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Previous studies have shown that chronic cocaine administration induces SIRT1, a Class III histone deacetylase, in the nucleus accum-
bens (NAc), a key brain reward region, and that such induction influences the gene regulation and place conditioning effects of cocaine.
To determine the mechanisms by which SIRT1 mediates cocaine-induced plasticity in NAc, we used chromatin immunoprecipitation
followed by massively parallel sequencing (ChIP-seq), 1 d after 7 daily cocaine (20 mg/kg) or saline injections, to map SIRT1 binding
genome-wide in mouse NAc. Our unbiased results revealed two modes of SIRT1 action. First, despite its induction in NAc, chronic cocaine
causes depletion of SIRT1 from most affected gene promoters in concert with enrichment of H4K16ac (itself a deacetylation target of
SIRT1), which is associated with increased expression of these genes. Second, we deduced the forkhead transcription factor (FOXO)
family to be a downstream mechanism through which SIRT1 regulates cocaine action. We proceeded to demonstrate that SIRT1 induc-
tion causes the deacetylation and activation of FOXO3a in NAc, which leads to the induction of several known FOXO3a gene targets in
other systems. Finally, we directly establish a role for FOXO3a in promoting cocaine-elicited behavioral responses by use of viral-
mediated gene transfer: we show that overexpressing FOXO3a in NAc enhances cocaine place conditioning. The discovery of these two
actions of SIRT1 in NAc in the context of behavioral adaptations to cocaine represents an important step forward in advancing our
understanding of the molecular adaptations underlying cocaine action.
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Introduction
Long-term exposure to drugs of abuse induces persistent changes
in gene expression, neuronal morphology, and synaptic function
in the nucleus accumbens (NAc), a primary region in the brain’s
reward circuitry (Robison and Nestler, 2011). Epigenetic mech-
anisms may underlie the dysregulation of gene expression ob-
served in addiction, and cocaine-induced post-translational
modifications of histone proteins, including acetylation, have
been shown to contribute to drug action (Maze and Nestler,
2011). Acetylation, a well-studied modification in the context of
drugs of abuse, is catalyzed by histone acetyltransferases and re-
versed by histone deacetylases, both of which regulate gene ex-
pression in postmitotic cells. For example, acetylation of several
lysine residues on the N-terminal tails of histones, specifically
histone H4 Lys16 acetylation (H4K16ac), H3K9ac, and H3K27ac,

is associated with increased gene expression, whereas their
deacetylation results in inhibition of gene expression.

Sirtuins (SIRTs) are categorized as Class III histone deacety-
lases, which rely on NAD� to catalyze the deacetylase reaction.
There are seven sirtuins, each with distinct subcellular localiza-
tions and enzymatic activities. Sirtuins regulate a wide range of
biological processes and affect the structural organization of the
brain through axon elongation (Li et al., 2013), dendritic plastic-
ity (Codocedo et al., 2012), and neuronal precursor cell fate de-
termination (Rafalski et al., 2013). Sirtuins have also being
implicated in hypothalamic function, circadian rhythmicity
(Asher et al., 2008; Chang and Guarente, 2013), endocrine regu-
lation (Cohen et al., 2009), feeding behaviors (Ramadori et al.,
2011), and the synaptic plasticity underlying learning and mem-
ory (Gao et al., 2010; Michán et al., 2010). Our laboratory has
provided evidence for the involvement of sirtuins in the actions
of drugs of abuse. Chronic exposure to cocaine induces SIRT1
and SIRT2 expression in NAc, with chronic morphine also induc-
ing SIRT1 (Ferguson et al., 2013). No other SIRT family member
is regulated in this brain region by either drug. Drug induction of
SIRT1 in NAc is mediated by the Fos family transcription factor,
�FosB (Ferguson et al., 2013). Furthermore, SIRT1 induction in
NAc promotes behavioral responses to cocaine and to morphine:
viral-mediated overexpression of the protein in NAc increases
cocaine- and morphine-elicited conditioned place preference,
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whereas its local knockdown has the opposite effect (Ferguson et
al., 2013).

The goal of the present study is to understand the downstream
mechanisms by which SIRT1 mediates cocaine-induced plasticity
in NAc. We used a genome-wide approach, namely, chromatin
immunoprecipitation (ChIP) followed by massively parallel se-
quencing (ChIP-seq), to map SIRT1 binding in NAc from
chronic cocaine- or chronic saline-treated mice. Our results iden-
tified depletion of SIRT1 coupled with increased H4K16ac, as
well as activation of the forkhead transcription factor FOXO3a, as
being two key mechanisms of SIRT1-mediated gene activation in
this brain region. Together, these studies identify several novel
substrates of cocaine-induced neural and behavioral plasticity.

Materials and Methods
Animals. C57BL/6J male mice (The Jackson Laboratory), 7–9 weeks old,
weighing 25–30 g were group housed five per cage and habituated to the
animal facility 1 week before use. They were maintained at 23°C to 25°C
on a 12 h light-dark cycle (lights on from 7:00 A.M. to 7:00 P.M.) with ad
libitum access to food and water. All animal protocols were approved by
the Institutional Animal Care and Use Committee at the Icahn School of
Medicine at Mount Sinai.

Drugs. Cocaine-HCl was obtained from Sigma-Aldrich or National
Institute on Drug Abuse (Bethesda, MD). Drugs were given as daily
intraperitoneal injections for 7 d at 20 mg/kg in their home cage. Control
groups received 7 d of saline. Animals were analyzed 24 h after the last
injection.

RNA isolation and PCR. Bilateral 14-gauge NAc punch dissections
were obtained from 1-mm-thick coronal brain sections and frozen im-
mediately on dry ice. Dissections were thawed and processed in TriZol
(Invitrogen) according to the manufacturer’s guidelines. RNA was iso-
lated and purified using RNeasy Micro columns (QIAGEN). We con-
firmed purity of our samples by spectroscopy at 260/280 and 260/230 �
1.8. RNA was reverse transcribed to cDNA using iScript Kit (Bio-Rad).
cDNA was quantified by qPCR using SYBR green. qPCR was performed
using an Applied Biosystems 7500 system. Reactions were run in tripli-
cate and analyzed using the ��Ct method (Livak and Schmittgen, 2001)
with GAPDH as a normalization control.

ChIP. ChIP was performed as described previously (Kumar et al.,
2005) with minor modifications. Briefly, for each ChIP, anterior and
posterior bilateral 14-gauge NAc punches were pooled (5 animals, 20
NAc punches per sample). Punches were fixed for 10 min with 1% form-
aldehyde and then quenched with 2 M glycine for 5 min. Samples were
homogenized using a desktop sonicator at low settings (amplitude 40%)
2� for 7 s on ice. Next, samples were sheered using a diogenode biorup-
tor XL at 4°C at high sonication intensity for 30 s on/30 s off for 25 min,
followed by 25 min rest and an additional 25 min of sonication. Fragment
size range of 250 –1000 bp was verified with an Agilient Bioanalyzer.
Before sonication of samples, magnetic sheep anti-rabbit or anti-mouse
beads (Invitrogen) were prepared with the respective antibody of interest
at 4°C overnight on a rotator. Following washing of the magnetic bead/
antibody complex, 7.5 mg of the magnetic bead/antibody complex was
added to 400 �l of sheared chromatin for histone ChIPs, or 1000 �l for
SIRT1 ChIP, for 16 h at 4°C; 80 �l of each sample of sheared chromatin
was used as input controls. Samples were washed with LiCl and Tris-
EDTA buffers. Reverse cross-linking was performed at 65°C overnight,
and proteins were removed with proteinase K (Invitrogen). DNA was
purified using a DNA purification kit (QIAGEN). Additionally, a normal
IgG control was performed to test for nonspecific binding.

Nuclear-cytoplasmic fractionation. NAc punches were homogenized
with a glass Dounce tissue grinder and loose pestle in Buffer A (1 M

Tris-HCl, 1 M sucrose, 1 M DTT, with protease and phosphatase inhibi-
tors); 10% of the lysate was reserved to assay total protein levels, and the
rest was centrifuged at 3700 rpm for 10 min. The supernatants were then
removed, centrifuged at 7500 rpm for 7 min, and the resulting superna-
tants were stocked as the cytoplasmic fraction. Buffer B (1 M Tris-HCl pH
7.5, 0.1 M EDTA, 0.1 M EGTA, 1 M sucrose, 1 M DTT, 10% NP-40, protease

and phosphatase inhibitors) was added to the pellets from the first cen-
trifugation, and samples were kept on ice for 10 min before centrifuging
again at 3700 rpm for 10 min. The supernatants were discarded, and
Buffer C (1 M Tris-HCl, 37.5% glycerol, 5 M NaCl, 0.1 M EGTA, 1 M DTT,
10% NP-40, with protease and phosphatase inhibitors) was used to re-
suspend the nuclear fraction. The fractions were then processed for
Western blotting as below or further separated into chromatin and non-
chromatin nuclear fractions. Tubulin and total H3 were used as loading
controls and to verify appropriate cytoplasmic and nuclear enrichment.

ChIP-seq. Animals were treated chronically with cocaine (20 mg/kg)
daily for 7 d; and 24 h later, NAc tissue pooled from �5 mice was pro-
cessed for ChIP as described previously (Renthal and Nestler, 2009; Maze
et al., 2010). Antibodies were all ChIP grade from Abcam or Cell Signal-
ing Technology. Approximately 10 ng of input DNA or pull-down DNA
was used for the preparation of sequencing libraries following the instruc-
tions of Illumina’s ChIP-seq sample prep kit (catalog #IP-102-1001). In
brief, DNA fragment overhangs were converted into phosphorylated blunt
ends using T4 DNA polymerase, Klenow polymerase, and T4 polynucle-
otide kinase. An “A” base was then added to the DNA fragments to enable
ligation to the adapters, which have a single “T” overhang. The libraries
were analyzed on a 2% agarose gel and size selected between 175 and 300
bp. Gel-extracted DNA was further enriched by PCR and run on a bio-
analyzer to validate size distribution and concentration. All libraries
were sequenced on Illumina Hi-seq 2000 machines at Mount Sinai
and analyzed according to published methods (Maze et al., 2011; Feng
et al., 2014).

ChIP-seq data processing. Raw ChIP-seq data were processed through
initial image analysis, base calling, quality filtering, and short read align-
ment using Illumina’s CASAVA pipeline. Only the uniquely aligned
short reads were kept for further analysis. Global visualization of a ChIP-
seq sample is often useful to determine the enrichment of the protein of
interest and to assess data quality. We therefore used a new program
called ngs.plot (Shen et al., 2014). Briefly, the alignment files are used to
derive genomic coverage, which is normalized to “aligned Reads Per
Million mapped reads” at single base resolution. A database is built into
ngs.plot, which contains genomic coordinates of interesting biological
features, such as TSS, transcription end sites, and gene body for a few
model organisms. Additionally, ngs.plot allows input of customized
genomic regions. Differential analysis was performed by diffReps (Shen
et al., 2013) with window size of 200 bp and moving size of 20 bp. FDR �
10% was used as significance cutoff. Basal level peak calling was per-
formed using MACS (Zhang et al., 2008) with the three saline replicates
pooled and DNA input samples used as background.

Immunoblotting. Immunoblotting was performed using standard pro-
cedures on NAc punch dissections from individual animals (Maze et al.,
2010). Briefly, frozen NAc tissue was homogenized in 30 �l of homoge-
nization buffer containing 320 mM sucrose, 5 mM HEPES buffer, 1% SDS,
phosphatase inhibitor cocktails I and II (Sigma), and protease inhibitors
(Roche) with an ultrasonic processor (Cole Parmer). 10 –30 �g of pro-
tein was loaded onto 4%–15% gradient Tris-HCl polyacrylamide gels for
electrophoresis fractionation (Bio-Rad). Proteins were transferred to ni-
trocellulose membranes, blocked with 5% (w/v) BSA, and incubated
overnight at 4°C with primary antibodies in 5% BSA. After thorough
washing with TBS plus 0.1% Tween 20, membranes were incubated with
secondary antibodies (1:40,000 –1:60,000) dissolved in 5% BSA blocking
buffer for 1 h at room temperature. Final blots were developed by
chemiluminescence analysis using supersignal dura ECL (Pierce Bio-
technology; Thermo Fisher Scientific). Images were quantified using
densitometry with ImageJ (National Institutes of Health, Bethesda, MD),
and samples were normalized using GAPDH or �-tubulin, which were
not affected by cocaine or SIRT1 overexpression.

Immunoprecipitations. A coimmunoprecipitation kit (Roche) was
used as follows. Bilateral 14-gauge NAc punches were lysed by douncing
in 300 �l of provided lysis buffer and centrifuged, and the supernatant
was transferred to a clean tube. Preclearance was accomplished by incu-
bation with protein G-agarose for 3 h on a rotator at 4°C. The beads were
centrifuged, and the supernatant was transferred to fresh tubes to be
incubated with 5 �l of anti-acetylysine antibody (Abcam) for 1 h before
50 �l of a homogeneous protein G-agarose suspension was added and
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incubated overnight at 4°C on a rotator. The complexes were centri-
fuged, and the supernatant was removed, the beads were washed two
times with lysis buffer 1, two times with lysis buffer 2, and once with lysis
buffer 3. Protein sample buffer was added, and the samples were boiled
for 3 min. Complexes were then analyzed by Western blotting.

Viral-mediated gene transfer. Mice were anesthetized with a ketamine/
xylazine mixture (ketamine 100 mg/kg and xylazine 10 mg/kg) and pre-
pared for sterotaxic surgery. Thirty-three gauge syringe needles
(Hamilton) were used to bilaterally infuse 0.5 �l of virus into NAc at a 10°
angle at a rate of 0.1 �l/min at 1.6 mm anteroposterior, 1.5 mm lateral,
and 4.4 mm dorsoventral from bregma. We used bicistronic p1005 HSV
(Herpes simplex virus) vectors expressing GFP alone or GFP plus
FOXO3a, FOXO3a-TM, or FOXO3a-DM. In this system, GFP expres-
sion is driven by a cytomegalovirus promoter, whereas the gene of inter-
est is driven by the IE4/5 promoter (Maze et al., 2010). Animals receiving
HSV injections were allowed to recover for at least 3 d after surgery. Viral
injection sites were verified by confirming the GFP signal in NAc slices
using a fluorescence dissecting microscope.

Conditioned place preference (CPP). CPP was performed as described
previously (Ferguson et al., 2013). Several visual and nonvisual (tactile)
cues enabled the animals to distinguish two separate chambers of the
apparatus. All conditioning and test sessions were performed under dim
illumination. Briefly, animals were first prescreened in a photo-beam
monitored box to detect any baseline bias to the two chambers of the CPP
apparatus. Mice that showed statistically significant preference to one of
the two chambers were removed from further analysis (�10% of all
animals). Mice were then divided into control and experimental groups
with equivalent pretest scores. During the training phase, animals were
injected with saline in the morning and placed in one chamber for 30
min, then with cocaine (5 mg/kg i.p.) and placed in the other chamber in
the afternoon. This training regimen was conducted for 2 d followed by a
test day in which mice were placed back into the apparatus without
treatment for 20 min and evaluated for chamber preference. For all
groups, baseline locomotion in response to saline was assessed. CPP
scores were calculated by subtracting time spent in the saline-paired
chamber from time spent in the cocaine-paired chamber.

Statistical analysis. One- and two-way ANOVAs were performed to
determine significance for conditions in which there were more than two
groups or two factors. Unpaired Student’s t test with a two-tailed p value
were used for other comparisons, including qPCR, Western blotting,
comparing HSV-GFP to HSV-FOXO3a vectors and ChIP experiments.
All values included in the figure legends represent mean � SEM.

Results
ChIP-seq reveals transcriptional targets of SIRT1 in NAc
To explore the mechanisms by which SIRT1 mediates cocaine-
induced plasticity in NAc, we performed ChIP-seq for SIRT1 on
NAc extracts from chronic cocaine- or saline-treated mice. We
used a treatment regimen (7 daily injections, with animals ana-
lyzed 24 h later), which has been shown to induce robust changes
in gene expression in the NAc (Renthal et al., 2009; Maze et al.,
2010; Feng et al., 2014). After preprocessing, normalization, and
identification of SIRT1 binding sites using MACs peak calling
software (Zhang et al., 2008), statistical analysis of genomic re-
gions that displayed cocaine-induced increases or decreases in
SIRT1 binding (i.e., differential sites) was performed using dif-
fReps (Shen et al., 2013), which uses a sliding window strategy to
generate a high-resolution differential binding profile of SIRT1.
These analyses provided a genome-wide map of downstream
SIRT1 targets under control and drug-treated conditions.

Results from the average of three independent replicate SIRT1
ChIP-seq experiments identified 53,676 peaks in NAc of saline-
treated mice and 72,373 peaks in cocaine-treated mice (Fig. 1A).
The larger number of significant SIRT1 peaks under cocaine con-
ditions is consistent with the global increase in SIRT1 expression
seen in NAc under these conditions (Ferguson et al., 2013). The
genomic binding profile for saline and cocaine conditions was

very similar, with �70% of binding occurring in gene desert and
intergenic regions and the other �30% binding in promoter and
gene body regions (Fig. 1A). Gene annotation mapping revealed
a relatively even distribution of peaks across various genomic
regions (i.e., gene deserts, gene promoters, gene bodies, and in-
tergenic regions) in both saline and cocaine conditions (Fig. 1A).
Molecular pathway analysis using Ingenuity software on genes
that display significant SIRT1 binding (Fig. 1B) revealed that
many SIRT1 target genes are significantly (using Fisher’s exact
test) associated with signaling pathways previously linked to co-
caine action (Robison and Nestler, 2011), for example, pathways
related to CREB signaling in neurons (	log p value saline 
 6.1
cocaine 
 5.541), synaptic long-term potentiation (	log p value
saline 
 5.7 cocaine 
 5.9), synaptic long-term depression (	log
p value saline 
 5.1 cocaine 
 7.34), glutamatergic signaling
(	log p value saline 
 4.3 cocaine 
 7.1), and ERK/MAPK sig-
naling (	log p value saline 
 4.2 cocaine 
 2.0).

We observed a decrease in SIRT1 binding in NAc after chronic
cocaine across gene regions genome-wide and particularly at the
TSSs of genes. This reduction was surprising in light of the in-
creased global levels of SIRT1 in NAc after cocaine treatment
(Ferguson et al., 2013). First, MACs-based peak distribution
analysis indicated that chronic cocaine induced a small decrease
in the fraction of peaks that occur at or near gene-coding regions,
from 34% in saline mice to 29.5% in cocaine mice (Fig. 1A).
Additionally, plotting SIRT1 binding across all gene regions
genome-wide, by use of ngs.plot (Shen et al., 2014), indicated that
chronic cocaine causes a depletion of SIRT1 across entire gene
regions compared with saline conditions (Fig. 2A, top). A differ-
ential site heatmap of SIRT1 binding after cocaine further sup-
ports the observed SIRT1 depletion and illustrates that this
depletion is particularly dramatic around TSS regions after co-
caine treatment (Fig. 2A, bottom). The differential site analysis
of all genes that displayed altered SIRT1 binding after expo-
sure to cocaine revealed that �84% of these genes showed a
decrease in SIRT1 binding: 3620 showed decreased SIRT1
binding versus 781 that showed increased binding (Fig. 2B),
supporting the relative depletion of SIRT1 from genic regions
(Fig. 2A). A complete list of genes that show cocaine-induced
changes in SIRT1 binding is available online (http://neuroscience.
mssm.edu/nestler/nidappg/nacchroniccocaine.html). Genome-
wide, diffReps analysis identified a total of 11,196 differential
SIRT1 sites in NAc between saline- and cocaine-treated animals;
8949 were downregulated, whereas only 2245 were upregu-
lated (Fig. 2B). Approximately 55% of these sites were present
in intergenic and gene desert regions and the other 45% were
present in promoter and gene body regions of the genome
(Fig. 2B).

To test whether SIRT1 acts primarily as a transcriptional re-
pressor in NAc in vivo, as observed in peripheral tissues and cul-
tured cells (Luo et al., 2001), we mapped SIRT1 binding to genes
based on their levels of mRNA expression using RNA sequencing
(RNA-seq) data (Feng et al., 2014) derived from NAc, with genes
grouped by their levels of mRNA expression: low, medium, and
high. We observed dramatically higher levels of SIRT1 binding to
genes that are expressed at low levels (Fig. 3A), a finding seen in
NAc of both saline- and cocaine-treated mice. Among genes that
show cocaine-induced depletion of SIRT1 binding in concert
with increased mRNA levels is Bdnf. Indeed, independent quan-
titative qPCR and qChIP analysis of Bdnf in NAc of saline- and
chronic cocaine-treated mice validated the RNA-seq and ChIP-
seq results (Bdnf mRNA levels: 1.25 � 0.10 relative to control;
SIRT1 binding at Bdnf: 0.75 � 0.13 relative to control; p � 0.05).
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Such findings are of particular note because of the well-known
role of BDNF in NAc in regulating cocaine action (Lobo et al.,
2010), and a recent study showing that SIRT1 indirectly regulates
BDNF levels in hippocampus (Gao et al., 2010). Molecular path-
way analysis of genes that display altered SIRT1 binding after
cocaine, overlaid with those that show altered mRNA expression,
reveals SIRT1 at the center of a major hub of biological regulation
(Fig. 3B).

Overall, our results suggest that exposure to chronic cocaine
induces a more permissive environment for transcription via the
displacement of SIRT1 from the promoter/gene body of numer-
ous downstream gene targets. H4K16ac is a well-known, direct
target of SIRT1 in other systems, whereby the deacetylation of
H4K16 by SIRT1 contributes to SIRT1’s repressive effects on
gene expression (Vaquero et al., 2004, 2007; O’Hagan et al., 2008;
Hajji et al., 2010; Peng et al., 2012; Neumayer and Nguyen, 2014;
Noguchi et al., 2014). Consistent with this literature, we showed
recently that overexpressing SIRT1 in NAc decreases total cellular
levels of H4K16ac (Ferguson et al., 2013). We therefore examined
how the genome-wide enrichment of H4K16ac in NAc correlates
with SIRT1 enrichment. ChIP-seq revealed strong enrichment of
H4K16ac in gene promoter regions in both saline and cocaine

conditions, with �50% of peaks residing at promoters (Fig.
4A,B). Importantly, cocaine induced an increase in H4K16ac
enrichment at gene body and promoter regions (TSSs), which
complements the observed decrease in SIRT1 binding at these
regions (Fig. 4C). To further explore the networks associated with
genes that show both increased H4K16ac and decreased SIRT1
binding, we subjected this dataset (387 genes) to Ingenuity Path-
way Analysis. Such evaluation of these 387 genes revealed signif-
icant enrichment in signaling pathways associated with gene
expression (p 
 1.74E-05), nervous system development and
function (p 
 4.28E-05), and behavior (p 
 1.30E-04).

Further analysis of the ChIP-seq list of genes that show a cor-
responding increase in acH4K16 binding and decreased SIRT1
binding reveals several genes that have been previously shown to
be regulated in the NAc by cocaine. Examples include the follow-
ing: Mef2c (myocyte enhancer factor 2C) (Pulipparacharuvil et
al., 2008; Host et al., 2011; Dietrich et al., 2012), Nlgn1 (neuroli-
gin 1) (Tiruchinapalli et al., 2008), Kalrn (kalirin) (Ma et al.,
2012), Ntrk2 (neurotrophic tyrosine kinase, receptor, type 2)
(Graham et al., 2009; Lobo et al., 2010), and Grip1 (glutamate
receptor interacting protein 1) (Briand et al., 2014), among oth-
ers. As well, we observed cocaine regulation of several additional

Figure 1. ChIP-seq reveals genomic target regions for SIRT1 binding in NAc under saline and cocaine conditions. ChIP-seq reveals relatively even distribution of SIRT1 binding across genomic
regions in NAc. A, Genome-wide occupancy of SIRT1 in saline (53,676 peaks) and chronic cocaine (72,373 peaks) (20 mg/kg) conditions. Regional analysis of genomic regions in NAc from both saline-
and cocaine-treated mice reveals that �70% and 30% of SIRT1 peaks reside in intergenic/gene desert and promoter/gene body regions of the genome, respectively. B, SIRT1 regulates canonical
signaling pathways implicated in synaptic and behavioral plasticity. The analyses shown were performed on averages of 3 saline and 3 cocaine replicates. Pearson’s correlation analysis revealed
strong consistency (�75%) between each replicate in the saline and cocaine groups.
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neural genes that control synaptic function in other systems and
might contribute to cocaine-induced behavioral and synaptic
plasticity, such as Nlgn2 (neuroligin 2) (van der Kooij et al.,
2014), Synpo (synaptopodin) (Korkotian et al., 2014), Neurl1
(neuralized ligase) (Timmusk et al., 2002), Nedd4l (neural pre-
cursor cell expressed, developmentally downregulated 4-like, E3
ubiquitin protein ligase) (Ekberg et al., 2014), Striatin (a calmod-
ulin binding protein (Chen et al., 2012), Ncam2 (neural cell adhesion
molecule 2) (Bajor et al., 2012), Kif13b (kinesin family member 13B)
(Yoshimura et al., 2010), Nf1 (neurofibromin 1) (Oliveira and Ya-
suda, 2014), Shank2 (SH3 and multiple ankyrin repeat domains
2) (Schneider et al., 2014), Wasl (Wiskott-Aldrich syndrome-
like) (Wegner et al., 2008), Kif1a (kinesin family member 1A)
(Lee et al., 2015), Kif5c (kinesin family member 5C) (Willemsen
et al., 2014), Contactin 6 (a neural adhesion molecule) (Mercati et
al., 2013), and Negr1 (neuronal growth regulator 1) (Pischedda et
al., 2014). Also represented on the list of H4K16ac/SIRT1-
affected genes were several whose products regulate chromatin,
including Mll2 (an H3K4 methyltransferase), Kdm5b (an
H3K4 demethylase), Prmt3 (a protein arginine methyltransferase),
Atf7 (activating transcription factor 7), and Med27 (mediator
complex subunit 27).

Given the fact that SIRT1 does not possess any intrinsic
sequence-specific DNA-binding domains and is thought to be
recruited to genomic regions through interactions with DNA-
binding proteins, we speculated that SIRT1 might interact with
transcription factors or related proteins to regulate gene expres-
sion in NAc. Therefore, we performed a de novo motif analysis of
SIRT1-bound sequences within 3 kb of the TSSs from saline and
cocaine conditions and compared these results to known tran-
scription factor motifs. Of the 10 most significant SIRT1-
associated motifs in NAc of either saline- or cocaine-treated mice,
30% corresponded to consensus binding sites for the FOXO fam-
ily of transcriptions factors (motif: AAGTAAACA) (Fig. 5),
which play important roles in numerous cellular functions (Bru-

net et al., 2004) but have not to date been studied in addiction
models.

SIRT1 regulates the FOXO3a signaling pathway in NAc
Based on this motif analysis, we explored interactions between
SIRT1 and FOXO proteins in NAc, focusing on FOXO3a, because
it is the predominant family member expressed throughout the
brain (Hoekman et al., 2006) and because several prior studies
have demonstrated SIRT1-FOXO3a interactions in other systems
(Tissenbaum and Guarente, 2001; Patterson, 2003; Brunet et al.,
2004; Motta et al., 2004). First, we found that FOXO3a is a down-
stream target of SIRT1 in NAc: immunoprecipitation of total
acetylated proteins followed by immunoblotting for FOXO3a re-
vealed a significant decrease in acetyl-FOXO3a in NAc overex-
pressing SIRT1 (Fig. 6A). Because such deacetylation of FOXO3a
would increase its transcriptional activity (Nemoto et al., 2004),
we performed qPCR on two established targets of FOXO3a in
other systems, Gadd45� (growth arrest and DNA-damage-
inducible protein-45a) and Cdkn1b (cyclin-dependent kinase in-
hibitor 1B; also known as p27 Kip1) (Nemoto et al., 2004), and
observed a significant increase in expression of both targets in
NAc overexpressing SIRT1 (Fig. 6B). Second, although chronic
cocaine administration had no effect on FOXO3a mRNA levels in
NAc (data not shown), we observed increased levels of FOXO3a
protein in nuclear fractions of NAc after chronic cocaine, with no
change observed in cytosolic fractions (Fig. 6C). Third, we dem-
onstrated that chronic cocaine increased expression levels of both
FOXO3a targets, Gadd45� and Cdkn1b, in NAc (Fig. 6E). These
results support a scheme wherein cocaine activates the FOXO3a
signaling pathway in NAc via the induction of SIRT1 and conse-
quent deacetylation of FOXO3a, leading to FOXO3a’s activation
and transcriptional activation of downstream target genes. Note
that, via this mechanism, induction of SIRT1 leads to the induction,
not repression, of a set of genes through indirect activation of
FOXO3a.

Figure 2. Cocaine-induced changes in SIRT1 binding in NAc. A, Top, SIRT1 binding in NAc across gene regions genome-wide as visualized by ngs.plot. Binding at upstream promoters, TSSs, gene
bodies, and transcription end sites (TESs) in normalized reads per million (RPM). Cocaine causes SIRT1 depletion across gene regions, but particularly at promoters and TSSs relative to saline. Bottom,
Differential peak heatmap illustrates a dramatic depletion of SIRT1 binding in NAc after exposure to cocaine. B, Cocaine induces significantly more sites of reduced SIRT1 binding across genomic
regions, for example, with 82% of genic sites showing a decrease in SIRT1 binding and 18% showing an increase in SIRT1 binding.
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To provide further evidence for this scheme, we assessed
whether chronic cocaine alters FOXO3a binding to the promoter
regions of the Gadd45� and Cdkn1b genes as well as to several
other genes inferred as FOXO3a targets from our motif analysis.
As shown in Figure 7, Gadd45� and Cdkn1b, as well as most of the
other investigated genes, showed cocaine-induced increases both
in FOXO3a binding to their promoter regions (Figure 7A) and in
mRNA expression levels (Figure 7B) in NAc. The other genes that
displayed such regulation include Ddb1 (damage-specific DNA
binding protein 1), Npy (neuropeptide Y), and G6pc (glucose
6-phosphatase). Interestingly, another inferred target, Fasl (Fas
ligand), a known target of FOXO3a in other systems, did not

show cocaine induction of FOXO3a to its gene promoter; rather,
its mRNA expression was suppressed in NAc in response to
chronic cocaine administration. We showed further that HSV-
mediated overexpression of FOXO3a in NAc increased the
expression of Npy and Fasl without influencing the other
genes analyzed, compared with HSV-GFP injected control an-
imals (Fig. 8 A, B). Overexpressing a constitutively active mu-
tant of FOXO3a (FOXO3a-TM) exerted equivalent effects,
whereas expressing a dominant negative mutant of FOXO3a
(FOXO3a-DM) had no effect. The fact that FOXO3a overex-
pression per se is not sufficient to mimic cocaine induction of
Ddbl1, G6pc, Gadd45a, and Cdkn1b, but could induce Fasl,

Figure 3. Correlations of SIRT1 enrichment with gene expression in NAc. A, Correlation of SIRT1 binding by ChIP-seq (displayed by ngs.plot) with gene expression levels by RNA-seq shows that,
under saline and cocaine conditions, genes expressed at lowest levels display dramatically higher enrichment of SIRT1. B, Ingenuity Pathway Analysis of the overlaid SIRT1 ChIP-seq and RNA-seq data
identifies a network of genes regulated by cocaine in NAc. Green represents a decrease in gene expression (left) or in SIRT1 binding (right) in response to cocaine; red represents an increase. SIRT1 network
interaction maps illustrate numerous SIRT1 targets. For example, cocaine increases the expression levels of Bdnf in NAc, an effect associated with decreased SIRT1 binding to the Bdnf promoter.

Ferguson et al. • SIRT1-FOXO3a Regulate Cocaine Actions J. Neurosci., February 18, 2015 • 35(7):3100 –3111 • 3105



which is not induced by cocaine, indicates that other cocaine-
induced factors are required, in concert with FOXO3a activation, to
control the expression of these various genes in the NAc.

In any event, our data implicate FOXO3a in the transcriptional
effects that cocaine exerts in NAc. To directly test the relevance of

FOXO3a and its transcriptional actions in cocaine-related behav-
iors, we used HSV vectors to overexpress wild-type FOXO3a,
FOXO3a-TM, or FOXO3a-DM in the mouse NAc and assessed
cocaine CPP (Fig. 8C). We observed a dramatic increase in CPP
scores to a subthreshold dose of cocaine in mice overexpressing

Figure 4. H4K16ac, a downstream target of SIRT1, is regulated in NAc by cocaine. A, ChIP-seq reveals prominent binding of H4K16ac to promoter/gene body regions (�80%) in NAc, with much
less binding to nongenic regions. Pie charts represent genome-wide occupancy of H4K16ac in saline (16,506 peaks) and chronic cocaine (15,562 peaks) conditions. B, H4K16ac binding to gene
regions genome-wide, as visualized by ngs.plot, in NAc under saline and chronic cocaine conditions. C, Analysis of cocaine-induced changes in H4K16ac binding genome-wide, showing most
regulation in promoter and gene body regions. D, Venn diagram showing genes that display both a decrease in SIRT1 binding and an increase in H4K16ac binding in NAc after chronic cocaine.

Figure 5. Significant enrichment of FOXO binding motifs at genomic sites that shows significant SIRT1 binding by ChIP-seq in NAc under saline (A) and cocaine (B) conditions. Motif analysis of
SIRT1-bound sequences from saline and cocaine conditions. Of the 10 most significant SIRT1-associated motifs in NAc of saline- and of cocaine-treated mice, 30% correspond to consensus binding
sites for the FOXO family of transcription factors.
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FOXO3a or FOXO3a-TM relative to a GFP control vector (F(3,31) 

6.94, p 
 0.001). In contrast, overexpression of FOXO3a-DM
trended to decrease the small preference seen under control
conditions. These data demonstrate that FOXO3a activity in
NAc promotes rewarding responses to cocaine.

Discussion
We recently showed that SIRT1 is induced in NAc by chronic
cocaine administration and that SIRT1 overexpression in this
region increases behavioral responses to cocaine, whereas its local
knockdown has the opposite effect (Ferguson et al., 2013). The
objective of the present study was to determine the downstream
effects through which SIRT1 promotes cocaine action. To ac-
complish this goal, we used an unbiased approach (ChIP-seq) to
create a genome-wide binding profile of SIRT1 and one of its
primary downstream deacetylation targets, H4K16ac, in NAc of
mice treated chronically with saline or cocaine. The results indi-
cated that the induction of SIRT1, although associated with in-
creased total numbers of SIRT1 binding sites, is surprisingly
depleted from genic regions, in particular, gene promoters. This
depletion occurs in concert with increased levels of H4K16ac and

gene activation. We also used these unbi-
ased data to identify FOXO transcription
factors as the most highly regulated tran-
scriptional mechanism involved in SIRT1
action and subsequently confirmed that
indeed FOXO3a, the predominant FOXO
protein in brain, is regulated in NAc by
chronic cocaine administration, where it
contributes to cocaine regulation of sev-
eral downstream target genes and to co-
caine’s behavioral effects. Together, these
data identify two main modes of action of
SIRT1 in NAc (Fig. 9) and highlight the
importance of using unbiased experimen-
tal approaches as a way to identify new
transcriptional and molecular mecha-
nisms underlying the chronic effects of
cocaine on the brain.

SIRT1 is the mammalian homolog of
Sir2 in Saccharomyces cerevisiae, which
was discovered as an inhibitor of the silent
mating type loci, HML and HMR (Klar et
al., 1979) and found to be localized to
highly repressed regions of DNA, such as
pericentromeres, heterochromatin, and
major satellite repeats (Kanellopoulou et al.,
2005). In mammalian systems, where SIRT1
has likewise been shown to exert a generally
repressive effect on transcription, SIRT1 has
also been demonstrated to bind significantly
to euchromatic regions of the genome, in-
cluding promoter and gene body regions in
non-nervous tissues (Oberdoerffer et al.,
2008; Bolasco et al., 2012). For example, an
earlier study using ChIP-chip revealed
SIRT1 binding to the promoter regions of
genes in embryonic stem cells under basal
conditions and reported a dramatic redistri-
bution of SIRT1 away from gene promoters
to other genomic regions in the presence of
oxidative stress (e.g., H2O2) (Oberdoerffer
et al., 2008). We observed a similar pattern
of SIRT1 regulation in NAc: SIRT1 is

broadly distributed across the genome in NAc at rest; and after
chronic administration of cocaine, there is a dramatic displacement
of SIRT1 from promoter regions of genes. These findings dem-
onstrate that cocaine acts as a potent stimulus to reshape the
SIRT1 epigenomic landscape.

One interesting question raised by these findings is as follows:
Why is the increased amount of SIRT1 protein expressed in NAc
after chronic cocaine not reflected by overall increased binding at
genic regions, with manyfold more genes showing depletion of
SIRT1 than showing recruitment of SIRT1? As well, what is the
mechanism that depletes SIRT1 from promoter and gene body re-
gions despite the elevated global levels of SIRT1 in the cells? The
answers to these questions remain unknown, but it is interesting to
speculate that such induction and redistribution of SIRT1, with an
increase seen in the total number of SIRT1 sites, might help to com-
pensate for the loss in heterochromatin that we have shown occurs in
NAc in response to chronic cocaine administration (Maze et al.,
2011). This loss of heterochromatin is mediated by reduced binding
of repressive histone methylation, H3K9me3 and H3K9me2, to

Figure 6. Regulation of the FOXO3a signaling pathway in NAc by SIRT1 and cocaine. A, Representative Western blot of immu-
noprecipitated pan-acetyl-K from NAc of mice injected with HSV-GFP or HSV-SIRT1 and probed with an anti-FOXO3a or -GAPDH
antibody. HSV-SIRT1 deacetylates FOXO3a. Each lane represents pooled tissue from bilateral NAc punches from 5 mice. Results are
representative of 5 replications. B, HSV-SIRT1 in NAc increases the induction of two known FOXO3a target genes, Gadd45�
(HSV-GFP, 1.00 � 0.10, n 
 10; vs HSV-SIRT1, 1.81 � 0.10, n 
 9) and Cdkn1b (HSV GFP, 1.00 � 0.05, n 
 9; vs HSV-SIRT1,
1.68 � 0.06, n 
 9). C, Western blotting of nuclear or cytosolic fractions of NAc of mice treated chronically with saline or cocaine
reveals a significant increase in FOXO3a protein levels in nuclear fractions (HSV GFP, 1.00 � 0.29, n 
 7; vs HSV-SIRT1, 2.93 �
0.38, n 
 7), with no differences in cytosolic fractions. D, Chronic cocaine administration induces downstream FOXO3a targets in
NAc: Gadd45� (saline, 1.00 � 0.02, n 
 8; vs cocaine, 1.426 � 0.06, n 
 9) and Cdkn1b (saline, 1.00 � 0.032, n 
 8; vs cocaine,
1.301 � 0.06, n 
 9). *p � 0.05.
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Figure 7. Chronic cocaine increases FOXO3a binding to, and mRNA expression levels of, several of its downstream targets in NAc. A, qChIP for FOXO3a in NAc of mice treated chronically with cocaine or saline
on several known downstream targets of FOXO3a (n 
 5 or 6). B, qPCR analysis of NAc of mice treated chronically with cocaine or saline for FOXO3a downstream targets (n 
 7 or 8). *p � 0.05.

Figure 8. Effect of FOXO3a overexpression in NAc on gene expression and cocaine-induced place conditioning. A, HSV-FOXO3a vectors regulate downstream targets in the NAc, Fasl (HSV-GFP,
1.00 � 0.12, n 
 8; vs HSV-FOXO3a WT, 2.28 � 0.59, n 
 7; vs HSV-FOXO3aTM, 3.98 � 0.83, n 
 7); and Npy (HSV-GFP, 1.02 � 0.11, n 
 11; vs HSV-FOXO3aWT, 2.38 � 0.64, n 
 10; vs
HSV-FOXO3aTM, 1.79� 0.28, n 
 12), with no effect on other targets studied. B, Western blotting of NAc injected with HSV-GFP or HSV-FOXO3a reveals significant induction of FOXO3a protein with
the latter vector (HSV-GFP, 1.00�0.09, n
6; vs HSV-FOXO3a, 3.35�0.60). C, Mice were trained to cocaine (5 mg/kg)- or saline-paired sides of a chamber for 3 d after viral-mediated gene transfer
with HSV-GFP, HSV-FOXO3a, HSV-FOXO3a-TM, or HSV-FOXO3a-DM. CPP scores are determined as the difference in time spent between cocaine- and saline-paired chambers. Data are presented as
mean � SEM (n 
 8 –11). *p � 0.05.
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nongenic regions (Maze et al., 2010, 2011; Feng et al., 2014). Future
work is needed to study this and many alternative hypotheses.

The general depletion of SIRT1 binding to genes after cocaine
would be expected to contribute to an increase in those genes’
expression. In the present study, we confirmed this hypothesis by
demonstrating that Bdnf, a gene well characterized for its role in
NAc in mediating cocaine-induced neural and behavioral plas-
ticity (Lobo et al., 2010), is disinhibited by the loss of SIRT1
binding. We show that chronic cocaine administration decreases
SIRT1 binding to the Bdnf gene, as found first by ChIP-seq and
confirmed by qChIP, in concert with Bdnf induction under these
conditions. These findings are consistent with a recent study,
which demonstrated that knockout of SIRT1 leads to elevated
levels of BDNF in hippocampus (Gao et al., 2010). By overlaying
SIRT1 ChIP-seq data with an RNA-seq dataset, we identified a
network of genes that show similar patterns of SIRT1-mediated
regulation in NAc after chronic cocaine exposure (e.g., Fig. 3B).

One mechanism by which loss of SIRT1 would be expected to
increase gene expression is through increased levels of H4K16ac,
given that this mark is one of the primary substrates for SIRT1 in
diverse tissues (Vaquero et al., 2007), including NAc (Ferguson et
al., 2013). Consistent with these expectations, ChIP-seq analysis
for H4K16ac in NAc showed prominent binding to promoter
regions, as previously described in cultured cells (Wang et al.,
2009; Füllgrabe et al., 2013), along with significant overlap of
gene promoters that displayed increased H4K16ac binding plus
decreased SIRT1 binding in NAc after chronic cocaine. Molecu-
lar pathway analysis of this set of genes revealed several interest-
ing networks that now warrant further investigation for their role
in cocaine action (see Results).

Aside from H4K16ac, additional substrates for SIRT1 in other
experimental systems are FOXO transcription factors, which are
deacetylated and activated by SIRT1 (Brunet et al., 2004; Daitoku

et al., 2004; Giannakou and Partridge, 2004; Nemoto et al., 2004).
Indeed, SIRT1 has been shown to thereby regulate expression
levels of several FOXO gene targets (Daitoku et al., 2004; Gian-
nakou and Partridge, 2004; Motta et al., 2004). We identified
FOXO transcription factors as an important mediator of SIRT1 in NAc
through a completely unbiased motif analysis by studying regions of the
genome that show altered SIRT1 binding after cocaine exposure. This
analysis was based on the knowledge that SIRT1 does not bind to DNA
in a sequence-specific manner, indicating the involvement of DNA-
binding proteins in mediating the downstream effects of SIRT1 induc-
tion by cocaine. We found that the FOXO DNA-binding motif was the
most highly represented in our SIRT1 ChIP-seq dataset. Interestingly,
the other most highly represented motifs correspond to bind-
ing sites for the PU.1-IRF (interferon-regulatory factor)-ETS
(E26 transformation-specific) and the Maz(ZP) (Myc-associated
zinc finger protein) families of transcription factors, which have
been implicated in several peripheral cancers but have not to date
been studied in brain. It would be interesting to evaluate the
functioning of these factors in cocaine models.

FOXO proteins influence a range of functions, including cell
cycle, differentiation, metabolism, apoptosis, stress resistance,
DNA repair, and aging (Brunet et al., 1999; Birkenkamp and
Coffer, 2003). However, the involvement of FOXO in molecular
and behavioral adaptations to cocaine has not been previously
examined. Here, based on our unbiased motif analysis, we ex-
plored a role for FOXO3a, the FOXO isoform most highly ex-
pressed in brain, in cocaine action on NAc. We demonstrate that
SIRT1 overexpression deacetylates FOXO3a in NAc and that
chronic cocaine administration induces the nuclear translocation
of FOXO3a in this brain region. We demonstrate further that
FOXO3a induction in NAc enhances rewarding responses to
cocaine. We also show that cocaine exposure induces several
known gene targets of FOXO3a in concert with increased binding

Figure 9. SIRT1 regulates gene expression in NAc via an H4K16ac- and a FOXO3a-dependent pathway. Cocaine regulation of SIRT1 induces gene expression in the NAc via two distinct actions. Mechanism 1,
Despite the global increase in SIRT1 levels in NAc after cocaine, there is a significant depletion, through unknown mechanisms, of SIRTI binding to the promoter of certain genes, which leads to increased H4K16ac
enrichment at those genes. Mechanism 2, SIRT1 deacetylates FOXO3a resulting in activation of FOXO3a’s transcriptional activity and increased expression of its downstream targets. Such cocaine regulation of
SIRT1, and SIRT1’s regulation of gene expression through these distinct mechanisms, contributes to aspects of cocaine-induced neural and behavioral plasticity.
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of FOXO3a to those genes’ promoter regions. Among these
cocaine-induced, FOXO3a downstream targets are Gadd45� and
Cdkn1b. Cdkn1b has been shown previously to be a target of
FOXO3a in other tissues: one group showed inhibition of Cdkn1b
by FOXO3a in HeLa cells, whereas other groups reported activa-
tion, similar to the findings in this study, in mouse embryonic
fibroblasts (Brunet et al., 2004; Motta et al., 2004; van der Horst et
al., 2004). These observations underscore the highly cell type-
specific actions of most transcription factors. The induction of
Gadd45� in NAc by chronic cocaine is particularly interesting
based on a recent study showing that GADD45 regulates memory
and synaptic plasticity (Sultan et al., 2012). Our finding that
chronic cocaine, through a SIRT1-FOXO3a network, induces
Gadd45� and Ddb1, another DNA repair protein, in NAc impli-
cates for the first time proteins that are involved in DNA repair in
other systems in the long-term actions of cocaine on the brain.
Further work is needed to determine whether actual DNA injury
is involved or whether these effects reflect distinct functions of
the proteins within fully differentiated adult brain tissue.

In conclusion, the present study demonstrates the power of un-
biased epigenomic assays to reveal fundamentally new mechanisms
by which chronic cocaine induces molecular and behavioral plastic-
ity. We show two mechanisms by which chronic cocaine regulation
of SIRT1 induces gene transcription in NAc. First, the loss of SIRT1
from certain gene promoters increases H4K16ac at those promoters
to activate transcription. Second, the induction of global levels of
SIRT1 deacetylates and activates FOXO3a, which then induces many
of its downstream gene targets. The discovery of these novel mech-
anisms in the context of cocaine exposure advances our understand-
ing of the molecular basis of cocaine addiction.
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