Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):o30–o31. doi: 10.1107/S2056989014026437

Crystal structure of 3-carbamo­thio­yl­pyridinium thio­cyanate

Hasna Bouchareb a, Mhamed Boudraa a, Sofiane Bouacida a,b,*, Hocine Merazig a, El Hossain Chtoun c
PMCID: PMC4331844  PMID: 25705491

Abstract

In the cation of the title salt, C6H7N2S+·SCN, the C=S bond is oriented trans with respect to the C—C=N fragment in the pyridine ring. The planes of the aromatic ring and the thio­amide fragment of the cation make a dihedral angle of 38.31 (4)°. In the crystal, the components are linked by N—H⋯S and N—H⋯N, hydrogen bonds, forming a two-dimensional network parallel to (10-1).

Keywords: crystal structure, 3-carbamo­thio­ylpyridinium cation, thio­cyanate anion, N—H⋯S hydrogen bonding

Related literature  

For isomeric thio­nicotinamide structures, see: Downie et al. (1972); Form et al. (1973); Colleter & Gadret (1967). For a related structure, see: Sharif et al. (2009). For the structural inter­est of thio­nicotinamides, see: Fonari et al. (2007).graphic file with name e-71-00o30-scheme1.jpg

Experimental  

Crystal data  

  • C6H7N2S+·CNS

  • M r = 197.28

  • Monoclinic, Inline graphic

  • a = 7.2495 (2) Å

  • b = 9.3759 (3) Å

  • c = 13.5949 (3) Å

  • β = 94.454 (1)°

  • V = 921.26 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.52 mm−1

  • T = 295 K

  • 0.2 × 0.16 × 0.1 mm

Data collection  

  • Bruker APEXII diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2002) T min = 0.679, T max = 0.746

  • 12686 measured reflections

  • 3313 independent reflections

  • 2563 reflections with I > 2σ(I)

  • R int = 0.023

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.045

  • wR(F 2) = 0.140

  • S = 1.04

  • 3313 reflections

  • 109 parameters

  • H-atom parameters constrained

  • Δρmax = 0.58 e Å−3

  • Δρmin = −0.26 e Å−3

Data collection: APEX2 (Bruker, 2011); cell refinement: SAINT (Bruker, 2011); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397sup1.cif

e-71-00o30-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397Isup2.hkl

e-71-00o30-Isup2.hkl (159.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026437/bq2397Isup3.cml

. DOI: 10.1107/S2056989014026437/bq2397fig1.tif

The mol­ecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

b . DOI: 10.1107/S2056989014026437/bq2397fig2.tif

Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H⋯S in red and N—H⋯N in black]

CCDC reference: 1037011

Additional supporting information: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (, ).

DHA DH HA D A DHA
N1H1AS11i 0.86 2.54 3.3450(15) 156
N1H1BS1ii 0.86 2.55 3.3975(14) 171
N2H2N11iii 0.86 1.88 2.709(2) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

Thanks are due to MESRS and ATRST (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et l’Agence Thématique de Recherche en Sciences et Technologie – Algérie) via the PNR programme for financial support.

supplementary crystallographic information

S1. Comment

There are three isomeric thionicotinamides of general formula C6H6N2S, 2-thioamidopyridine (Downie et al., 1972), 3-thioamidopyridine (Form et al., 1973) and 4-thioamidopyridine (Colleter & Gadret, 1967), then three possible coordination sites. The structural interest to these compounds has centered on the parameters of the thioamide group and the consequent electron arrangement within the group (Fonari et al., 2007). The thioamide group and the pyridine ring are not coplanar.

In the title compound, (I), the asymmetric unit contains one 3-3-carbamothioylpyridinium and one thiocyanate ions. The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the cation moiety, the C=S bond is oriented trans with respect to the C—C—N fragment in the pyridine ring. The aromatic ring and the thioamide fragment of the thionicotinamide molecule make a dihedral angle of 38.31 (4)° similar to that found in 3-carbamothioylpyridinium iodide (trans) (30.02 (3)°) (Sharif et al., 2009) and 3-thioamido-pyridine (cis) (33.76 (7)°) (Form et al. 1973). The crystal packing is stabilized by weak N—H···N and N—H···S hydrogen bonds forming a two-dimensional network (Fig. 2).

S2. Experimental

3-Thionicotinamide (690 mg, 0.5 mmol) was added dropwise to a solution of KSCN (48.6 mg, 0.5 mmol) in water/ethanol (10 ml/10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. After several days, single crystals suitable for X-ray diffraction were obtained.

S3. Refinement

Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: C—H = 0.93 Å and N—H = 0.86 Å with Uiso = 1.2Ueq(C or N).

Figures

Fig. 1.

Fig. 1.

The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

Fig. 2.

Fig. 2.

Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H···S in red and N—H···N in black]

Crystal data

C6H7N2S+·CNS F(000) = 408
Mr = 197.28 Dx = 1.422 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 7.2495 (2) Å Cell parameters from 5267 reflections
b = 9.3759 (3) Å θ = 2.6–32.1°
c = 13.5949 (3) Å µ = 0.52 mm1
β = 94.454 (1)° T = 295 K
V = 921.26 (4) Å3 Prism, colorless
Z = 4 0.2 × 0.16 × 0.1 mm

Data collection

Bruker APEXII diffractometer 3313 independent reflections
Radiation source: sealed tube 2563 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.023
φ and ω scans θmax = 32.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 2002) h = −10→10
Tmin = 0.679, Tmax = 0.746 k = −14→14
12686 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.140 H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0808P)2 + 0.1946P] where P = (Fo2 + 2Fc2)/3
3313 reflections (Δ/σ)max < 0.001
109 parameters Δρmax = 0.58 e Å3
0 restraints Δρmin = −0.26 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.9430 (2) 0.08889 (15) 0.83615 (10) 0.0351 (3)
C2 0.91545 (18) 0.13467 (15) 0.73124 (9) 0.0322 (3)
C3 0.9619 (2) 0.27153 (17) 0.70337 (11) 0.0401 (3)
H3 1.0114 0.336 0.7503 0.048*
C4 0.9342 (3) 0.3117 (2) 0.60509 (13) 0.0536 (4)
H4 0.9675 0.4025 0.5854 0.064*
C5 0.8576 (3) 0.2168 (2) 0.53738 (12) 0.0552 (5)
H5 0.8365 0.2434 0.4716 0.066*
C6 0.8395 (2) 0.04215 (18) 0.65938 (10) 0.0392 (3)
H6 0.8072 −0.0501 0.6764 0.047*
C11 0.3607 (2) 0.10281 (16) 0.67580 (11) 0.0383 (3)
N1 0.9976 (2) −0.04356 (15) 0.85163 (10) 0.0492 (3)
H1A 1.0153 −0.0983 0.8025 0.059*
H1B 1.0156 −0.0754 0.9109 0.059*
N2 0.81305 (19) 0.08559 (17) 0.56595 (9) 0.0464 (3)
H2 0.7655 0.027 0.5224 0.056*
N11 0.3114 (3) 0.0569 (2) 0.59942 (12) 0.0642 (5)
S1 0.90233 (7) 0.20284 (5) 0.92615 (3) 0.04789 (14)
S11 0.43232 (7) 0.16631 (5) 0.78372 (3) 0.04908 (14)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0405 (7) 0.0356 (6) 0.0286 (5) −0.0036 (5) −0.0012 (5) −0.0032 (5)
C2 0.0340 (6) 0.0364 (6) 0.0257 (5) 0.0005 (5) 0.0004 (4) −0.0029 (4)
C3 0.0481 (8) 0.0358 (7) 0.0358 (6) 0.0008 (6) −0.0001 (6) −0.0007 (5)
C4 0.0724 (12) 0.0460 (9) 0.0427 (8) 0.0019 (8) 0.0056 (8) 0.0102 (7)
C5 0.0638 (11) 0.0713 (12) 0.0299 (7) 0.0139 (9) 0.0000 (7) 0.0074 (7)
C6 0.0421 (7) 0.0435 (7) 0.0316 (6) −0.0039 (6) 0.0007 (5) −0.0066 (5)
C11 0.0440 (7) 0.0352 (7) 0.0356 (6) 0.0024 (6) 0.0029 (5) 0.0006 (5)
N1 0.0781 (10) 0.0370 (7) 0.0323 (6) 0.0049 (7) 0.0022 (6) 0.0002 (5)
N2 0.0484 (7) 0.0609 (9) 0.0286 (5) 0.0024 (6) −0.0043 (5) −0.0102 (5)
N11 0.0865 (12) 0.0625 (10) 0.0419 (7) 0.0034 (9) −0.0070 (7) −0.0116 (7)
S1 0.0704 (3) 0.0440 (2) 0.02793 (18) 0.01027 (18) −0.00476 (16) −0.00570 (13)
S11 0.0598 (3) 0.0521 (3) 0.0344 (2) −0.00810 (19) −0.00268 (16) −0.00319 (15)

Geometric parameters (Å, º)

C1—N1 1.3154 (19) C5—N2 1.337 (3)
C1—C2 1.4879 (18) C5—H5 0.93
C1—S1 1.6677 (14) C6—N2 1.3334 (19)
C2—C3 1.387 (2) C6—H6 0.93
C2—C6 1.3879 (19) C11—N11 1.155 (2)
C3—C4 1.388 (2) C11—S11 1.6303 (16)
C3—H3 0.93 N1—H1A 0.86
C4—C5 1.367 (3) N1—H1B 0.86
C4—H4 0.93 N2—H2 0.86
N1—C1—C2 116.23 (12) N2—C5—H5 120.1
N1—C1—S1 123.75 (11) C4—C5—H5 120.1
C2—C1—S1 120.02 (11) N2—C6—C2 119.97 (15)
C3—C2—C6 118.52 (13) N2—C6—H6 120
C3—C2—C1 120.76 (12) C2—C6—H6 120
C6—C2—C1 120.71 (13) N11—C11—S11 179.35 (17)
C2—C3—C4 119.60 (15) C1—N1—H1A 120
C2—C3—H3 120.2 C1—N1—H1B 120
C4—C3—H3 120.2 H1A—N1—H1B 120
C5—C4—C3 119.51 (17) C6—N2—C5 122.51 (14)
C5—C4—H4 120.2 C6—N2—H2 118.7
C3—C4—H4 120.2 C5—N2—H2 118.7
N2—C5—C4 119.88 (15)
N1—C1—C2—C3 −142.88 (16) C2—C3—C4—C5 1.4 (3)
S1—C1—C2—C3 37.84 (19) C3—C4—C5—N2 −1.1 (3)
N1—C1—C2—C6 38.3 (2) C3—C2—C6—N2 0.1 (2)
S1—C1—C2—C6 −140.98 (13) C1—C2—C6—N2 178.93 (13)
C6—C2—C3—C4 −0.9 (2) C2—C6—N2—C5 0.2 (2)
C1—C2—C3—C4 −179.75 (15) C4—C5—N2—C6 0.3 (3)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···S11i 0.86 2.54 3.3450 (15) 156
N1—H1B···S1ii 0.86 2.55 3.3975 (14) 171
N2—H2···N11iii 0.86 1.88 2.709 (2) 162

Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1.

Footnotes

Supporting information for this paper is available from the IUCr electronic archives (Reference: BQ2397).

References

  1. Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
  2. Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
  4. Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. pp. 3463–3469.
  5. Downie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1972). Acta Cryst. B28, 283–290.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Fonari, M. S., Ganin, E. V., Tang, S. W., Wang, W. J. & Simonov, Y. A. (2007). J. Mol. Struct. 826, 89–95.
  8. Form, G. R., Raper, E. S. & Downie, T. C. (1973). Acta Cryst. B29, 776–782.
  9. Sharif, S., Akkurt, M., Khan, I. U., Nadeem, S., Tirmizi, S. A. & Ahmad, S. (2009). Acta Cryst. E65, o2423. [DOI] [PMC free article] [PubMed]
  10. Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397sup1.cif

e-71-00o30-sup1.cif (18.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397Isup2.hkl

e-71-00o30-Isup2.hkl (159.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989014026437/bq2397Isup3.cml

. DOI: 10.1107/S2056989014026437/bq2397fig1.tif

The mol­ecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.

b . DOI: 10.1107/S2056989014026437/bq2397fig2.tif

Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H⋯S in red and N—H⋯N in black]

CCDC reference: 1037011

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES