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The gut microbiota is hypothesized to have a critical role in metabolic diseases, including type 2
diabetes (T2D). A traditional Chinese herbal formula, Gegen Qinlian Decoction (GQD), can alleviate
T2D. To find out whether GQD modulates the composition of the gut microbiota during T2D
treatment, 187 T2D patients were randomly allocated to receive high (HD, n=44), moderate (MD,
n=>52), low dose GQD (LD, n=50) or the placebo (n=41) for 12 weeks in a double-blinded trial.
Patients who received the HD or MD demonstrated significant reductions in adjusted mean changes
from baseline of fasting blood glucose (FBG) and glycated hemoglobin (HbA1c) compared with the
placebo and LD groups. Pyrosequencing of the V3 regions of 16S rRNA genes revealed a dose-
dependent deviation of gut microbiota in response to GQD treatment. This deviation occurred before
significant improvement of T2D symptoms was observed. Redundancy analysis identified 47 GQD-
enriched species level phylotypes, 17 of which were negatively correlated with FBG and 9 with
HbA1c. Real-time quantitative PCR confirmed that GQD significantly enriched Faecalibacterium
prausnitzii, which was negatively correlated with FBG, HbA1c and 2-h postprandial blood glucose
levels and positively correlated with homeostasis model assessment of p-cell function. Therefore,
these data indicate that structural changes of gut microbiota are induced by Chinese herbal formula
GQD. Specifically, GQD treatment may enrich the amounts of beneficial bacteria, such as
Faecalibacterium spp. In conclusion, changes in the gut microbiota are associated with the anti-

diabetic effects of GQD.
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Introduction

Type 2 diabetes (T2D), which is characterized
by low-grade inflammation, insulin resistance
(Shoelson, 2006) and B-cell failure (Butler et al.,
2003), has become increasingly prevalent world-
wide (Xu et al., 2013). The estimated proportion of
diabetes among adults is 8.3% in 2010, among
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which T2D accounts for at least 90% (Alberti and
Zimmet, 1998; Whiting et al., 2011). This proportion
is projected to increase to 9.9% by 2030 (Whiting
et al., 2011). Development of T2D results mostly
from obesity, which has low-grade inflammation
and insulin resistance (Hotamisligil, 2006).

The gut microbiota may have a vital role in obesity
development (Backhed et al., 2004; Collins et al.,
2013; Le Chatelier et al., 2013; Zhao, 2013). For
example, endotoxin produced by an opportunistic
pathogen in the gut, such as Escherichia coli,
induced obesity and insulin resistance when a
purified form was subcutaneously infused into mice
(Cani et al., 2007a). A greater abundance of
opportunistic pathogens, such as Betaproteobac-
teria, was found in the gut of diabetic patients
compared with healthy controls (Larsen et al., 2010).
A more recent comparative metagenomic analysis of
the fecal samples of 171 diabetic patients and 174
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healthy controls showed that diseased samples had
lesser abundance of butyrate-producing bacteria,
such as Faecalibacterium prausnitzii, but greater
abundance of opportunistic pathogens, including
Clostridium bolteae and Desulfovibrio sp. (Qin et al.,
2012). Another study found that the early onset of
high-fat-diet-induced T2D was characterized by an
increased bacterial translocation from the intestine
towards tissues (Amar et al., 2011). An opportunis-
tic pathogen, Enterobacter cloacae B29, isolated
from the gut of a morbidly obese and diabetic
patient, induced obesity and insulin resistance in
germ-free mice (Fei and Zhao, 2013). Taken together,
these studies indicate that a dysbiotic gut microbiota
may causatively contribute to obesity and diabetes
development, and thus may serve as a potential new
target for disease control.

To treat obesity, T2D and other metabolic diseases,
several attempts have been made to target the gut
microbiota (Cani et al., 2007b, 2009; Park et al.,
2013). Berberine, the major pharmacologic compo-
nent of a Chinese herb Coptis chinensis (Huang-
Lian) originally used to treat bacterial diarrhea
(Khin Maung et al., 1985; Rabbani et al., 1987,
Tang et al., 2009), showed clinical efficacy in
treating diabetes in a multicentered, randomized,
double-blinded and placebo-controlled clinical trial
(Zhang et al., 2008). The herb C. chinensis has been
used in traditional Chinese medicine (TCM) for
diarrhea control for nearly 2000 years. Our recent
study showed that berberine prevented high-fat-
diet-induced obesity and insulin resistance,
enriched short-chain fatty acid-producing bacteria,
reduced numbers of opportunistic pathogens and
alleviated inflammation in Wistar rats (Zhang et al.,
2012b).

Drugs that treat bacterial diarrhea, such as
berberine, might be useful for T2D treatment
because both diseases share a dysbiotic gut micro-
biota. A standardized berberine-containing Chinese
herbal formula, Gegen Qinlian Decoction (GQD), has
been a treatment for diarrhea in Shang Han Lun
since the East Han Dynasty. Its use was recorded by
the prestigious physician Zhongjing Zhang (ap 150—
219). Subsequently, GQD has been reported to have
potentially beneficial effects in the treatment of
diabetes in animal trials, as well as in some clinical
observations. For example, GQD significantly
reduced fasting blood glucose (FBG) and glycated
hemoglobin (HbA1c) in streptozotocin (STZ) and
high-fat-diet-induced diabetic SD rats, and the
serum of SD rats that received GQD enhanced
glucose consumption in 3T3-L1 adipocytes (Zhang
etal., 2013). T2D patients treated with a high dose of
modified GQD two times daily for 3 months showed
a reduction in HbA1c of 1.79% from the initial level
of 9.2%. This decrease was significantly different
from that of patients receiving a low-dose treatment
(Tong et al., 2011). However, these studies are either
animal trials or open, non-placebo-controlled
clinical investigations with small sample sizes.
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Moreover, the mechanism underlying GQD’s impact
on glycemic efficacy has barely been elucidated.
A recent nuclear magnetic resonance-based plasma
metabonomic study revealed that 5 weeks of GQD
treatment conspicuously modulated gut microbial
metabolism by degradation of choline into methyla-
mines, together with a decrease in FBG and an
expansion of islets in STZ and high-fat-diet-induced
diabetic rats (Tian et al, 2013). This finding
indicates that the gut microbiota might have a
pivotal role in the effect GQD has on diabetic
subjects. However, there is still a lack of direct
evidence showing that GQD can modulate gut
microbiota, particularly in humans.

In this study, we conducted a randomized,
double-blinded, placebo-controlled clinical trial
to evaluate the efficacy and safety of GQD
in the treatment of T2D. Furthermore, we
examined the structural alterations of gut micro-
biota in response to GQD treatment intended to
alleviate T2D.

Materials and methods

Study design

The study was a 12-week, randomized, double-
blinded and placebo-controlled clinical trial that
included a 2-week washout period. It was approved
by the Ethics Committee of Guang’anmen hospital of
China Academy of TCM. Participants were recruited
by Guang’anmen hospital, Dong Zhimen Hospital
affiliated to Beijing TCM University, China—Japan
Friendship Hospital or Ji Shui Tan Hospital of
Beijing from August 2010 to May 2011. All partici-
pants signed informed consent forms before begin-
ning the study. The study was conducted in
accordance with the principles of the Declaration
of Helsinki.

The inclusion and exclusion criteria of the
patients’ enrollments can be found in the
Supplementary Materials and methods. Using an
initial screening, including FBG test and 75-g oral
glucose tolerance test, 629 recently diagnosed T2D
patients who had not received prior pharmacologic
treatment for T2D were recruited into the study.
After a 2-week washout period and the review of a
series of examinations, 403 patients were excluded
for not meeting the inclusion criteria and 2 patients
were excluded for other reasons. The remaining 224
patients were randomly assigned to four groups of
56 patients. Each group received one of the follow-
ing treatments: high (HD), moderate (MD) or low
dose (LD) GQD, or the placebo for 12 weeks.
Randomization was performed centrally and was
concealed and stratified in blocks of eight by the
PROC PLAN process using the SAS software (SAS
Institute Inc., Cary, NC, USA). After the study was
completed, a total of 187 patients were included for
the final analysis by the verification of data
examination committee (Supplementary Figure 1).
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Drug administration

The TCM formula in our study was GQD, composed
of four herbs, namely: Gegen (Radix Puerariae),
Huangqin (Radix Scutellariae), Huanglian (Rhizoma
Coptidis) and Gancao (Honey-fried Licorice Root)
(Supplementary Figure 2a). Supplementary Table 1
lists the amount of each herb in one unit of GQD
formula in each group. Herbs were all provided and
quality controlled by Beijing Shuanggiaoyanjing
Chinese  herb manufacturer (Supplementary
Materials and methods). The TCM intervention
and placebo were given as decoction; these were
prepared by Beijing Jiulong Pharmaceutical Factory
according to a standard production process
(Supplementary Materials and methods). Each unit
of GQD formula or placebo yielded 300ml of
decoction. Each patient orally took 150ml of the
decoction two times daily for 12 weeks. All of the
drugs and decoctions were quality controlled
throughout the trial, and the placebo decoction
was prepared by the same standardized process
(Supplementary Materials and methods).

Study evaluation and outcomes

The following primary efficacy outcomes were used:
changes in HbA1c, FBG and 2-h postprandial blood
glucose (2h-PBG) levels. Secondary efficacy out-
comes included changes in serum insulin, lipids
levels and body mass index. Study assessments
were performed at 0, 4, 8 and 12 weeks. Measure-
ments of FBG, 2h-PBG, body mass index, waist
circumference and hip circumference were taken at
0, 4, 8 and 12 weeks. Serum HbA1c, insulin, total
cholesterol, triglycerides, high-density lipoprotein
cholesterol and low-density lipoprotein cholesterol
measurements were performed at weeks 0 and 12.
Fecal samples were collected every 4 weeks until
the end of trial for gut microbiota analysis.

Clinical and biochemical measurements

Biochemical measurements of glucose, serum lipids,
HbA1c and insulin were performed in a central
laboratory (Guang’anmen Hospital of China Academy
of TCM, Beijing, China). Glucose, serum total
cholesterol, triglycerides, high-density lipoprotein
cholesterol and low-density lipoprotein cholesterol
were measured by enzymatic methods (Olympus
AU2700; Olympus Co. Ltd., Tokyo, Japan). HbA1lc
was measured by high-performance liquid chroma-
tography using a variant hemoglobin HbA1lc assay
(ADAMS A1lc HA-8160; Arkray Inc., Kyoto, Japan).
Serum insulin was measured using a double-anti-
body RIA (ADVIA Centaur; Bayer Diagnostics,
Leverkusen, Germany). ELISA Kits were used to
measure plasma orosomucoid (Assaypro, St Charles,
MO, USA), adiponectin (R&D System, Minneapolis,
MN, USA), tumor necrosis factor-o. (R&D System)
and serum amyloid A protein (Invitrogen, Carlsbad,
CA, USA) levels.
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Fecal DNA extraction and pyrosequencing

Genomic DNA of each fecal sample was extracted by
a InviMag Stool DNA Kit (Invitek, Berlin, Germany)
combined with bead beating as previously pub-
lished (Zhang et al., 2012b). The extracted genomic
DNA was used as the template to amplify the V3
region of 16S rRNA genes. PCR reactions, pyrose-
quencing of the PCR amplicons and quality control
of raw data were performed as described previously
with minor modification (Zhang et al., 2009; Wang
et al., 2011).

Bioinformatics and multivariate statistics
High-quality sequence alignments were performed
using NAST. Sequence clustering by CD-hit and
OUT delineation by DOTUR were performed as
described previously (Zhang et al., 2012a, b). The
representative sequences of operational taxonomy
units (OTUs) with their relative abundance were
used to calculate rarefaction analysis and Shannon
diversity index by QIIME (Caporaso et al., 2010).
In addition, the representative sequences were
inserted into a pre-established phylogenetic tree of
the full-length 16S rRNA gene sequences in ARB
(Ludwig et al., 2004). Then, the phylogenetic tree
and the relative abundance table of representative
sequences of OTUs were used for UniFrac principal
coordinate analysis (PCoA) (Lozupone and Knight,
2005). The statistical significance between different
groups was assessed by multivariate analysis of
variance in MATLAB 2010b (The MathWorks Inc.,
Natick, MA, USA). Redundancy analysis was
performed using CANOCO for Windows 4.5
(Microcomputer Power, Ithaca, NY, USA) according
to the manufacturer’s instructions (Braak and Smilauer,
2002). Statistical significance was assessed by MCPP
with 499 random permutations under the full model.
Ribosomal Database Project Classifier was used to
assess the amounts of different genera by taxonomic
assignment of all sequences.

Real-time quantitative PCR of F. prausnitzii

Real-time quantitative PCR (gq-PCR) was used to
determine the amounts of total bacteria and
F. prausnitzii through detection of 16S rRNA genes.
A set of universal primers was used to amplify a
conserved 16S rDNA sequence in all bacteria as
shown before (Wang et al., 2011). A set of specific
primers was used to amplify a conserved 16S rDNA
sequence in F. prausnitzii and the gq-PCR reaction
system and the program was described before
(Balamurugan et al., 2008). A plasmid containing a
F. prausnitzii full-length 16S rDNA from a previous
study (Shen et al., 2006) was prepared using the
EZNA Plasmid Mini Kit I (OMEGA, Doraville,
GA, USA) and diluted from 1x10° to 1 x 10°
(copiespl =) to construct a standard curve for the
detection of F. prausnitzii. We selected reactions
with efficiencies ranging from 0.90 to 1.05 for



further analysis. Standard and quantified samples
were performed in triplicate. PCR reactions were
performed using iQ SYBR Green SuperMix (Bio-
Rad, Richmond, CA, USA) on a MasterCycler ep
Realplex 4s (Eppendorf, Hamburg, Germany).

Spearman’s correlation coefficient (R) and P-value
were used to compare the amounts of F. prausnitzii
measured by g-PCR and pyrosequencing. This
coefficient was also used to evaluate the relation-
ship between F. prausnitzii and clinical parameters
using MATLAB 2010b.

Results

The major components of GQD decoction

There were four major categories of compounds in
the GQD decoction. Flavones (baicalin, puerarin,
wogonoside, daidzin, liquiritin, baicalein and wogonin),
alkaloids (berberine, coptisine, palmatine and
jatrorrhizine) and triterpenoid sapnins (glycyrrhizin)
were detected in the decoction, among which
baicalin, puerarin and berberine were the major
components (Supplementary Table 2). The chemical
structures of these 12 components are shown in the
Supplementary Figure 2c. Carbohydrates (starch,
sucrose, reducing sugar and soluble dietary fiber)
were also detected. Insoluble dietary fiber was
undetectable in GQD decoction (Supplementary
Table 3).

GQPD significantly improved glycemic control in T2D
patients

In our 12-week, randomized, double-blinded,
placebo-controlled clinical trial (Supplementary
Figure 1), the data of 187 participants were analyzed
as shown in Supplementary Table 4. The baseline
variables were not significantly different among the
four groups. After 12 weeks of treatment, GQD
significantly improved glycemic control in T2D
patients. The HD and MD groups, when compared
with the placebo and LD groups, showed significant
reductions in adjusted mean changes from baseline
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of FBG (—1.46%+0.23 and —1.09+£0.21 vs
—0.16£0.22 and —0.24+0.24mmoll""'; P<0.001
for HD vs LD and placebo; P<0.01 for MD vs LD and
placebo). Similarly, the HD and MD groups showed
significantly reduced HbAlc (—0.88+0.14 and
—0.75+0.13 vs —0.35+0.13 and —0.36+0.15%;
P<0.01 for HD vs LD; P<0.05 for HD vs placebo;
P<0.05, MD vs LD and placebo) (Figures 1a and b).
A decrease in the mean change of 2h-PBG
from baseline was also observed in the treated
groups, although not reaching significant level.
(Supplementary Figure 3). In addition, ANCOVA
analysis showed that HOMA-B was significantly
improved by HD GQD treatment compared with the
placebo and LD groups (Figure 1c).

Plasma orosomucoid was significantly reduced by
HD GQD treatment (P=0.023) (Supplementary
Figure 4a) and the HD group showed a significant
reduction (P=0.034) in mean change from baseline
of plasma orosomucoid compared with the LD group
(Supplementary Figure 4b). No significant differ-
ence was observed in plasma adiponectin, tumor
necrosis factor-o or serum amyloid A among the four
groups (Supplementary Figures 5a—c). Finally, no
drug-related serious adverse events occurred in this
study.

Overall structural modulation of gut microbiota after
GQD treatment

First, we wused a bar-coded pyrosequencing
run to analyze the structural changes of gut
microbiota in the four groups before and after
GQD treatment. In total, 483304 usable raw
sequences (34753 unique sequences) and 3222
OTUs were obtained from 235 samples with an
average of 2057 +£396 per sample. Rarefaction
and Shannon diversity curves revealed that,
although no rarefaction curves plateaued with the
current sequencing, most of the diversity had
already been captured (Supplementary Figure 6).
Weighted and unweighted UniFrac PCoA analysis
revealed that gut microbiota structure of the
treated groups showed a dose-dependent deviation

Kk ++
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Figure 1 GQD significantly improved glycemic control and HOMA-f in T2D patients. (a) Change in FBG, (b) change in HbA1c and
(c) change in HOMA-B. Placebo (n=41), LD (n=50), MD (n=52) and HD (n=44). Data are presented as mean+ S.E.M. *P<0.05,
**P<0.01 and ***P<0.001 vs placebo using ANCOVA; *P<0.05, * "P<0.01 and **"P<0.001 vs LD using ANCOVA.
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from the baseline structure, with the HD
group reaching significant level in multivariate
analysis of variance test (Figures 2a and b and
Supplementary Figures 7a and b).

To monitor the dynamic changes of gut microbiota
during GQD treatment, we analyzed the fecal
samples collected at weeks 0, 4, 8 and 12 in HD
and placebo groups with a second pyrosequencing
run. In total, we generated 680774 usable raw
sequences (37498 unique sequences) and 4251
OTUs from 288 samples with an average of
2364 £ 443 per sample (one sample was excluded
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in later analysis because only 81 reads were
obtained). Rarefaction and Shannon diversity curves
revealed that most of the diversity had already been
captured (Supplementary Figure 8). UniFrac PCoA
and PCA showed that after 4 weeks of treatment, the
gut microbiota structure of the HD group had
already significantly diverged from that of its base-
line and of the placebo group (Figures 3a and b;
Supplementary Figure 9). At that same 4-week
analysis, 2h-PBG was significantly reduced, but
FBG did not reach a significant level in treated
groups (Supplementary Figure 10). As the treatment
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Figure 2 Dose-dependent alterations of the gut microbiota in T2D patients treated with different doses of GQD at weeks 0 and 12.
(a) Weighted Unifrac PCoA of gut microbiota based on the OUT data from the first pyrosequencing run. (b) Clustering of gut microbiota
based on mahalanobis distances calculated with multivariate analysis of variance (MANOVA). Each point represents the mean principal
coordinate (PC) score of all patients in a group at one time point, and the error bar represents the s.e.m. The sample number (1) at week 0:
placebo=30, LD=28, MD=32 and HD=28. The sample number (n) at week 12: placebo=30, LD=28, MD=32 and HD=28.

***P<0.0001.
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Figure 3 Trajectory of the gut microbiota in T2D patients treated with HD GQD and placebo at weeks 0, 4, 8 and 12. (a) Unweighted
Unifrac PCoA of gut microbiota based on the OUT data from the second pyrosequencing run. (b) Clustering of gut microbiota based on
mahalanobis distances calculated with multivariate analysis of variance (MANOVA). Each point represents the mean principal
coordinate (PC) score of all patients in a group at one time point, and the error bar represents the s.e.m. Placebo: n=36; HD: n=236.

***P<0.0001.
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progressed, the gut microbiota made no additional
changes (Figures 3a and b and Supplementary
Figure 9), but the FBG and 2h-PBG continued to
improve until the end of the study (Supplementary
Figure 10).

Key phylotypes responding to the GQD treatment in
T2D patients

By using redundancy analysis, we identified 146
key variables that responded to the GQD treatment
(Figure 4). Forty-seven OTUs were increased by
GQD and 99 were decreased. Among the 47 OTUs
enriched by GQD, 17 OTUs showed a significant
negative correlation with FBG; the OTUs belong
to Faecalibacterium (n=4), Gemmiger (n=4),
Bifidobacterium (n=3), Lachnospiracea_incertae_
sedis (n=2) and Escherichia (n=1). Nine OTUs
showed a significant negative correlation with
HbA1c; two of which were from Faecalibacterium,
two from Gemmiger, one from Bifidobacterium, one
from Parasutterella and one from FEscherichia
(Figure 5 and Supplementary Tables 5 and 6).
Among the 99 OTUs decreased by GQD treatment,
22 OTUs showed a significant positive correlation
with FBG: the OTUs belong to Alistipes (n=86),
Odoribacter (n=2), Parabacteroides (n=2),
Bacteroides (n=2), Pseudobutyrivibrio (n=2)
and one OTU to each of the following genera:
Butyricimonas, Barnesiella, Oscillibacter —and
ClostridiumXIVa. Fourteen OTUs showed a signifi-
cant positive correlation with HbA1c, four of which
were from Alistipes, two from Odoribacter, one from
each of the following genera: Parabacteroides,
Bacteroides, Pseudobutyrivibrio, Butyricimonas,
Barnesiella, Oscillibacter and ClostridiumXIVa
(Figure 5 and Supplementary Tables 5 and 6).
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Additionally, taxon-based analysis at the genus
level showed that the relative abundance of
Faecalibacterium, Gemmiger, Bifidobacterium and
Lachnospiracea_incertae_sedis was significantly
higher after HD GQD treatment, whereas Alistipes,
Parabacteroides and Pseudobutyrivibrio were
significantly decreased (relative abundance >1%
and P<0.01) (Supplementary Figure 11).

Quantification of F. prausnitzii and its association
with glycemic parameters

One previous study showed that F. prausnitzii is
more abundant in the gut of healthy people
compared with T2D patients (Qin et al., 2012). In
our study, pyrosequencing results indicated that
Faecalibacterium was substantially enriched after
GQD treatment. To confirm the pyrosequencing
results, we quantified the relative abundance of
F. prausnitzii, the prominent species of the
Faecalibacterium genus, by q-PCR. All three
doses of GQD treatment significantly enriched
F. prausnitzii compared with baseline (P=0.004
for the HD group, P=0.024 for the MD group,
P=0.011 for the LD group, P=0.217 for the placebo
group) (Figure 6a). Particularly, the relative abun-
dance of this bacterium was significantly higher in
HD group than in the other three groups after 12
weeks of treatment (P=0.0002, HD vs placebo;
P=0.0435, HD vs MD; P=0.0120, HD vs LD), while
no significant difference was observed at baseline
(Figure 6b). The relative abundance of Faecalibac-
terium by q-PCR and pyrosequencing showed a high
significant correlation with each other, indicating
that the differences of Faecalibacterium among
four groups found by pyrosequencing is reliable
(Supplementary Figure 12). Moreover, the relative
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abundance of this bacterium negatively correlated
with HbA1c, FBG and 2h-PBG, and positively
correlated with HOMA-B by Spearman’s correlation
coefficient (Supplementary Table 7).

Discussion

To our knowledge, this study is the first registered
clinical trial to evaluate the dose-dependent efficacy
and safety of a Chinese herbal decoction following a
randomized, double-blinded and placebo-controlled
design. In our study, GQD treatment provided
clinically meaningful and dose-dependent reduc-
tions in FBG and HbA1lc compared with placebo.
HOMA-B was also significantly improved by HD
GQD treatment. Compared with those in T2D
patients treated with berberine in a previously
published clinical trial, the HD group in our study
showed similar reductions of FBG and HbA1c;
however, we did not observe an improvement of
dyslipidemia, which had been significantly amelio-
rated by berberine in the other study (Zhang et al.,
2008). In addition, we found a slight alleviation of
inflammation, indicated by the reduction of plasma
orosomucoid in the HD group. This finding was
consistent with a previous nuclear magnetic reso-
nance-based plasma metabonomic study in T2D rats
treated with GQD (Tian et al., 2013). These data
show that the Chinese herbal formula is effective for
glycemic control, making it a promising candidate
for diabetes management.

Concomitant with the improved glucose home-
ostasis, we observed an altered microbial composi-
tion induced by GQD. In other studies, diet (Cani
et al., 2008; Turnbaugh et al., 2008; Xiao et al.,
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2013), drugs (Zhang et al., 2012b; Shin et al., 2013),
prebiotics (Cani et al., 2007b, 2009) and probiotics
(Park et al., 2013) have been used to modulate the
gut microbiota in metabolic diseases, for example,
the increase of Akkermansia spp. by metformin in
the improvement of glucose homeostasis in high-fat-
diet-induced obese mice (Shin et al., 2013). Berber-
ine, the major pharmacologic component of a
Chinese herb C. chinensis (Huang-Lian), has been
shown to enrich short-chain fatty acid producers in
parallel with the prevention of obesity and insulin
resistance in rats (Zhang et al., 2012b). C. chinensis
is also a major component of GQD. However, no gut
microbiota modulation by berberine or Chinese
herbs has been reported in humans. To our knowl-
edge, this study is the first direct evidence in
humans that TCMs can modulate the structure of
the gut microbiota.

Consistent with the dose-dependent manner of
T2D amelioration, GQD also exerted a dose-depen-
dent modulation on the gut microbiota, suggesting a
strong association between the modulation of gut
microbiota and T2D alleviation. Dose-dependent
modulation of gut microbiota was also reported in
prebiotic studies. For example, an stepwise increase
of Bifidobacteria was observed by q-PCR when nine
healthy adults received successively increased
dosage levels of galactooligosaccharides (Davis
et al., 2010). Our study is the first example that
dose-dependent modulation of the gut microbiota
was concomitant with a dose-dependent alleviation
of T2D in humans. Moreover, the gut microbiota
alterations occurred before significant improvement
of T2D symptoms, supporting the hypothesis that
changes in the gut microbiota induced by GQD
might contribute to improved glucose homeostasis

o

*%

16 4 Placebo *
Low Dose
Medium Dose

12 High Dose

Relative abundance [%]
(=]

Week 0 Week 12

Figure 6 Relative abundance of F. prausnitzii as quantified by q-PCR. (a) The impact of different treatments on the relative abundance of
F. prausnitzii before and after treatment. The sample number (n) for each group: placebo=21, LD=19, MD=19 and HD = 20. (b) The
differences of F. prausnitzii among four groups at week 12. The sample number (n) for each group at week 0: placebo=31, LD =23,
MD = 26 and HD =29. The sample number for each group at week 12: placebo =26, LD =25, MD = 24 and HD = 28. “P<0.05, **P<0.05
vs before treatment using Wilcoxon'’s signed rank test. *P<0.05 and **P<0.01. Placebo, LD, or MD vs HD using Mann—Whitney test. Data
are represented as mean * s.e.m.

<
Figure 5 Heat map of redundancy analysis (RDA)-identified key OTUs responding to GQD treatment and Spearman’s correlation
between identified OTUs and HbA1c or FBG. The color of the spots in the left panel represents the mean relative abundance (normalized
and log-transformed) of the OTU in each group. The OTUs are organized according to their phylogenetic positions. The color of the spots
in the right panel represents R-value of Spearman’s correlation between the OTU and HbA1c or FBG. The family and genus names of the
OTUs are shown on the right. * P<0.05.
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in T2D patients rather than a mere consequence after
the symptoms have been alleviated.

Several putative beneficial genera that responded
to GQD treatment were identified using redundancy
analysis, including Faecalibacterium, Bifidobacterium
and Gemmiger. Faecalibacterium, a butyrate-
producing bacterial group (Duncan et al., 2002),
which was profoundly enriched by GQD in our
study, shows anti-inflammatory effects partly
through reducing colonic cytokine synthesis and
increasing anti-inflammatory cytokine secretion
(Sokol et al., 2008). Diabetic obese patients have
lower abundance of F. prausnitzii compared with
non-diabetic obese patients, which demonstrates a
negative correlation with inflammatory cytokines
C-reactive protein and interleukin-6 (Furet et al.,
2010). Another study also showed that the gut of
T2D patients is characterized by a reduction of
F. prausnitzii compared with that of healthy people
(Qin et al., 2012). Furthermore, F. prausnitzii has
been shown to be a functionally important phylo-
type because it was associated with eight urinary
metabolites (Li et al., 2008). In our study, the relative
abundance of F. prausnitzii was negatively corre-
lated with HbA1c, FBG and 2h-PBG, and positively
correlated with HOMA-, suggesting that F. praus-
nitzii might be a pivotal phylotype associated with
the improvement of T2D.

Two other genera, Bifidobacterium and Gemmiger,
which are also reported to confer beneficial effects
(Gossling and Moore, 1975; Sokol et al., 2008;
Fukuda et al., 2011), were significantly enriched
by GQD in T2D patients. A selective increase of
Bifidobacteria induced by a prebiotic (namely
oligofructose) improved gut permeability and
inflammation in ob/ob mice (Cani et al., 2009). In
addition, several genera were significantly inhibited
by GQD, such as Alistipes and Odoribacter. Higher
abundance of several taxa of the genus Alistipes
were associated with greater frequency of abdominal
pain in irritable bowel syndrome pediatric patients
(Saulnier ef al., 2011). One example from this genus,
Alistipes putredinis, was isolated from inflamed and
non-inflamed intestinal tissues of children with
suspected acute appendicitis (Rautio et al., 2000,
2003). Alistipes and Odoribacter were significantly
increased in grid floor stress-induced BALB/c mice
(Bangsgaard Bendtsen et al., 2012). These results
suggest that the enrichment of beneficial bacteria,
particularly Faecalibacterium spp., and reduction of
pathogen-like bacteria might be involved in the
amelioration of T2D by GQD.

TCM formula, a form of polypharmacy, has been
developed and advocated for use in the treatment of
many diseases for over 2500 years in China.
However, the complexities and unknown mechan-
isms of TCMs prevent the active chemical compo-
nents from being identified. Our study suggests that
gut microbiota might be involved in the effect of a
widely used TCM formula, GQD. This opens an
avenue for identifying chemical components in

The ISME Journal

TCMs, which can modulate gut microbiota structure
as a potential mechanism for disease alleviation.
Baicalin, puerarin and berberine were identified as
the three most abundant chemical components in
GQD. Baicalin, which demonstrated antioxidant
properties together with the glucose-lowering effects
in STZ-induced diabetic rats (Waisundara et al.,
2009), showed dose-dependent synergic effects with
B-lactam antibiotics against methicillin-resistant
Staphylococcus aureus and other p-lactam-resistant
strains of S. aureus in vitro (Liu et al., 2000).
Puerarin can dose-dependently increase glucose
utilization in STZ-induced diabetic rats (Hsu et al.,
2003). However, it showed poor absorption into the
bloodstream after oral administration in vivo (Luo
et al., 2011) and was mainly excreted via feces in its
intact form (Zhu et al., 1979). It is possible that
puerarin could have an impact on gut microbiota,
but no study about this has been reported yet.
Berberine showed significant glucose-lowering
effects in a multicentered, randomized, double-
blinded and placebo-controlled clinical trial
(Zhang et al., 2008). Additionally, berberine has
been reported to modulate gut microbiota during
prevention of high-fat-diet-induced obesity and
insulin resistance in rats (Zhang et al., 2012b),
implying that berberine could be one of the major
active ingredients in GQD that modulated the gut
microbiota in our study. The carbohydrate compo-
nents of GQD likely exerted few effects on gut
microbiota because insoluble dietary fiber was
undetectable and soluble dietary fiber was very
low. Additionally, these components showed no
dosage differences across the four decoctions. Other
carbohydrates, such as starch, were easily digested
and absorbed before they reached large intestine.
These results indicate that modulation of gut
microbiota by chemical components, such as ber-
berine, might be involved in improving glucose
homeostasis by GQD, suggesting that TCMs may
serve as a new source for drug leads in gut
microbiota-targeted diabetes management.

In conclusion, our study suggests that structural
alterations of gut microbiota, induced by Chinese
herbal formula GQD, are associated with the anti-
diabetic effects of GQD. In particular, this treatment
enriched the number of beneficial bacteria, such as
Faecalibacterium spp. in the gut. Although it is still
unclear whether changes of gut microbiota by GQD
directly contribute to the improvement of glucose
homeostasis, our clinical study provides circum-
stantial evidence that gut microbiota might be involved.
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