oxidation of reduced sulfur
compounds (Grote et al., 2012). The closest relatives
of the phototrophic green sulfur bacterium detected
in the Byfjord are capable of oxidizing S2O3, but like
all green sulfur bacteria are obligate anaerobic
(Musat et al., 2008). Deltaproteobacterial Desulfo-
capsa species (Finster et al., 1998) were also
abundant (max. 13%) in the anoxic bottom water,
indicating an active sulfur cycle in the water column
of the Byfjord.

We also found members of the Flavobacteriaceae
and Spirochaete to be abundant in the Byfjord (max.
14% resp. 11%). Their roles within OMZs remain
unclear. However, we observed increased Spiro-
chaete abundance in the sulfide-free Havstensfjord
as long as ammonium was present, indicating
possible involvement in nitrogen cycling.

Oxygenation
The relative abundances of species associated with
the OMZ and the chemocline region decreased
substantially after oxygen levels rose. Arcobacter,
Desulfocapsa, Sulfurimonas and Chlorobium were

more sensitive to the changing conditions than
SUP05, the uncultured Spirochaetes and the uncul-
tured Flavobacteriaceae, which is not surprising
considering the physiological characteristics of
these species (Finster et al., 1998; Wirsen et al.,
2002; Grote et al., 2008; Musat et al., 2008).

Benefitting from the rise in oxygen were the
aerobic species like members of the SAR11 Surface
1, SAR11 Cheasapeak Bay and SAR86 clades, which
increased in abundance in these formerly anoxic
layers. The unidentified OTUs with 405 and 324 bp
also became more abundant. This was accompanied
by rising nitrate and nitrite concentrations, indicat-
ing possible involvement in nitrogen cycling.
Unfortunately, these OTUs were not present in the
samples the clone libraries were constructed from
and therefore were not represented in them. In an in
silico analysis, a significant number of sequences
affiliated with the SAR324 (Marine Group B) clade
were predicted to have terminal fragments of 405/
406 bp besides a group of Flavobacteriaceae with
405 bp. Although some uncertainty remains, these
are strong indications that the OTU 405 bp is
representing SAR324 clade organisms. Similarly,
predictions for OTU 324 bp revealed sequences
belonging to the Rikenellaceae (predicted 324 bp),
a group of fecal bacteria (Worthen et al., 2006), and
ARCTIC96BD-19 clade (323 bp) as possible identifi-
cations. ARCTIC96BD-19 clade organisms are often
observed in OMZs (Stevens and Ulloa, 2008; Wright
et al., 2012) and in the bottom boundary layer of
hypoxia-prone costal shelves (Bertagnolli et al.,
2011). It was suggested that they require specific
ecological conditions, namely gradients in oxygen
and nitrite (Stevens and Ulloa, 2008). Interestingly,
we observed an increase in abundance for OTU
324 bp after the oxygenation in the Byfjord, indicat-
ing an aerobic or microaerophilic lifestyle. Contrary
to Stevens and Ulloa (2008), however, this OTU was
correlated with the presence of nitrate and not
nitrite.

Conclusions

The large-scale engineered oxygenation is one
possibility to restore hypoxic or anoxic bodies of
marine waters. However, little experience is avail-
able if these ecosystems can return to a natural oxic
state. With our study in the Swedish Byfjord, we
provide the first evidence that it is possible to
change a long-term anaerobic marine bacterial
community by engineered oxygenation. With the
inflow of oxygen-rich water, a community structure
similar to those in seasonal oxic fjords established
itself, with no unexpected blooms of members of the
rare biosphere. Because the bacterial community
structure in the Byfjord is comparable to those in
well-studied OMZs like the Saanich Inlet and the
Baltic Sea, we can expect that a larger-scale artificial
oxygenation, for example, in the Baltic would result
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in a similar shift in bacterial community structure as
we observed here. How stable this established
community is in the long run has still to be
determined.
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