Skip to main content
. 2015 Feb 2;2015:528971. doi: 10.1155/2015/528971

Table 2.

Comparison of results from the different SVM classification algorithm designed.

Classifiers Kernel (ACC, SEN, SEP)
Extracted features-SVM Poly (0.90, 0.88, 0.88)
RBF (0.90, 0.90, 0.88)
Linear (0.89, 0.87, 0.87)

All variables-SVM Poly (0.85, 0.85, 0.83)
RBF (0.86, 0.85, 0.85)
Linear (0.83, 0.83, 0.85)

Six variables-SVM Poly (0.86, 0.85, 0.85)
RBF (0.87, 0.86, 0.85)
Linear (0.85, 0.85, 0.83)

Note: ACC, SEN, and SEP denote accuracy, sensitivity, and specificity, respectively.