Abstract
In the cation of the title salt, C6H7N2S+·SCN−, the C=S bond is oriented trans with respect to the C—C=N fragment in the pyridine ring. The planes of the aromatic ring and the thioamide fragment of the cation make a dihedral angle of 38.31 (4)°. In the crystal, the components are linked by N—H⋯S and N—H⋯N, hydrogen bonds, forming a two-dimensional network parallel to (10-1).
Keywords: crystal structure, 3-carbamothioylpyridinium cation, thiocyanate anion, N—H⋯S hydrogen bonding
Related literature
For isomeric thionicotinamide structures, see: Downie et al. (1972 ▸); Form et al. (1973 ▸); Colleter & Gadret (1967 ▸). For a related structure, see: Sharif et al. (2009 ▸). For the structural interest of thionicotinamides, see: Fonari et al. (2007 ▸).
Experimental
Crystal data
C6H7N2S+·CNS−
M r = 197.28
Monoclinic,
a = 7.2495 (2) Å
b = 9.3759 (3) Å
c = 13.5949 (3) Å
β = 94.454 (1)°
V = 921.26 (4) Å3
Z = 4
Mo Kα radiation
μ = 0.52 mm−1
T = 295 K
0.2 × 0.16 × 0.1 mm
Data collection
Bruker APEXII diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 2002 ▸) T min = 0.679, T max = 0.746
12686 measured reflections
3313 independent reflections
2563 reflections with I > 2σ(I)
R int = 0.023
Refinement
R[F 2 > 2σ(F 2)] = 0.045
wR(F 2) = 0.140
S = 1.04
3313 reflections
109 parameters
H-atom parameters constrained
Δρmax = 0.58 e Å−3
Δρmin = −0.26 e Å−3
Data collection: APEX2 (Bruker, 2011 ▸); cell refinement: SAINT (Bruker, 2011 ▸); data reduction: SAINT; program(s) used to solve structure: SIR2002 (Burla et al., 2005 ▸); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 ▸); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012 ▸) and DIAMOND (Brandenburg & Berndt, 2001 ▸); software used to prepare material for publication: WinGX (Farrugia, 2012 ▸).
Supplementary Material
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014026437/bq2397Isup3.cml
. DOI: 10.1107/S2056989014026437/bq2397fig1.tif
The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
b . DOI: 10.1107/S2056989014026437/bq2397fig2.tif
Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H⋯S in red and N—H⋯N in black]
CCDC reference: 1037011
Additional supporting information: crystallographic information; 3D view; checkCIF report
Table 1. Hydrogen-bond geometry (, ).
| DHA | DH | HA | D A | DHA |
|---|---|---|---|---|
| N1H1AS11i | 0.86 | 2.54 | 3.3450(15) | 156 |
| N1H1BS1ii | 0.86 | 2.55 | 3.3975(14) | 171 |
| N2H2N11iii | 0.86 | 1.88 | 2.709(2) | 162 |
Symmetry codes: (i)
; (ii)
; (iii)
.
Acknowledgments
Thanks are due to MESRS and ATRST (Ministére de l’Enseignement Supérieur et de la Recherche Scientifique et l’Agence Thématique de Recherche en Sciences et Technologie – Algérie) via the PNR programme for financial support.
supplementary crystallographic information
S1. Comment
There are three isomeric thionicotinamides of general formula C6H6N2S, 2-thioamidopyridine (Downie et al., 1972), 3-thioamidopyridine (Form et al., 1973) and 4-thioamidopyridine (Colleter & Gadret, 1967), then three possible coordination sites. The structural interest to these compounds has centered on the parameters of the thioamide group and the consequent electron arrangement within the group (Fonari et al., 2007). The thioamide group and the pyridine ring are not coplanar.
In the title compound, (I), the asymmetric unit contains one 3-3-carbamothioylpyridinium and one thiocyanate ions. The molecular geometry and the atom-numbering scheme are shown in Fig 1. In the cation moiety, the C=S bond is oriented trans with respect to the C—C—N fragment in the pyridine ring. The aromatic ring and the thioamide fragment of the thionicotinamide molecule make a dihedral angle of 38.31 (4)° similar to that found in 3-carbamothioylpyridinium iodide (trans) (30.02 (3)°) (Sharif et al., 2009) and 3-thioamido-pyridine (cis) (33.76 (7)°) (Form et al. 1973). The crystal packing is stabilized by weak N—H···N and N—H···S hydrogen bonds forming a two-dimensional network (Fig. 2).
S2. Experimental
3-Thionicotinamide (690 mg, 0.5 mmol) was added dropwise to a solution of KSCN (48.6 mg, 0.5 mmol) in water/ethanol (10 ml/10 ml). The mixture was then refluxed with stirring for 3 h and the resulting solution was left to stand at room temperature. After several days, single crystals suitable for X-ray diffraction were obtained.
S3. Refinement
Approximate positions for all H atoms were first obtained from the difference electron density map. However, the H atoms were situated into idealized positions and the H-atoms have been refined within the riding atom approximation. The applied constraints were as follow: C—H = 0.93 Å and N—H = 0.86 Å with Uiso = 1.2Ueq(C or N).
Figures
Fig. 1.

The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.

Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H···S in red and N—H···N in black]
Crystal data
| C6H7N2S+·CNS− | F(000) = 408 |
| Mr = 197.28 | Dx = 1.422 Mg m−3 |
| Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
| a = 7.2495 (2) Å | Cell parameters from 5267 reflections |
| b = 9.3759 (3) Å | θ = 2.6–32.1° |
| c = 13.5949 (3) Å | µ = 0.52 mm−1 |
| β = 94.454 (1)° | T = 295 K |
| V = 921.26 (4) Å3 | Prism, colorless |
| Z = 4 | 0.2 × 0.16 × 0.1 mm |
Data collection
| Bruker APEXII diffractometer | 3313 independent reflections |
| Radiation source: sealed tube | 2563 reflections with I > 2σ(I) |
| Graphite monochromator | Rint = 0.023 |
| φ and ω scans | θmax = 32.5°, θmin = 2.6° |
| Absorption correction: multi-scan (SADABS; Sheldrick, 2002) | h = −10→10 |
| Tmin = 0.679, Tmax = 0.746 | k = −14→14 |
| 12686 measured reflections | l = −20→20 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
| wR(F2) = 0.140 | H-atom parameters constrained |
| S = 1.04 | w = 1/[σ2(Fo2) + (0.0808P)2 + 0.1946P] where P = (Fo2 + 2Fc2)/3 |
| 3313 reflections | (Δ/σ)max < 0.001 |
| 109 parameters | Δρmax = 0.58 e Å−3 |
| 0 restraints | Δρmin = −0.26 e Å−3 |
Special details
| Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
| Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| C1 | 0.9430 (2) | 0.08889 (15) | 0.83615 (10) | 0.0351 (3) | |
| C2 | 0.91545 (18) | 0.13467 (15) | 0.73124 (9) | 0.0322 (3) | |
| C3 | 0.9619 (2) | 0.27153 (17) | 0.70337 (11) | 0.0401 (3) | |
| H3 | 1.0114 | 0.336 | 0.7503 | 0.048* | |
| C4 | 0.9342 (3) | 0.3117 (2) | 0.60509 (13) | 0.0536 (4) | |
| H4 | 0.9675 | 0.4025 | 0.5854 | 0.064* | |
| C5 | 0.8576 (3) | 0.2168 (2) | 0.53738 (12) | 0.0552 (5) | |
| H5 | 0.8365 | 0.2434 | 0.4716 | 0.066* | |
| C6 | 0.8395 (2) | 0.04215 (18) | 0.65938 (10) | 0.0392 (3) | |
| H6 | 0.8072 | −0.0501 | 0.6764 | 0.047* | |
| C11 | 0.3607 (2) | 0.10281 (16) | 0.67580 (11) | 0.0383 (3) | |
| N1 | 0.9976 (2) | −0.04356 (15) | 0.85163 (10) | 0.0492 (3) | |
| H1A | 1.0153 | −0.0983 | 0.8025 | 0.059* | |
| H1B | 1.0156 | −0.0754 | 0.9109 | 0.059* | |
| N2 | 0.81305 (19) | 0.08559 (17) | 0.56595 (9) | 0.0464 (3) | |
| H2 | 0.7655 | 0.027 | 0.5224 | 0.056* | |
| N11 | 0.3114 (3) | 0.0569 (2) | 0.59942 (12) | 0.0642 (5) | |
| S1 | 0.90233 (7) | 0.20284 (5) | 0.92615 (3) | 0.04789 (14) | |
| S11 | 0.43232 (7) | 0.16631 (5) | 0.78372 (3) | 0.04908 (14) |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| C1 | 0.0405 (7) | 0.0356 (6) | 0.0286 (5) | −0.0036 (5) | −0.0012 (5) | −0.0032 (5) |
| C2 | 0.0340 (6) | 0.0364 (6) | 0.0257 (5) | 0.0005 (5) | 0.0004 (4) | −0.0029 (4) |
| C3 | 0.0481 (8) | 0.0358 (7) | 0.0358 (6) | 0.0008 (6) | −0.0001 (6) | −0.0007 (5) |
| C4 | 0.0724 (12) | 0.0460 (9) | 0.0427 (8) | 0.0019 (8) | 0.0056 (8) | 0.0102 (7) |
| C5 | 0.0638 (11) | 0.0713 (12) | 0.0299 (7) | 0.0139 (9) | 0.0000 (7) | 0.0074 (7) |
| C6 | 0.0421 (7) | 0.0435 (7) | 0.0316 (6) | −0.0039 (6) | 0.0007 (5) | −0.0066 (5) |
| C11 | 0.0440 (7) | 0.0352 (7) | 0.0356 (6) | 0.0024 (6) | 0.0029 (5) | 0.0006 (5) |
| N1 | 0.0781 (10) | 0.0370 (7) | 0.0323 (6) | 0.0049 (7) | 0.0022 (6) | 0.0002 (5) |
| N2 | 0.0484 (7) | 0.0609 (9) | 0.0286 (5) | 0.0024 (6) | −0.0043 (5) | −0.0102 (5) |
| N11 | 0.0865 (12) | 0.0625 (10) | 0.0419 (7) | 0.0034 (9) | −0.0070 (7) | −0.0116 (7) |
| S1 | 0.0704 (3) | 0.0440 (2) | 0.02793 (18) | 0.01027 (18) | −0.00476 (16) | −0.00570 (13) |
| S11 | 0.0598 (3) | 0.0521 (3) | 0.0344 (2) | −0.00810 (19) | −0.00268 (16) | −0.00319 (15) |
Geometric parameters (Å, º)
| C1—N1 | 1.3154 (19) | C5—N2 | 1.337 (3) |
| C1—C2 | 1.4879 (18) | C5—H5 | 0.93 |
| C1—S1 | 1.6677 (14) | C6—N2 | 1.3334 (19) |
| C2—C3 | 1.387 (2) | C6—H6 | 0.93 |
| C2—C6 | 1.3879 (19) | C11—N11 | 1.155 (2) |
| C3—C4 | 1.388 (2) | C11—S11 | 1.6303 (16) |
| C3—H3 | 0.93 | N1—H1A | 0.86 |
| C4—C5 | 1.367 (3) | N1—H1B | 0.86 |
| C4—H4 | 0.93 | N2—H2 | 0.86 |
| N1—C1—C2 | 116.23 (12) | N2—C5—H5 | 120.1 |
| N1—C1—S1 | 123.75 (11) | C4—C5—H5 | 120.1 |
| C2—C1—S1 | 120.02 (11) | N2—C6—C2 | 119.97 (15) |
| C3—C2—C6 | 118.52 (13) | N2—C6—H6 | 120 |
| C3—C2—C1 | 120.76 (12) | C2—C6—H6 | 120 |
| C6—C2—C1 | 120.71 (13) | N11—C11—S11 | 179.35 (17) |
| C2—C3—C4 | 119.60 (15) | C1—N1—H1A | 120 |
| C2—C3—H3 | 120.2 | C1—N1—H1B | 120 |
| C4—C3—H3 | 120.2 | H1A—N1—H1B | 120 |
| C5—C4—C3 | 119.51 (17) | C6—N2—C5 | 122.51 (14) |
| C5—C4—H4 | 120.2 | C6—N2—H2 | 118.7 |
| C3—C4—H4 | 120.2 | C5—N2—H2 | 118.7 |
| N2—C5—C4 | 119.88 (15) | ||
| N1—C1—C2—C3 | −142.88 (16) | C2—C3—C4—C5 | 1.4 (3) |
| S1—C1—C2—C3 | 37.84 (19) | C3—C4—C5—N2 | −1.1 (3) |
| N1—C1—C2—C6 | 38.3 (2) | C3—C2—C6—N2 | 0.1 (2) |
| S1—C1—C2—C6 | −140.98 (13) | C1—C2—C6—N2 | 178.93 (13) |
| C6—C2—C3—C4 | −0.9 (2) | C2—C6—N2—C5 | 0.2 (2) |
| C1—C2—C3—C4 | −179.75 (15) | C4—C5—N2—C6 | 0.3 (3) |
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| N1—H1A···S11i | 0.86 | 2.54 | 3.3450 (15) | 156 |
| N1—H1B···S1ii | 0.86 | 2.55 | 3.3975 (14) | 171 |
| N2—H2···N11iii | 0.86 | 1.88 | 2.709 (2) | 162 |
Symmetry codes: (i) −x+3/2, y−1/2, −z+3/2; (ii) −x+2, −y, −z+2; (iii) −x+1, −y, −z+1.
Footnotes
Supporting information for this paper is available from the IUCr electronic archives (Reference: BQ2397).
References
- Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.
- Bruker (2011). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.
- Colleter, J. C. & Gadret, M. (1967). Bull. Soc. Chim. Fr. pp. 3463–3469.
- Downie, T. C., Harrison, W., Raper, E. S. & Hepworth, M. A. (1972). Acta Cryst. B28, 283–290.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Fonari, M. S., Ganin, E. V., Tang, S. W., Wang, W. J. & Simonov, Y. A. (2007). J. Mol. Struct. 826, 89–95.
- Form, G. R., Raper, E. S. & Downie, T. C. (1973). Acta Cryst. B29, 776–782.
- Sharif, S., Akkurt, M., Khan, I. U., Nadeem, S., Tirmizi, S. A. & Ahmad, S. (2009). Acta Cryst. E65, o2423. [DOI] [PMC free article] [PubMed]
- Sheldrick, G. M. (2002). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989014026437/bq2397Isup2.hkl
Supporting information file. DOI: 10.1107/S2056989014026437/bq2397Isup3.cml
. DOI: 10.1107/S2056989014026437/bq2397fig1.tif
The molecular structure of, (I), with displacement ellipsoids drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
b . DOI: 10.1107/S2056989014026437/bq2397fig2.tif
Packing diagram of (I) viewed along the b axis showing hydrogen bond as dashed lines [N—H⋯S in red and N—H⋯N in black]
CCDC reference: 1037011
Additional supporting information: crystallographic information; 3D view; checkCIF report
