Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2015 Jan 1;71(Pt 1):31–34. doi: 10.1107/S2056989014026152

Crystal structures of iso­quinoline–3-chloro-2-nitro­benzoic acid (1/1) and isoquinolinium 4-chloro-2-nitro­benzoate

Kazuma Gotoh a, Hiroyuki Ishida a,*
PMCID: PMC4331863  PMID: 25705443

The structures of two isomeric compounds of iso­quinoline with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid have been determined at 190 K. In each compound, the acid and base mol­ecules are held together by a short hydrogen bond between a carb­oxy O atom and a base N atom. In the hydrogen-bonded unit of the former, the H atom is disordered over two positions, while in the latter, an acid–base inter­action involving H-atom transfer occurs and the H atom is located at the N site.

Keywords: crystal structure, short hydrogen bond, chloro- and nitro-substituted benzoic acid, iso­quinoline

Abstract

In each of the title isomeric compounds, C9H7.3N·C7H3.7ClNO4, (I), and C9H8N·C7H3ClNO4, (II), of iso­quinoline with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid, the two components are linked by a short hydrogen bond between a base N atom and a carb­oxy O atom. In the hydrogen-bonded unit of (I), the H atom is disordered over two positions with N and O site occupancies of 0.30 (3) and 0.70 (3), respectively, while in (II), an acid–base inter­action involving H-atom transfer occurs and the H atom is located at the N site. In the crystal of (I), the acid–base units are connected through C—H⋯O hydrogen bonds into a tape structure along the b-axis direction. Inversion-related adjacent tapes are further linked through π–π inter­actions [centroid–centroid distances = 3.6389 (7)–3.7501 (7) Å], forming a layer parallel to (001). In the crystal of (II), the acid–base units are connected through C—H⋯O hydrogen bonds into a ladder structure along the a-axis direction. The ladders are further linked by another C—H⋯O hydrogen bond into a layer parallel to (001).

Chemical context  

The hydrogen bonds formed between organic acids and organic bases vary from an O—H⋯N to an O⋯H—N+ type with increasing ΔpK a [pK a(base) − pK a(acid)], and at an appropriate ΔpK a value, a short strong hydrogen bond with a broad single minimum potential energy curve for the H atom or a double-minimum potential is observed (Jerzykiewicz et al., 1998; Kalenik et al., 1989; Steiner et al., 2001; Schmidtmann & Wilson, 2008; Gilli & Gilli, 2009). For the system of pyridine derivative–chloro- and nitro-substituted benzoic acid (1/1), we have shown that three compounds of quinoline with 3-chloro-2-nitro­benzoic acid, 4-chloro-2-nitro­benzoic acid and 5-chloro-2-nitro­benzoic acid, and two compounds of phthal­azine with 3-chloro-2-nitro­benzoic acid and 4-chloro-2-nitro­benzoic acid have a short double-well N⋯H⋯O hydrogen bond between the aromatic N atom and the carb­oxy O atom (Gotoh & Ishida, 2009, 2011a ).graphic file with name e-71-00031-scheme1.jpg

We report here two isomeric compounds of iso­quinoline with chloro- and nitro-substituted benzoic acids, namely, iso­quinoline–3-chloro-2-nitro­benzoic acid (1/1), (I), and 4-chloro-2-nitro­benzoate isoquinolinium, (II), in order to extend our studies of hydrogen bonding in the system of pyridine derivative–chloro- and nitro-substituted benzoic acid (Gotoh & Ishida, 2011b ,c ).

Structural commentary  

The mol­ecular structure of (I) is shown in Fig. 1. The base and acid mol­ecules are held together by a short hydrogen bond between the N atom of the base and the carb­oxy O atom. The H atom in the hydrogen bond is disordered over two positions with the N and O sites occupancies refined to 0.30 (3) and 0.70 (3), respectively. In addition, a C—H⋯O hydrogen bond (C8—H8⋯O2; Table 1) is observed in the hydrogen-bonded acid–base unit. In the unit, the iso­quinoline ring system, the carb­oxy group and the benzene ring of the acid mol­ecule are almost coplanar with each other; the carb­oxy group makes dihedral angles of 5.35 (15) and 5.91 (15)°, respectively, with the iso­quinoline ring system and the benzene ring, and the dihedral angle between the iso­quinoline ring system and the benzene ring is 1.21 (4)°. On the other hand, the nitro group and the benzene ring are almost perpendicular with a dihedral angle of 83.71 (13)°.

Figure 1.

Figure 1

A mol­ecular view of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The disordered O—H⋯N/N—H⋯O hydrogen bond and the C—H⋯O inter­action are indicated by dashed lines.

Table 1. Hydrogen-bond geometry (, ) for (I) .

DHA DH HA D A DHA
O1H1N2 0.84(2) 1.74(2) 2.5725(12) 177(2)
N2H2O1 0.88(2) 1.69(5) 2.5725(12) 172(5)
C5H5O2i 0.95 2.49 3.3427(14) 149
C8H8O2 0.95 2.53 3.1977(14) 128

Symmetry code: (i) Inline graphic.

The mol­ecular structure of (II) is shown in Fig. 2. An acid–base inter­action involving H-atom transfer occurs and the base and acid mol­ecules are linked by an N+—H⋯O hydrogen bond. In the hydrogen-bonded unit, the iso­quinoline ring system make dihedral angles of 54.12 (15) and 71.89 (5)°, respectively, with the carb­oxy group and the benzene ring of the acid. In the acid mol­ecule, the benzene ring makes dihedral angles of 26.59 (15) and 67.69 (15)°, respectively, with the carb­oxy and nitro groups.

Figure 2.

Figure 2

A mol­ecular view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

Supra­molecular features  

In the crystal of (I), the hydrogen-bonded acid-base units are linked by a C—H⋯O hydrogen bond (C5—H5⋯O2i; Table 1), forming a tape structure along the b-axis direction (Fig. 3). Adjacent tapes, which are related by an inversion center, are further linked through π–π inter­actions between the benzene ring of the acid and the iso­quinoline ring system (Fig. 4), forming a layer parallel to the (001) plane. The centroid–centroid distances are in the range 3.6389 (7)–3.7501 (7) Å [Cg1⋯Cg2iii = 3.7501 (7), Cg1⋯Cg2iv = 3.6674 (7), Cg1⋯Cg3iii = 3.6637 (7) and Cg1⋯Cg3iv = 3.6389 (7) Å, where Cg1, Cg2 and Cg3 are the centroids of the C1–C6 benzene ring of the acid, and the N2/C8–C10/C15/C16 rings of the base, respectively. Symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1.]

Figure 3.

Figure 3

A packing diagram of (I), showing the hydrogen-bonded tape structure along the b axis. The dashed lines indicate disordered O—H⋯N/N—H⋯O hydrogen bonds and the C—H⋯O inter­actions. [Symmetry codes: (i) x, y − 1, z; (ii) x, y + 1, z.]

Figure 4.

Figure 4

A packing diagram of (I), showing the π–π stacking structure along the a axis. The dashed lines indicate disordered O—H⋯N/N—H⋯O hydrogen bonds and H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (iii) −x, −y + 1, −z + 1; (iv) −x + 1, −y + 1, −z + 1.]

In the crystal of (II), the acid–base units are connected through C—H⋯O hydrogen bonds (C3—H3⋯O2i and C13—H13⋯O3ii; Table 2) into a ladder structure along the a-axis direction (Fig. 5). Adjacent ladders are further linked by another C—H⋯O hydrogen bond (C16—H16⋯O1iii; Table 2), forming a layer parallel to the (001) plane.

Table 2. Hydrogen-bond geometry (, ) for (II) .

DHA DH HA D A DHA
N2H2O1 0.91(2) 1.67(2) 2.5738(14) 169(2)
C3H3O2i 0.95 2.21 3.1580(15) 174
C13H13O3ii 0.95 2.52 3.3405(19) 145
C16H16O1iii 0.95 2.43 3.3477(15) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

A packing diagram of (II), showing the hydrogen-bonded ladder structure along the a axis. The dashed lines indicate N—H⋯O and C—H⋯O hydrogen bonds. H atoms not involved in the hydrogen bonds have been omitted. [Symmetry codes: (i) x + 1, y, z; (ii) −x + 1, −y, −z + 1.]

Database survey  

A search of the Cambridge Structural Database (Version 5.35, last update May 2014; Groom & Allen, 2014) showed 49 structures of co-crystals/salts of pyridine (or amine) derivative–chloro- and nitro-substituted benzoic acid: 16 structures containing 2-chloro-4-nitro­benzoic acid, nine for 2-chloro-5-nitro­benzoic acid, three for 3-chloro-2-nitro­benzoic acid, five for 3-chloro-6-nitro­benzoic acid, eight for 4-chloro-2-nitro­benzoic acid and eight for 4-chloro-3-nitro­benzoic acid. On the other hand, there were eight structures of co-crystals/salts of iso­quinoline with organic acids. The N⋯O distances of the N—H⋯O/O—H⋯N hydrogen bonds are in the range 2.578 (2)–2.8718 (17) Å. No disordered H atoms were observed in the hydrogen bonds.

Synthesis and crystallization  

Crystals of compounds (I) and (II) were obtained by slow evaporation from aceto­nitrile solutions of iso­quinoline with the corresponding chloro- and nitro-substituted benzoic acid in a 1:1 molar ratio at room temperature [50 ml aceto­nitrile solution of iso­quinoline (0.202 g) and 3-chloro-2-nitro­benzoic acid (0.315 g) for (I), and 150 ml solution of iso­quinoline (0.204 g) and 4-chloro-2-nitro­benzoic acid (0.318 g) for (II)].

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms in compounds (I) and (II) were found in difference Fourier maps. The H atom in (I), which is involved in the N⋯H⋯O hydrogen bonds, was found to be disordered over two positions in a difference Fourier map. Since the site-occupancy factors and isotropic displacement parameters were strongly correlated, the occupancy factors were refined, with U iso(H) = 1.5U eq(N or O). The positional parameters were refined with bond restraints of O—H = 0.84 (2) Å and N—H = 0.88 (2) Å. Atom H2 in (II) was refined freely [refined distance N2—H2 = 0.91 (2) Å]. Other H atoms of compounds (I) and (II) were positioned geometrically (C—H = 0.95 Å) and treated as riding, with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C9H7.3NC7H3.7ClNO4 C9H8N+C7H3ClNO4
M r 330.73 330.73
Crystal system, space group Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 190 190
a, b, c () 6.93986(15), 7.6629(5), 13.9475(5) 7.5916(3), 7.7607(3), 13.0456(4)
, , () 83.945(3), 87.6039(16), 85.117(4) 74.8360(11), 80.1736(10), 80.3642(13)
V (3) 734.50(6) 724.84(4)
Z 2 2
Radiation type Mo K Mo K
(mm1) 0.28 0.29
Crystal size (mm) 0.35 0.28 0.10 0.39 0.32 0.23
 
Data collection
Diffractometer Rigaku R-AXIS RAPIDII Rigaku R-AXIS RAPIDII
Absorption correction Numerical (NUMABS; Higashi, 1999) Numerical (NUMABS; Higashi, 1999)
T min, T max 0.918, 0.972 0.903, 0.936
No. of measured, independent and observed [I > 2(I)] reflections 15432, 4278, 3729 21510, 4224, 3559
R int 0.022 0.024
(sin /)max (1) 0.704 0.704
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.034, 0.098, 1.08 0.039, 0.117, 1.07
No. of reflections 4278 4224
No. of parameters 219 212
No. of restraints 2 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
max, min (e 3) 0.41, 0.22 0.42, 0.16

Computer programs: PROCESS-AUTO (Rigaku/MSC, 2004), SHELXS97 and SHELXL2014 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), CrystalStructure (Rigaku, 2010) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) General, I, II. DOI: 10.1107/S2056989014026152/lh5740sup1.cif

e-71-00031-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989014026152/lh5740IIsup3.hkl

e-71-00031-IIsup3.hkl (231.7KB, hkl)

CCDC references: 1036583, 1036582

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C9H8N+·C7H3ClNO4 Z = 2
Mr = 330.73 F(000) = 340.00
Triclinic, P1 Dx = 1.515 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71075 Å
a = 7.5916 (3) Å Cell parameters from 17960 reflections
b = 7.7607 (3) Å θ = 3.0–30.1°
c = 13.0456 (4) Å µ = 0.29 mm1
α = 74.8360 (11)° T = 190 K
β = 80.1736 (10)° Block, colorless
γ = 80.3642 (13)° 0.39 × 0.32 × 0.23 mm
V = 724.84 (4) Å3

Data collection

Rigaku R-AXIS RAPIDII diffractometer 3559 reflections with I > 2σ(I)
Detector resolution: 10.000 pixels mm-1 Rint = 0.024
ω scans θmax = 30.0°
Absorption correction: numerical (NUMABS; Higashi, 1999) h = −10→10
Tmin = 0.903, Tmax = 0.936 k = −10→10
21510 measured reflections l = −18→18
4224 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.117 w = 1/[σ2(Fo2) + (0.0699P)2 + 0.126P] where P = (Fo2 + 2Fc2)/3
S = 1.07 (Δ/σ)max = 0.001
4224 reflections Δρmax = 0.42 e Å3
212 parameters Δρmin = −0.16 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Reflections were merged by SHELXL according to the crystal class for the calculation of statistics and refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cl1 0.89304 (5) 0.83272 (5) 0.98941 (3) 0.04513 (12)
O1 0.49156 (12) 0.48077 (13) 0.69271 (7) 0.0359 (2)
O2 0.25649 (12) 0.50987 (15) 0.81971 (8) 0.0427 (2)
O3 0.78736 (17) 0.25408 (13) 0.80657 (10) 0.0503 (3)
O4 0.91034 (13) 0.46177 (16) 0.68317 (9) 0.0465 (3)
N1 0.81282 (13) 0.40954 (14) 0.76667 (9) 0.0328 (2)
N2 0.31990 (13) 0.26809 (14) 0.63693 (8) 0.0313 (2)
C1 0.53627 (14) 0.58384 (14) 0.83982 (8) 0.0253 (2)
C2 0.72336 (14) 0.54307 (14) 0.82731 (8) 0.0257 (2)
C3 0.83671 (15) 0.61582 (16) 0.87214 (9) 0.0293 (2)
H3 0.9639 0.5862 0.8608 0.035*
C4 0.75517 (17) 0.73430 (15) 0.93451 (9) 0.0310 (2)
C5 0.56930 (18) 0.77436 (16) 0.95367 (10) 0.0338 (2)
H5 0.5166 0.8522 0.9992 0.041*
C6 0.46123 (16) 0.69972 (15) 0.90582 (9) 0.0299 (2)
H6 0.3339 0.7281 0.9182 0.036*
C7 0.41584 (15) 0.51806 (15) 0.78102 (9) 0.0281 (2)
C8 0.24974 (17) 0.14032 (19) 0.71997 (10) 0.0357 (3)
H8 0.2368 0.1551 0.7910 0.043*
C9 0.19825 (16) −0.00741 (18) 0.70253 (10) 0.0344 (2)
H9 0.1497 −0.0957 0.7610 0.041*
C10 0.21705 (14) −0.02954 (15) 0.59708 (9) 0.0282 (2)
C11 0.17073 (17) −0.18170 (17) 0.57248 (12) 0.0363 (3)
H11 0.1257 −0.2761 0.6282 0.044*
C12 0.19101 (18) −0.19246 (19) 0.46842 (13) 0.0417 (3)
H12 0.1586 −0.2946 0.4524 0.050*
C13 0.25903 (18) −0.0555 (2) 0.38392 (11) 0.0404 (3)
H13 0.2719 −0.0664 0.3121 0.048*
C14 0.30629 (16) 0.09202 (18) 0.40472 (9) 0.0339 (2)
H14 0.3528 0.1839 0.3478 0.041*
C15 0.28566 (14) 0.10747 (15) 0.51186 (9) 0.0264 (2)
C16 0.33645 (15) 0.25579 (16) 0.53682 (9) 0.0294 (2)
H16 0.3834 0.3486 0.4808 0.035*
H2 0.369 (3) 0.354 (3) 0.6545 (17) 0.060 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cl1 0.0583 (2) 0.0493 (2) 0.03860 (18) −0.02822 (16) −0.00558 (14) −0.01675 (14)
O1 0.0312 (4) 0.0486 (5) 0.0341 (4) −0.0119 (4) −0.0042 (3) −0.0166 (4)
O2 0.0260 (4) 0.0626 (6) 0.0428 (5) −0.0125 (4) −0.0022 (3) −0.0155 (4)
O3 0.0648 (7) 0.0320 (5) 0.0575 (6) 0.0025 (4) −0.0139 (5) −0.0187 (4)
O4 0.0342 (5) 0.0670 (7) 0.0459 (5) −0.0106 (4) 0.0058 (4) −0.0311 (5)
N1 0.0273 (4) 0.0377 (5) 0.0386 (5) 0.0004 (4) −0.0087 (4) −0.0185 (4)
N2 0.0251 (4) 0.0361 (5) 0.0365 (5) −0.0036 (4) −0.0051 (4) −0.0146 (4)
C1 0.0255 (5) 0.0250 (5) 0.0250 (5) −0.0044 (4) −0.0037 (4) −0.0044 (4)
C2 0.0260 (5) 0.0265 (5) 0.0258 (5) −0.0040 (4) −0.0029 (4) −0.0085 (4)
C3 0.0278 (5) 0.0340 (5) 0.0286 (5) −0.0085 (4) −0.0039 (4) −0.0090 (4)
C4 0.0404 (6) 0.0285 (5) 0.0281 (5) −0.0131 (4) −0.0055 (4) −0.0078 (4)
C5 0.0436 (6) 0.0274 (5) 0.0317 (5) −0.0042 (4) −0.0024 (5) −0.0114 (4)
C6 0.0295 (5) 0.0287 (5) 0.0298 (5) −0.0013 (4) −0.0021 (4) −0.0070 (4)
C7 0.0257 (5) 0.0289 (5) 0.0304 (5) −0.0061 (4) −0.0070 (4) −0.0045 (4)
C8 0.0319 (6) 0.0482 (7) 0.0287 (5) −0.0040 (5) −0.0029 (4) −0.0133 (5)
C9 0.0311 (5) 0.0417 (6) 0.0274 (5) −0.0074 (5) −0.0014 (4) −0.0028 (4)
C10 0.0220 (5) 0.0308 (5) 0.0309 (5) −0.0021 (4) −0.0054 (4) −0.0052 (4)
C11 0.0296 (5) 0.0312 (5) 0.0491 (7) −0.0039 (4) −0.0098 (5) −0.0082 (5)
C12 0.0349 (6) 0.0391 (6) 0.0602 (8) 0.0020 (5) −0.0175 (6) −0.0247 (6)
C13 0.0360 (6) 0.0527 (8) 0.0381 (6) 0.0052 (5) −0.0128 (5) −0.0227 (6)
C14 0.0298 (5) 0.0430 (6) 0.0278 (5) 0.0002 (5) −0.0062 (4) −0.0080 (4)
C15 0.0207 (4) 0.0313 (5) 0.0267 (5) −0.0012 (4) −0.0048 (4) −0.0063 (4)
C16 0.0228 (5) 0.0328 (5) 0.0323 (5) −0.0035 (4) −0.0044 (4) −0.0068 (4)

Geometric parameters (Å, º)

Cl1—C4 1.7326 (12) C6—H6 0.9500
O1—C7 1.2784 (15) C8—C9 1.3550 (19)
O2—C7 1.2340 (14) C8—H8 0.9500
O3—N1 1.2162 (15) C9—C10 1.4108 (17)
O4—N1 1.2220 (15) C9—H9 0.9500
N1—C2 1.4734 (14) C10—C11 1.4131 (17)
N2—C16 1.3176 (16) C10—C15 1.4168 (15)
N2—C8 1.3632 (17) C11—C12 1.363 (2)
N2—H2 0.91 (2) C11—H11 0.9500
C1—C6 1.3931 (15) C12—C13 1.410 (2)
C1—C2 1.3933 (15) C12—H12 0.9500
C1—C7 1.5118 (15) C13—C14 1.3590 (19)
C2—C3 1.3814 (15) C13—H13 0.9500
C3—C4 1.3855 (16) C14—C15 1.4140 (16)
C3—H3 0.9500 C14—H14 0.9500
C4—C5 1.3869 (18) C15—C16 1.4025 (16)
C5—C6 1.3862 (17) C16—H16 0.9500
C5—H5 0.9500
O3—N1—O4 125.41 (11) C9—C8—N2 120.89 (11)
O3—N1—C2 116.47 (10) C9—C8—H8 119.6
O4—N1—C2 118.08 (10) N2—C8—H8 119.6
C16—N2—C8 121.77 (11) C8—C9—C10 119.69 (11)
C16—N2—H2 121.1 (13) C8—C9—H9 120.2
C8—N2—H2 116.6 (13) C10—C9—H9 120.2
C6—C1—C2 116.80 (10) C9—C10—C11 123.14 (11)
C6—C1—C7 119.68 (10) C9—C10—C15 118.36 (11)
C2—C1—C7 123.42 (10) C11—C10—C15 118.50 (11)
C3—C2—C1 124.21 (10) C12—C11—C10 119.70 (12)
C3—C2—N1 115.37 (9) C12—C11—H11 120.2
C1—C2—N1 120.38 (9) C10—C11—H11 120.2
C2—C3—C4 116.52 (10) C11—C12—C13 121.55 (12)
C2—C3—H3 121.7 C11—C12—H12 119.2
C4—C3—H3 121.7 C13—C12—H12 119.2
C3—C4—C5 121.97 (10) C14—C13—C12 120.33 (12)
C3—C4—Cl1 117.91 (9) C14—C13—H13 119.8
C5—C4—Cl1 120.12 (9) C12—C13—H13 119.8
C6—C5—C4 119.35 (11) C13—C14—C15 119.39 (12)
C6—C5—H5 120.3 C13—C14—H14 120.3
C4—C5—H5 120.3 C15—C14—H14 120.3
C5—C6—C1 121.06 (11) C16—C15—C14 121.11 (11)
C5—C6—H6 119.5 C16—C15—C10 118.34 (10)
C1—C6—H6 119.5 C14—C15—C10 120.53 (11)
O2—C7—O1 126.47 (11) N2—C16—C15 120.90 (11)
O2—C7—C1 118.47 (11) N2—C16—H16 119.6
O1—C7—C1 115.02 (9) C15—C16—H16 119.6
C6—C1—C2—C3 −2.85 (16) C2—C1—C7—O1 −24.68 (15)
C7—C1—C2—C3 173.44 (10) C16—N2—C8—C9 1.66 (18)
C6—C1—C2—N1 174.65 (10) N2—C8—C9—C10 −0.10 (19)
C7—C1—C2—N1 −9.05 (16) C8—C9—C10—C11 178.39 (11)
O3—N1—C2—C3 110.00 (12) C8—C9—C10—C15 −1.62 (17)
O4—N1—C2—C3 −67.61 (14) C9—C10—C11—C12 179.31 (11)
O3—N1—C2—C1 −67.71 (14) C15—C10—C11—C12 −0.68 (17)
O4—N1—C2—C1 114.67 (12) C10—C11—C12—C13 0.57 (19)
C1—C2—C3—C4 1.06 (17) C11—C12—C13—C14 −0.04 (19)
N1—C2—C3—C4 −176.56 (10) C12—C13—C14—C15 −0.36 (19)
C2—C3—C4—C5 1.76 (17) C13—C14—C15—C16 178.64 (11)
C2—C3—C4—Cl1 −178.43 (8) C13—C14—C15—C10 0.24 (17)
C3—C4—C5—C6 −2.62 (18) C9—C10—C15—C16 1.85 (15)
Cl1—C4—C5—C6 177.57 (9) C11—C10—C15—C16 −178.16 (10)
C4—C5—C6—C1 0.69 (18) C9—C10—C15—C14 −179.71 (10)
C2—C1—C6—C5 1.91 (16) C11—C10—C15—C14 0.28 (16)
C7—C1—C6—C5 −174.53 (10) C8—N2—C16—C15 −1.40 (17)
C6—C1—C7—O2 −26.60 (16) C14—C15—C16—N2 −178.81 (10)
C2—C1—C7—O2 157.21 (11) C10—C15—C16—N2 −0.38 (16)
C6—C1—C7—O1 151.51 (11)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H2···O1 0.91 (2) 1.67 (2) 2.5738 (14) 169 (2)
C3—H3···O2i 0.95 2.21 3.1580 (15) 174
C13—H13···O3ii 0.95 2.52 3.3405 (19) 145
C16—H16···O1iii 0.95 2.43 3.3477 (15) 163

Symmetry codes: (i) x+1, y, z; (ii) −x+1, −y, −z+1; (iii) −x+1, −y+1, −z+1.

References

  1. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  2. Gilli, G. & Gilli, P. (2009). In The Nature of the Hydrogen Bond. Oxford University Press.
  3. Gotoh, K. & Ishida, H. (2009). Acta Cryst. C65, o534–o538. [DOI] [PubMed]
  4. Gotoh, K. & Ishida, H. (2011a). Acta Cryst. C67, o473–o478. [DOI] [PubMed]
  5. Gotoh, K. & Ishida, H. (2011b). Acta Cryst. E67, o2883. [DOI] [PMC free article] [PubMed]
  6. Gotoh, K. & Ishida, H. (2011c). Acta Cryst. E67, o3222. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  8. Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
  9. Jerzykiewicz, L. B., Malarski, Z., Sobczyk, L., Lis, T. & Grech, E. (1998). J. Mol. Struct. 440, 175–185.
  10. Kalenik, J., Majerz, I., Sobczyk, L., Grech, E. & Habeeb, M. M. (1989). J. Chem. Soc. Faraday Trans. 1, 85, 3187–3193.
  11. Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.
  12. Rigaku/MSC (2004). PROCESS-AUTO. Rigaku/MSC Inc., The Woodlands, Texas, USA.
  13. Schmidtmann, M. & Wilson, C. C. (2008). CrystEngComm, 10, 177–183.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Steiner, T., Majerz, I. & Wilson, C. C. (2001). Angew. Chem. Int. Ed. 40, 2651–2654 [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) General, I, II. DOI: 10.1107/S2056989014026152/lh5740sup1.cif

e-71-00031-sup1.cif (1.1MB, cif)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989014026152/lh5740IIsup3.hkl

e-71-00031-IIsup3.hkl (231.7KB, hkl)

CCDC references: 1036583, 1036582

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES