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Abstract

For analysis of the main effects of SNPs, meta-analysis of summary results from individual studies 

has been shown to provide comparable results as “mega-analysis” that jointly analyzes the pooled 

participant data from the available studies. This fact revolutionized the genetic analysis of 

complex traits through large GWAS consortia. Investigations of gene-environment (G×E) 

interactions are on the rise since they can potentially explain a part of the missing heritability and 

identify individuals at high risk for disease. However, for analysis of gene-environment 

interactions, it is not known whether these methods yield comparable results. In this empirical 

study, we report that the results from both methods were largely consistent for all four tests; the 

standard 1 degree of freedom (df) test of main effect only, the 1 df test of the main effect (in the 

presence of interaction effect), the 1 df test of the interaction effect, and the joint 2 df test of main 

and interaction effects. They provided similar effect size and standard error estimates, leading to 

comparable p-values. The genomic inflation factors and the number of SNPs with various 

thresholds were also comparable between the two approaches. Mega-analysis is not always 

feasible especially in very large and diverse consortia since pooling of raw data may be limited by 

the terms of the informed consent. Our study illustrates that meta-analysis can be an effective 

approach also for identifying interactions. To our knowledge, this is the first report investigating 

meta- versus mega-analyses for interactions.

Corresponding author: Dr. Yun Ju Sung, Division of Biostatistics, Washington University School of Medicine, 660 South Euclid 
Avenue, Campus Box 8067, St. Louis, MO 63110-1093, yunju@wubios.wustl.edu, Phone: (314) 362-0053; Fax: (314) 362-2693. 

The authors declare that they have no competing interests.

NIH Public Access
Author Manuscript
Genet Epidemiol. Author manuscript; available in PMC 2015 May 01.

Published in final edited form as:
Genet Epidemiol. 2014 May ; 38(4): 369–378. doi:10.1002/gepi.21800.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Keywords

gene-environment interactions (GEI); meta-analysis; mega-analysis

Introduction

Over the past several years, genome wide association studies (GWAS) have identified 

hundreds of common genetic variants associated with many common complex disease traits 

(http://www.genome.gov), thereby accelerating the progress in the genetic dissection of 

complex human disease traits. The confidence and funding invested in GWAS approaches 

have led to unprecedented levels of collaboration, spawning a number of highly productive 

consortia such as the CHARGE (Cohorts for Heart and Aging Research in Genetic 

Epidemiology) [Psaty, et al. 2009], GIANT (Genetic Investigation of Anthropometric Traits) 

[Willer, et al. 2009], and ICBP (International Consortium of Blood Pressure) [International 

Consortium for Blood Pressure Genome-Wide Association, et al. 2011]. It is standard 

practice in these consortia to perform meta-analysis that combines the summary results from 

multiple studies for the same phenotype of interest [de Bakker, et al. 2008]. As recently 

reviewed [Evangelou and Ioannidis 2013], meta-analysis provides an efficient and practical 

strategy for overcoming the limitations of power that can compromise any individual study.

However, these hundreds of successfully identified genetic variants typically have very 

subtle effects, thus explaining only a fraction of the heritability of most complex traits 

[Manolio, et al. 2009]. It is increasingly recognized that the near-exclusive focus on main 

effects has become a barrier to the identification of additional genes underlying these disease 

traits. Increasingly greater emphasis is being placed in recent years on gene-environment 

(G×E) interaction analyses, also relying on meta-analysis in large consortia. The 

identification of G×E interactions is important for many reasons [Le Marchand and Wilkens 

2008; Thomas 2010a]. G×E interactions or more complex pathways involving multiple 

genes and environments can potentially explain at least part of the missing heritability 

[Eichler, et al. 2010; Manolio, et al. 2009; McCarthy and Hirschhorn 2008; Visscher, et al. 

2012]. They can further elucidate the biological networks underlying complex disease risk 

and enable “profiling” of individuals at highest risk for disease. Although identifying G×E 

interactions is important, it requires larger sample sizes than those needed to identify genetic 

main effects alone [Thomas 2010b]. Therefore, it is important to have very large sample 

sizes. Meta-analysis which has been useful for identifying genetic main effects will be even 

more useful for identifying G×E interactions.

To increase sample sizes, collaborative groups are increasingly collating the raw individual 

participant data from studies that are able to participate and jointly analyze the pooled 

individual-level data (such analysis is referred to here as mega-analysis). This approach, also 

known as meta-analysis of individual patient data (IPD) in statistical literature [Stewart and 

Clarke 1995], is regarded as the gold standard in randomized clinical trials (e.g, see 

[Chalmers 1993]). For example, a general framework for this IPD meta-analysis for clinical 

trials has been described by Higgins et al [Higgins, et al. 2001]. However, meta-analysis that 

combines results from the participating studies has several advantages as compared to mega-
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analysis. First, obtaining individual level data is challenging and limited by the terms of the 

informed consent within each study. Second, integration of very large genotype and 

phenotypic data sets from different studies is time-consuming and poses additional 

challenges with data management, storage, and harmonization issues. Third, meta-analysis 

allows for analyses of individual studies to account for local population substructure, 

relationships among subjects, study-specific covariates, and other ascertainment-related 

issues which may be optimally dealt with within each study. Reviews on advantages and 

disadvantages of each approach can be also found elsewhere [Steinberg, et al. 1997; Stewart 

and Tierney 2002].

Although mega-analysis is arguably more powerful than meta-analysis of separate results, in 

so far as analysis of main effects is concerned, it has been shown that meta-analysis also 

yields highly comparable results. Olkin and Sampson [Olkin and Sampson 1998] showed 

that, for comparing treatments with respect to a continuous outcome in clinical trials, meta-

analysis is equivalent to mega-analysis if the treatment effects and error variances are 

constant across trials. The equivalence has been extended even if the error variances are 

different across trials [Mathew and Nordström 1999]. Lin and Zeng theoretically proved 

asymptotic equivalence between meta- and mega-analyses when the effect sizes are the 

same for all studies [Lin and Zeng 2010b]. This was further illustrated empirically by 

combining results from two phases of data [Lin and Zeng 2010a].

However, for analysis of G×E interaction effects, it is unknown whether meta- and mega-

analyses yield comparable results. In this paper, we addressed this issue using empirical 

data. Using data from the four studies, we analyzed each study separately and meta-analyzed 

the results using METAL [Willer, et al. 2010]. We also combined the raw phenotypic and 

GWAS data from all 4 studies and analyzed the pooled data (i.e., mega-analysis). In addition 

to the standard 1 degree of freedom (df) test of interaction effect, we used the joint 2 df test 

of main and interaction effects by Kraft et al [Kraft, et al. 2007] and the joint meta-analysis 

by Manning et al [Manning, et al. 2011].

Study Samples

We used data for European American participants from four studies presented in Table I: the 

Framingham Heart Study (FHS), GENOA, HERITAGE and HyperGEN. All four studies 

obtained informed consent from participants and approval from the appropriate institutional 

review boards. All four studies have participated in several GWAS consortia publications 

(based on main effects), and therefore much is already known about them. Our analysis was 

restricted to a total of 131,880 imputed SNPs on chromosomes 16 and 18, for which 

preliminary analysis of G×E interactions in the FHS data yielded significant results. 

Imputation for these SNPs was performed using MACH [Li, et al. 2010] using the reference 

panels of the HapMap Phase II data with European ancestry subjects.

The Framingham Heart Study (FHS) is a longitudinal family-based study for identifying the 

factors that contribute to cardiovascular disease, sponsored by the National Heart, Lung, and 

Blood Institute (NHLBI). FHS began in 1948 with the recruitment of an original cohort of 

5,209 men and women who were 28 to 62 years of age at entry [Dawber, et al. 1951]. Clinic 
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examinations took place approximately every 2 years. In 1971, a second generation of study 

participants, 5,124 children and spouses of children of the original cohort were enrolled 

[Feinleib, et al. 1975]. Clinic examinations took place approximately every 4 years. 

Enrollment of the third generation cohort of 4,095 children of offspring cohort participants 

began in 2002 [Splansky, et al. 2007]. In this analysis we used the FHS SNP Health 

Association Resource (SHARe) data, as obtained through the database of Genotypes and 

Phenotypes (dbGaP). Our analysis was restricted to cross-sectional data on 6,686 European 

American subjects involving all 3 generations with GWAS data.

The Genetic Epidemiology Network of Arteriopathy (GENOA) is a family-based study of 

hypertension and diabetes (e.g., see [Daniels, et al. 2004]). GENOA recruited sibships with 

at least two hypertensive siblings and any additional available siblings, regardless of 

hypertension status. In total, it has collected data on over 5,000 European-American, 

African-American, and Hispanic-American subjects, from Minnesota, Mississippi, and 

Texas, respectively. GENOA subjects were brought in for a complete physical examination 

and questionnaire. We used the 1,420 European American subjects with GWAS data in this 

analysis.

The Health, risk factors, exercise training and genetics (HERITAGE) Family Study was 

designed to evaluate the role of genetic and non-genetic factors in cardiovascular, metabolic, 

and hormonal responses to aerobic exercise training [Bouchard, et al. 1995]. Extensive data, 

including body composition, cardiovascular risk factors, and lifestyle habits, were gathered 

on approximately 800 subjects in over 200 families, both before and after 20 weeks of 

supervised training. We used 469 European American subjects with GWAS data in this 

analysis.

The Hypertension Genetic Epidemiology Network (HyperGEN) is a multicenter family-

based study for investigating the genetic causes of hypertension and related conditions 

[Williams, et al. 2000]. HyperGEN recruited African American and European American 

participants at five field centers. It recruited sibships with at least two hypertensive siblings, 

non-medicated offspring of these hypertensive siblings, and an age-matched random sample. 

Subjects were brought into the clinic for an exam, and data were collected from 

questionnaires, a physical exam, and blood and urine samples. In total, HyperGEN collected 

data from 2,471 European American subjects and 2,300 African-American subjects. We 

used the 1,216 European American subjects with GWAS data in this analysis.

Statistical Analyses

To compare meta-analysis and mega-analysis, we considered four analysis options. First, as 

most GWAS use a main-effect-only analysis, we also performed a main-effect-only analysis. 

The expected response trait (Y) has the regression model

(1)

where δe is the environmental main effect and δg is the genetic main effect. We used the 

Wald test statistic that follows a chi-squared distribution with 1 degrees of freedom (df) 
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under the hypothesis H0: δg=0 (i.e., testing for the genetic main effect). Second, we followed 

the standard approach to identify G×E interactions. The regression model is generalized to

(2)

where βe and βg respectively are the environmental and genetic main effects and βge is their 

multiplicative interaction effect. We used the Wald test statistic that also follows a chi-

squared distribution with 1 df under the H0: βge=0 (i.e., testing for the G×E interaction effect 

in the presence of the genetic main effect). Third, we also tested the genetic main effect in 

the presence of G×E interaction effect by using Wald test statistic that follows a chi-squared 

distribution with 1 df under the H0: βg=0. Finally, we performed the test proposed by Kraft 

et al [Kraft, et al. 2007] that jointly tests the genetic main and G×E interaction effects using 

the same regression model as in the second analysis. We used a Wald test statistic that 

follows a chi-squared distribution with 2 df under the H0: βg=βge=0. This Wald test statistic 

is based on estimates of βg and βge and their corresponding 2×2 covariance matrix. The 

regression models for mega-analysis of pooled individual data were analogous except that 

they included study-specific intercepts (i.e., α1 – α4).

To combine the results from the four studies, we performed fixed effects meta-analysis. We 

used the inverse-variance weighting method in METAL [Willer, et al. 2010] by computing 

inverse-variance-weighted coefficients. It is straightforward to combine the 1 df results from 

three analysis options: main-effect-only analysis, interaction effect, and main effect in the 

presence of interaction effect. Manning et al [Manning, et al. 2011] developed the joint 

meta-analysis and modified METAL [Willer, et al. 2010] to combine the joint 2 df tests 

across multiple studies. The joint meta-analysis provides inference on the genetic main 

effect and interaction effect pooled across all studies. To combine the joint 2 df results 

(estimates of βg, βge and their corresponding 2×2 covariance matrix) from these 4 studies, 

we used a modified version of METAL that implements this joint 2 df meta-analysis by 

Manning et al [Manning, et al. 2011].

Fixed effects meta-analysis that we used is the most popular approach in GWAS consortia 

and is shown to be the most powerful for prioritizing and discovering SNPs [Pfeiffer, et al. 

2009]. In particular, fixed effects models have an advantage over random effects models in 

terms of increased power for discovery [Pereira, et al. 2009]. However, because fixed effects 

meta-analysis assumes that true effect-size is constant across the studies, we examined 

whether there was evidence of heterogeneity among studies using p-value based on 

Cochran's Q-test [Cochran 1954] for each SNP for all four analysis options. We also 

examined the I2 index that quantifies the proportion of total variation due to heterogeneity 

(i.e., between-study variance) [Higgins and Thompson 2002].

Increased Type I error due to inflation of test statistics in G×E interactions can be a concern 

as recently shown [Voorman, et al. 2011]. We plotted quantile-quantile (QQ) plots and 

computed the genomic inflation factor λGC, the degree of inflation of the median test 

statistic, for all four analysis options. We also computed the genomic controlled p-values by 

dividing test statistics by λGC, as they are widely used to correct for minor substructure 
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problems [Ganesh, et al. 2009]. In addition, we performed genomic controlled meta-analysis 

(also using METAL), where genomic control correction was applied before combining 

study-specific results.

To compare meta-analysis and mega-analysis in the context of G×E interactions, we 

analyzed systolic blood pressure (SBP) and used pack-years of smoking as an interacting 

covariate. In addition, we included age, sex, body mass index (BMI) and use of anti-

hypertensive medications as common covariates. Because all four studies are family studies 

in which relatedness must be taken into account, we used ProbABEL [Aulchenko, et al. 

2010] and GenABEL/MixABEL [Aulchenko, et al. 2007] for each cohort study and mega-

analysis of pooled individual participant data.

Results

Table I presents select characteristics of the four studies. Roughly half of the subjects are 

female within each study. The subjects in the HERITAGE tended to be younger, relatively 

leaner and low pack years with no anti-hypertensive medications (e.g., hypertension was an 

exclusion criterion). In contrast, the subjects in GENOA were older and had high pack years 

and higher SBP with over 55% on anti-hypertensive medications. The HyperGEN study has 

characteristics similar to GENOA. The FHS has intermediate values for SBP, medication 

use and pack years. We found that meta-analysis of interaction results had more SNPs with 

evidence of heterogeneity across studies.

Table II presents the number of SNPs and I2 index across multiple ranges of heterogeneity 

p-values based on Cochran's Q-test for heterogeneity. For main effect only analysis, 

heterogeneity p-values roughly followed a uniform distribution; about 5% of SNPs had 

heterogeneity p-values below 0.05. In contrast, meta-analysis for the interaction effect 

encountered the greatest heterogeneity among studies (13% of the SNPs had heterogeneity 

p-values < 0.05). The 2df test of joint main and interaction effects provided 10% 

heterogeneous results. Values of I2 index also provided evidence of higher heterogeneity in 

the interaction analysis (I2 values of 25, 50, 75 are considered low, moderate, high 

heterogeneity, respectively). I2 index ranged from 0 to 77.5 with a mean value of 4.3 for the 

main effect only analysis, whereas it ranged from 0 to 81.9 with a mean value of 9.9 for the 

interaction analysis.

We found that the results between meta- and mega-analyses were largely consistent. In 

particular, as shown in Figure I, the two analysis approaches provided similar effect sizes 

and standard error (SE) estimates. Effect sizes between the two approaches had a correlation 

of 0.95, 0.94, and 0.96 for main effect only 7[δg in equation (1)], main effect [βg in equation 

(2)], and interaction effect [βge in equation (2)] estimates, respectively. When the results 

were restricted to SNPs with heterogeneous effect sizes across studies (i.e., p-values of 

Cochran's Q-test < 0.05), there was larger variation in the meta- and mega-analysis results, 

leading to smaller correlations (as expected). Finally, SE estimates for all three effect sizes 

were almost identical (with correlations of 0.999).
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Figure II presents −log(p) values between meta- and mega-analyses for all four analysis 

options: main-effect-only analysis, main effect in the presence of the interaction effect, 

interaction effect in the presence of the main effect, and 2 df joint tests of main and 

interaction effects. Supplemental Table I presents summary statistics of −log(p) differences 

between mega- and meta-analyses. Surprisingly, the joint 2 df test provided the highest 

overall correlation (0.91); the correlations between the two methods across all SNPs were 

identical to the correlations across homogeneous SNPs only (up to two decimal places). 

Overall, although mega-analysis provided slightly better results as expected, both methods 

yielded very similar results for the most promising SNPs (with the smallest p values). For 

these promising SNPs, heterogeneity p-values were greater than 0.05, indicating their effects 

are homogenous across studies. High concordance of the smallest p values between mega- 

and meta-analysis methods is particularly noteworthy since they are the most important 

discoveries for further follow up.

When the effect sizes are constant across studies, the meta-analysis method using inverse-

variance weighting is shown to be optimal [Zhou, et al. 2011]. In particular, weights 

proportional to the square root of study sample sizes can be suboptimal when the trait 

variance differs across studies. In addition to the weighting method, we also performed 

another commonly-used approach that converts the direction of effect and p-value observed 

in each study into a signed Z-score; these Z-scores are then combined across studies in a 

weighted sum, with weights proportional to the square-root of the sample size for each 

study. Although trait variance of SBP differs somewhat, as shown in Table I, the results 

between the inverse-variance weighting method and the sample size weighted signed Z 

score method were remarkably similar, providing a correlation of 0.98.

Table III presents genomic inflation factor λGC for all 4 analysis options. QQ plots for meta- 

and mega-analyses are shown in Figure III (study-specific QQ plots are shown in 

Supplemental Figure I). We found that both meta- and mega-analyses behaved similarly. 

Main effect analysis had no inflation of Type I error. However, 1 df test of interaction effect 

had high inflation of type I error (λGC = 1.45 for both meta- and mega-analyses). The 

genomic controlled meta-analysis (GC-Meta), where genomic control correction was 

applied before combining study-specific results, removed most of the inflation (λGC = 1.02). 

The 2 df joint test of main and interaction effects had lower levels of inflation of type I error 

(λGC = 1.15 and 1.20 for meta- and mega-analysis, respectively), which was also removed 

by GC-Meta (λGC = 0.99). As shown in Table IV, the proportion of SNPs with p-value < 

0.05 stayed at 5% with genomic control correction. We note that, as the primary purpose of 

this investigation is to evaluate the comparability of meta- versus mega-analysis, inflation of 

type I error rate in G×E analyses is in itself not as relevant as whether such inflation, when it 

exists, is also comparable between the two approaches.

For mega-analysis, we also used the robust option in the ProABEL suite (results shown in 

Supplemental Figure II) following a recent recommendation [Voorman, et al. 2011]. This 

robust option is based on the “sandwich” estimate for variance, which is known to provide 

robust and asymptotically consistent estimator under miss-specified models [Huber 1967; 

Liang and Zeger 1986; White 1980]. Because the robust option in ProbABEL is currently 

applicable to population-based data, this ignores familial correlation. As shown in 
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Supplemental Figure II, the p-values from this robust option were similar to the genomic 

controlled p-values from the mega-analysis (Mega-GC).

We compared the performance of the four analyses in terms of the evidence for association, 

using the genomic controlled mega-analysis (Mega-GC) results. Figure IV presents the 

scatterplots of the results [- log (p) values] across these 4 analysis options. As shown in 

Table V, the number of SNPs with p-value < 1×10-4 was 24, 2, 18, and 35 from main effect 

only, main effect (in the presence of interaction), interaction effect (in the presence of main 

effect), and the 2 df joint test, respectively. They are plotted as red, green, blue, and cyan 

points in Figure IV. The 18 blue SNPs (with p-value < 1×10-4 from the interaction effect) 

also had p-value < 1×10-4 from the 2 df joint test; 17 additional SNPs with p-value < 1×10-5 

from the 2 df joint test are plotted as cyan points. Table V presents the effect sizes and 

standard errors (SE) for a subset of these SNPs, one SNP selected from each linkage 

disequilibrium (LD) block, as our results were based on 131,880 imputed SNPs. We found 

that the genetic main and interaction effects were in the opposite direction for every SNP in 

group 2. For these SNPs, the main effect only analysis (without interaction) provided a 

much smaller main effect estimate, leading to no evidence of association. This phenomenon 

is well known as Simpson's paradox in the statistics literature [Simpson 1951; Wagner 

1982]. We found that the main and interaction effects were in the same direction for every 

SNPs in groups 1 and 3. Although this evaluation was based on results from the mega-

analysis, as they are considered a gold standard, results based on meta-analysis were almost 

identical (which is not surprising given the high concordance between mega- and meta-

analysis).

Discussion

Meta-analysis has become the most effective approach in GWAS for utilizing large sample 

sizes available from multiple studies and a standard practice in most consortia, since each 

study can analyze its own data optimally by customizing data adjustments as needed 

[Evangelou and Ioannidis 2013]. Increasingly greater emphasis is being placed on G×E 

interaction analyses, also relying on meta-analysis in large consortia [Aschard, et al. 2012]. 

Mega-analysis is not readily feasible owing to several challenges including limitations of the 

informed consent for sharing raw data, data management, and data harmonization for 

combining multiple huge data sets. All these challenges render meta-analysis as the 

convenient and expedient method of choice especially because meta-analysis yields results 

comparable to mega-analysis.

In this paper, we empirically evaluated whether meta-analysis also provides results 

comparable to mega-analysis for identifying G×E interactions. We found that results from 

meta- and mega-analyses were largely consistent even for identifying G×E interaction 

effects. In particular, they provided similar effect size and standard error estimates, leading 

to similar p-values. The number of SNPs significant at various thresholds was also 

comparable between the two approaches. We observed increased type I error due to inflation 

of test statistics for identifying interactions. To address this issue, we adjusted for genomic 

control before and after meta-analysis in addition to correction after mega-analysis. 

Although inflation of type I error rate has been observed for the analysis of G×E 
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interactions, the levels of inflation were fairly comparable between meta- and mega-

analyses. Our study illustrates that meta-analysis can be an effective approach for 

investigating interaction effects also.

To our knowledge, this is the first report investigating meta- versus mega-analyses for 

interactions. The validity of our findings is somewhat limited as it is based on an empirical 

investigation using a relatively small number of studies (four) that are readily available to 

us. Therefore, they may not be generalized to all situations. A more comprehensive 

simulation study covering the various scenarios regarding the number of studies, variation of 

study sizes and types of genetic variation, among others, would strengthen our findings.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure I. 
Scatterplots showing effect sizes (1st row) and standard errors (2nd row) from mega-analysis 

versus meta-analysis. The main effect only BETA (1st column) corresponds to δg in equation 

(1). The main effect BETA (2nd column) and interaction effect BETA (3rd column) 

correspond to βg and βge in equation (2), respectively. Red crosses are SNPs with 

heterogeneous effect sizes across studies (i.e., p-value of Cochran's Q-test < 0.05), and blue 

circles are SNPs with p-value of Cochran's Q-test ≥ 0.05. The correlations between the two 

methods across all SNPs were identical to the correlations across blue circles (up to two 

decimal places). The black diagonal line indicates where the values on the two axes are 

equal.
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Figure II. 
Scatterplots showing -log(p) values from mega-analysis versus meta-analysis for the 4 

analysis options: 1 df test of the main effect only (without interaction effect) (top left), 1 df 

test of main effect in the presence of interaction effect (bottom left), 1 df test of interaction 

effect in the presence of the main effect (top right), and 2 df joint test of the main and 

interaction effects (bottom right). Red crosses are SNPs with heterogeneity effect sizes 

across studies (i.e., p-value of Cochran's Q-test < 0.05), and blue circles are SNPs with p-

value of Cochran's Q-test ≥ 0.05. The correlations between the two methods across all SNPs 

were identical to the correlations across blue circles (up to two decimal places). The black 

diagonal line indicates where −log (p) values from meta- and mega-analyses are equal.
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Figure III. 
Quantile-quantile (QQ) plots for the 4 analysis options: main effect only analysis (1st 

column), main effect in the presence of interaction (2nd column), interaction in the presence 

of main effect (3rd column), and 2 df joint test of main and interaction effects (4th column). 

The red circle points are p-values and the blue cross points are genomic controlled p-values. 

The genomic control value for the blue cross points is 1. Study-specific QQ plots are shown 

in Supplemental Figure I.
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Figure IV. 
Scatterplots of -log(p) values across the 4 analysis options using genomic controlled mega-

analysis. Red points are 24 SNPs with p-value < 1×10-4 from the main effect only test. 

Green points are 2 SNPs with p-value < 1×10-4 from the main effect test. Blue points are 18 

SNPs with p-value < 1×10-4 from the 1 df test of interaction effect (in the presence of main 

effect). Cyan points are additional 17 SNPs with p-value < 1×10-4 from the 2 df test of joint 

main and interaction effects.
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Table I
Summary statistics for the four studies

FHS GENOA HERITAGE HyperGEN

# Subjects 6,686 1,420 469 1,216

% Male 46.6% 44.9% 48.6% 49.7%

Age (mean ± SD) 49.1 ± 13.6 54.7 ± 10.7 36.9 ± 14.2 49.5 ± 13.8

BMI (mean ± SD) 27.4 ± 5.4 30.4 ± 6.2 26.0 ± 5.0 29.3 ± 5.9

% on Anti-HT Meds 19.0% 55.7% 0.0% 46.0%

SBP (mean ± SD) 120.4 ± 16.4 133.5 ± 19.6 116.5 ± 11.2 123.2 ± 19.2

Pack Years (mean ± SD) 9.9 ± 17.6 13.6 ± 21.6 5.0 ± 10.9 7.2 ± 16.3

Values shown represent mean value ± the standard deviation or percentage. FHS = Framingham Heart Study; GENOA = Genetic Epidemiology 
Network of Arteriopathy; HERITAGE = health, risk factors, exercise training and genetics; HyperGEN = Hypertension Genetic Epidemiology 
Network
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Table III

Genomic control λGC values for study-specific analysis, mega-anlysis, and meta-analysis.

1DF Main Only 1DF Main 1DF Interaction 2DF Joint Main and Int.

Study-specific analysis:

FHS 0.905 0.927 1.466 1.161

GENOA 0.998 1.108 1.228 1.117

HERITAGE 1.047 0.954 1.518 1.238

HyperGEN 1.015 0.933 1.549 1.234

Mega-analysis: 1.036 0.988 1.451 1.204

Meta-analysis:

No genomic control correction 0.976 0.927 1.447 1.154

Genomic control correction 0.971 0.914 1.015 0.994

QQ-plots for study-specific analysis are shown in Supplemental Figure I. QQ-plots for meta- and mega-analyses are shown in Figure III.
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