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Abstract

Neuroeconomics studies the neurobiological and computational basis of value-based decision-

making. Its goal is to provide a biologically-based account of human behavior that can be applied 

in both the natural and the social sciences. In this review we propose a framework for thinking 

about decision-making that allows us to bring together recent findings in the field, highlight some 

of the most important outstanding problems, define a common lexicon that bridges the different 

disciplines that inform neuroeconomics, and point the way to future applications.

Value-based decision-making is pervasive in nature. It occurs whenever an organism makes 

a choice from several alternatives based on the subjective value that it places on them. 

Examples include basic animal behaviors such as bee foraging, and complicated human 

decisions such as trading in the stock-market. Neuroeconomics is a relatively new discipline, 

which studies the computations that the brain makes in order to make value-based decisions, 

as well as the neural implementation of those computations. It seeks to build a biologically 

sound theory of how humans make decisions that can be applied in both the natural and the 

social sciences.

The field brings together models, tools, and techniques from several disciplines. Economics 

provides a rich class of choice paradigms, formal models of the subjective variables that the 

brain should need to make decisions, and some experimental protocols for how to measure 

them. Psychology provides a wealth of behavioral data showing how animals learn and 

choose under different conditions, as well as theories about the nature of those processes. 

Neuroscience provides the knowledge of the brain and the tools to study the neural events 

that attend decision-making. Finally, computer science provides computational models of 

machine learning and decision-making. Ultimately, it is the computations that are central to 

uniting these disparate levels of description since computational models identify the kinds of 

signals and their dynamics required by different value-dependent learning and decision 

problems. But a full understanding of choice will require descriptions at all these levels.

In this review we propose a framework for thinking about decision-making that allows us to 

bring together recent findings in the field, highlight some of the most important outstanding 
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problems, define a common lexicon that bridges the different disciplines that inform 

neuroeconomics, and point the way to future applications.

Computations involved in decision-making

The first part of the framework divides the computations required for value-based decision-

making into five basic types (FIG 1). The categorization that we propose is based on 

existing theoretical models of decision-making in economics, psychology, and computer 

science.11181 Most models in these disciplines assume, sometimes implicitly, that all of 

these computations are carried out.

The five steps include the following. First, a representation of the decision problem needs to 

be computed. This entails identifying internal states (e.g., hunger level), external states (e.g., 

threat level), and potential courses of action (e.g., pursue a prey or not). Second, the 

different actions under consideration need to be assigned a value (“valuation”). In order to 

make sound decisions, these values have to be good predictors of the benefits that are likely 

to result from each action. Third, the different values need to be compared in order for the 

organism to be able to make a choice (“action selection”). Fourth, after implementing the 

decision, the brain needs to measure the desirability of the outcomes. Finally, these feedback 

measures are used to update the other processes in order to improve the quality of future 

decisions (“learning”).

We emphasize that these are conceptually useful categories, rather than rigid ones, and that 

many open questions remain about how well they match the computations made by the 

brain. For example, it is not know if valuation (step 2) must occur before action selection 

(step 3), or if both computations are performed in parallel. Nevertheless, the taxonomy is 

useful because it provides a decomposition of the decision-making process into workable 

(and testable) constituent processes, it organizes the neuroeconomics literature in terms of 

the computations that are being studied (for example, by emphasizing that distinct reward-

related computations can take place at the valuation, outcome, or learning stages), and it 

makes predictions about the neurobiology of decision-making, such as the hypothesis that 

the brain must encode distinct value signals at the decision and outcome stages, and the 

hypothesis that the brain computes a value signal for every course of action under 

consideration.

Representation

The representation process plays an essential role in decision-making by identifying the 

potential courses of action that need to be evaluated, as well as the internal and external 

states that inform those valuations. For example, the valuation that a predator assigns to the 

action “chasing prey” is likely to depend on its level of hunger (an internal state) as well as 

the conditions of the terrain (an external variable). Unfortunately, little is known about the 

computational or neurobiological basis of this step. Basic open questions include the 

following: How does the brain determine which actions to assign values to, and thus 

consider in the decision-making process, and which actions to ignore? Is there a limit to the 

number of actions that animals can consider at a time? How are internal and external states 

computed? How are the states passed to the valuation mechanisms described below?
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Valuation at the time of choice: multiple systems

Another important piece of the framework is the existence of multiple valuation systems 

which are sometimes in agreement, but often in conflict. Based on a sizable body of animal 

and human behavioral evidence several groups have proposed the existence of three 

different types of valuation systems: a Pavlovian, a habitual, and a goal-directed 

system.4, 29, 30 Here we discuss the computational properties that define them and 

summarize what is known about their neural basis. There are still many questions open 

about the physical separability of these learning systems in the brain; however, conceptually, 

they provide an excellent operational division of the problem according to the style of 

computations required by each.

It is important to begin the discussion by emphasizing several points. First, the existence of 

these three distinct valuation systems is based on a rising consensus about how to make 

sense of a large amount of animal and human behavioral evidence. As we suggest above, 

these distinction do not necessarily map directly onto separate neural systems34437, 38 In 

fact, although the evidence described below points to neural dissociations between some of 

the components of the three systems, it is likely that that they share common elements. 

Second, theory has progressed well ahead of the neural data and the precise neural basis of 

these three distinct valuation is yet to fully be established. Finally, even the exact nature and 

number of valuation systems is still being debated.

Pavlovian systems

Pavlovian systems assign values to a small set of behaviors that are evolutionarily 

appropriate responses to particular environmental stimuli. Typical examples include 

preparatory behaviors such as approaching cues that predict the delivery of food, and 

consummatory responses to a reward such as pecking at a food magazine. Analogously, cues 

that predict a punishment or the presence of an aversive stimulus can lead to avoidance 

behaviors. We refer to these types of behaviors as ‘Pavlovian behaviors’ and to the systems 

that assign value to them as the Pavlovian valuation systems.

Many Pavlovian behaviors are innate, or ‘hard-wired’, responses to specific predetermind 

stimuli. However, with sufficient training organisms can also learn to deploy them in 

response to other stimuli. For example, rats and pigeons learn to approach lights that predict 

the delivery of food. An important difference between the Pavlovian system and the other 

two systems is that the Pavlovian system only assigns value to a small set of “prepared” 

behaviors, and thus has a limited behavioral repertoire. Nonetheless, a wide range of human 

behaviors that have important economic consequences might be controlled by the Pavlovian 

valuation system, such as overeating in the presence of food, obsessive-compulsive 

disorders, and, perhaps, harvesting of immediate and present smaller rewards at the expense 

of delayed non-present larger rewards.30, 38

At first glance, Pavlovian behaviors look like automatic stimulus-triggered responses, and 

not like instances of value-based choice. However, since Pavlovian responses can be 

interrupted by other brain systems, Pavlovian behaviors must be assigned something akin to 
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a ‘value’ so that they can compete with the actions that are favored by the other valuation 

systems.

Characterizing the computational and neural basis of the Pavlovian systems has proven 

difficult so far. This is due in part to the fact that there may be multiple Pavlovian 

controllers, some of which might be responsible for triggering outcome-specific responses 

(e.g., pecking at food or licking at water), and others for triggering more general valence-

dependent responses (e.g., approaching for positive outcomes or withdrawing from negative 

ones).

The neural basis for Pavlovian responses to specific negative outcomes appear to have a 

specific and topographic organization along an axis of the dorsal periaqueductal gray.40 

With respect to valence-dependent responses, studies using various species and methods 

suggest that a network that includes the basolateral amygdala, ventral striatum and the 

orbitofrontal cortex, is involved in the learning processes by which neutral stimuli become 

predictive of the value of outcomes.4142 In particular, the amygdala has been shown to play 

a crucial role in influencing some Pavlovian responses.3743, 4445 Specifically, the central 

nucleus of the amygdala, through its connections to the brainstem nuclei and the core of 

nucleus accumbens, seems to be involved in non-specific preparatory responses, whereas the 

basolateral complex of the amygdala seems to be more involved in specific responses 

through its connections to the hypothalamus and the periaqueductal grey.

Some important questions regarding the Pavlovian valuation systems remained unanswered. 

How many Pavlovian systems are there and how do they interact with each other? Is there a 

common carrier of Pavlovian value and if so, how is it encoded? Is learning possible within 

these systems? How do Pavlovian systems interact with the other valuation systems, for 

example, in phenomena such as Pavlovian-instrumental-transfer29?

Habit systems

In contrast to the Pavlovian system, which values only a small set of responses, the habit 

systems can learn to assign values to a large number of actions with repeated training. Habit 

valuation systems exhibit the following key characteristics. First, they learn to assign values 

to stimulus-response associations (which indicate the action to be taken in a particular state 

of the world) based on previous experience through a process of trial-and-error (see BOX 3 

and the learning section below). Second, subject to some technical qualifications, the system 

learns to assign a value to actions that is commensurate with the expected reward that these 

actions generate, as long as sufficient practice is provided and the environment is 

sufficiently stable.1394 Third, according to the algorithms that are used to describe learning 

by this system, since values are learned by trial-and-error, it learns relatively slowly. As a 

consequence, it may forecast the value of actions incorrectly immediately after a change in 

the action-reward contingencies. Finally, this system relies on “generalization” to assign 

action values in novel situations. For example, a rat that has learned to lever-press for liquids 

in response to a sound cue might reponse with a similar behavior when first exposed to a 

light cue. We refer to the actions controlled by these systems as ‘habits’ and to the values 

that they compute as ‘habit values’. Examples of habits include a smoker’s desire to have a 
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cigarette at particular times of day (e.g., after a meal), and a rat’s tendency to forage in a 

cue-dependent location after sufficient training.

Studies using several species and methods suggest that the dorsolateral striatum might play a 

crucial in the control of habits.4647 As discussed below, the projections of dopamine neurons 

into this area are believed to be important to learning the value of actions. Furthermore, it 

has been suggested that stimulus-response representations may be encoded in cortico-

thalamic loops.47 Lesion studies in rats have shown that the infralimbic cortex is necessary 

for the establishment and deployment of habits.48, 49

There are many open questions regarding the habit system. Are there multiple habit 

systems? How do habitual systems value delayed rewards? What are the limits on the 

complexity of the environments in which the habit system can learn to compute adequate 

action values? How does the system incorporate risk and uncertainty? How much 

generalization is there from one state to another in this system (e.g., from hunger to thirst)?

Goal-directed systems

In contrast to the habit system, the goal-directed system assigns values to actions by 

computing action-outcome associations and then evaluating the rewards associated with the 

different outcomes. Under ideal conditions, the value that is assigned to an action equals the 

average reward to which it might lead. We refer to values computed by this system as ‘goal 

values’ and to the actions that it controls as ‘goal-directed behaviors’. An example of a goal-

directed behavior is the decision of what to eat at a new restaurant.

Note that an important difference between the habitual and goal-directed systems has to do 

with how they respond to changes in the environment. Consider, for example, the valuations 

made by a rat that has learned to press a lever to obtain food after it is fed to satiation. The 

goal-directed system has learned the action-outcome association “lever-press = food” and 

thus assigns a value to the lever-press equal to the current value of food, which is low since 

the animal has been fed to satiation. In contrast, the habit system assigns a high value to the 

action “lever-press” since this is the value that it learned during the pre-satiation training. 

Thus, while the goal-directed system updates the value of the actions immediately upon a 

change on the value of outcome, the habit system does not.

To carry out the necessary computations the goal-directed system needs to store action-

outcome and outcome-value associations. Unfortunately, relatively little is known about the 

neural basis of these processes. Several rat lesion studies suggest that the dorsomedial 

striatum has a role in the learning and expression of action-outcome associations,50 whereas 

the orbitofrontal cortex (OFC) might be responsible for the encoding of outcome-value 

associations. Consistent with this, monkey electrophysiology studies have found appetitive 

goal-value signals in the OFC and in the dorsolateral prefrontal cortex (DLPFC)51–54 

Electrophysiology experiments in rats point to the same conclusion.55 In a further 

convergence of findings across methods and species, human fMRI studies have shown that 

BOLD activity in the medial OFC56–60 and in the DLPFC57 correlate with behavioral 

measures of appetitive goal values, and human lesion studies have shown that individuals 

with damage to the medial OFC have problems making consistent appetitive choices.61 
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Several lines of evidence from these various methods also point to an involvement of the 

basolateral amygdala and the mediodorsal thalamus, which in combination with the DLPFC, 

form a network that Balleine has called the ‘associative cortico-basal-ganglia loop’.46

Several questions regarding this system remained unanswered. Are there specialized goal-

directed systems for rewards and punishment, and for different types of goals? How are 

action-outcome associations learned? How does the goal-directed system assign value to 

familiar and unfamiliar outcomes? How are action-outcome associations activated at the 

time a choice has to be made?

For complex economic choices (such as choosing among detailed health care plans) we 

speculate that in humans propositional logic systems have a role in constructing associations 

that are subsequently evaluated by the system. For example, individuals might use a 

propositional system to try to forecast the consequences of a particular action, which are 

then evaluated by the goal-directed system. This highlights a limitation of the goal-directed 

system: the quality of its valuations is limited by the quality of the action-outcome 

associations that it uses.

Outstanding issues

In addition to the issues listed above, there are several other open questions regarding the 

different valuation systems. First, are there multiple Pavlovian, habitual and goal-directed 

valuation systems, with each system specializing in particular classes of actions (in the case 

of the Pavlovian and habit systems) or outcomes (in the case of the goal-directed system)? 

For example, consider a dieter who is offered a tasty dessert at a party. If this is a novel 

situation, it is likely to be evaluated by the goal-directed system. The dieter is likely to 

experience conflict between going for the taste of the dessert and sticking to his health goals. 

This might entail a conflict between two goal-directed systems, one that is focused on the 

evaluation of immediate taste rewards, and one that is focused on the evaluation of long-

term outcomes. Second, are there other valuation systems? Lengyel and Dayan3062 have 

proposed the existence of an additional episodic system. At this point it is unclear how such 

a system differs both conceptually and neurally from the goal-directed system. Third, how 

does the brain implement the valuation computations of the different systems? Finally, how 

do long-term goals, cultural norms, and moral considerations get incorporated into the 

valuation process? One possibility is that the habit and goal-directed systems treat violations 

of these goals and cultural and moral rules as aversive outcomes, and that compliance with 

them is treated as a rewarding outcome.17 But this can be the case only if the brain has 

developed the capacity to incorporate social and moral considerations into its standard 

valuation circuitry. Another possibility is there are separate evaluation systems for these 

types of considerations that are yet to be discovered.

Modulators of the valuation systems

Several variables have been shown to affect the value that the Pavlovian, habitual and goal-

directed systems assign to actions. For example, the value assigned to an action might 

depend, among others, on the riskiness of its associated payoffs, the temporal delay which 

with they occur, and the social context. We refer to these types of variables as value 
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modulators. Importantly, modulators might have different effects in each of the valuation 

systems. In this section we focus on the impact of risk and temporal delays on the goal-

directed valuation system, since most of the existing evidence pertains to this system. We do 

not review the literature on social modulators, but refer the reader to recent reviews by 

Camerer-Fehr63 and Lee64.

Risk and uncertainty

All decisions involve some degree of risk in the sense that action-reward associations are 

probabilistic (BOX 1). We refer to an action with uncertain rewards as a prospect. In order 

to make good choices the goal-directed system needs to take into account the likelihood of 

the different outcomes. Two hotly debated questions are: Which are the computations used 

by the goal-directed system to incorporate risks into its valuations? How does the brain 

implements such computations?65

Early human neuroimaging studies in this topic identified some of the areas involved in 

making decisions under risk, but were not able to characterize the nature of the computations 

made by these systems.66, 676869 The emphasis of more recent work has been in identifying 

the nature of such computations. Currently, two main competing views are being tested. The 

first view, which is widely used in financial economics and behavioral ecology, asserts that 

the brain assigns value to prospects by first computing its statistical moments (such as 

expected value, variance or coefficient of variation, and skewness) and then aggregating 

them into a value signal.370 The second view, which is widely used in other areas of 

economics and in psychology, asserts that the value is computed using either expected utility 

theory or prospect theory (BOX 1). In this case the brain needs to compute a utility value for 

each potential outcome, which is then weighted by a function of the probabilities.

Choices resulting from an expected utility or prospect-theoretic valuation function can be 

approximated by a weighted sum of the prospects’ statistical moments (and vice versa). This 

makes distinguishing the two models from behavioral data alone complicated. Neural data 

can provide important insights, although the debate has not yet been settled. Consistent with 

the first view, a number of recent human fMRI studies have found activity that is consistent 

with the presence of expected value signals in the striatum7172 and the medial orbitofrontal 

cortex73, and activity that is consistent with risk signals (as measured by the mathematical 

variance of the prospects) in the striatum7174, the insula7573, and the lateral orbitofrontal 

cortex.72 Similar risk and expected signals have been found in the midbrain dopamine 

system in electrophysiology studies in non-human primates.76 Expected value signals (see 

BOX 1) have also been found in LIP in non-human primate electrophysiology 

experiments.77 Consistent with the second view, a recent human fMRI study has found 

evidence for a prospect-theory like value signal in a network that includes the ventral and 

dorsal striatum, ventromedial and ventrolateral PFC, anterior cingulate cortex, and some 

midbrain dopaminergic regions.56 Other human fMRI studies have found ventral striatal 

activation that is correlated with the non-linearity in the transformation of probabilities.78 

The existence of evidence consistent with both views presents an apparent puzzle. A 

potential resolution that ought to be explored in future studies is that the striatal-prefrontal 
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network might integrate the statistical moments encoded elsewhere into a value signal that 

exhibits expected-utility or prospect-theory like properties.

In many circumstances, decision-makers have incomplete knowledge of the risk parameters, 

a situation known as ambiguity, that is different from the pure risk case where probabilities 

are known. Human behavioral studies have shown that subjects generally exhibit an aversion 

to choices that are ambiguous,28 which suggests that a parameter that measures the amount 

of ambiguity might be encoded in the brain and used to modulate the value signal. Some 

preliminary human fMRI evidence points to the amygdala, orbitofrontal cortex79 and 

anterior insula80 as areas where such a parameter might be encoded.

Many questions remain to be answered on the topic of risk and valuation. First, little is 

known about how risk affects the computation of value in the Pavlovian and habitual 

systems. For example, most reinforcement learning models (see BOX 3) assume that the 

habit learning system encodes a value signal that cares about expected values, but not about 

risks. This assumption, however, has not been tested thoroughly. Second, little is known 

about how the brain learns the risk parameters. For example, some behavioral evidence 

suggests that the habit and goal-directed systems learn about probabilities differently and 

that this leads to different probability weighting by the two systems.81 Finally, more work is 

required to characterize better the nature of the computations made by the amygdala and 

insula in decision-making under uncertainty. Preliminary insights suggest that the amygdala 

might play an asymetric role in the evaluation of gains and losses. For example, a human 

lession study showed that amygdala damage led to poor decision-making in the domain of 

gains, but not of losses,82 and a related human fMRI study has shown that the amygdala is 

differentially activated when subjects are making choices to take risks for large gains and to 

accept a sure loss.83

Temporal discounting

In all real-world situations there is a time lag between decisions and outcomes. From a range 

of behavioral experiments it is well established that the goal-directed and habitual systems 

assign lower values to delayed rewards than to immediate ones, a phenomenon known as 

time discounting.8 The role of time discounting in the Pavlovian system is not as well 

understood. As before, this part of the review focuses on the impact of temporal discounting 

on the goal-directed system, where most of the studies have focused so far.

The current understanding of time discounting parallels the one for risk. Two competing 

views have been proposed and are being tested using a combination of human behavioral 

and neuroimaging experiments. One camp has interpreted the human fMRI evidence using 

the perspective of dual-process psychological models and has argued that discounting results 

from the interaction of at least two different neural valuation systems (BOX 2), one with a 

low discount rate and one with a high discount rate.84–86 In this view, the patience exhibited 

by any given individual depends on the relative activation of these two systems. In sharp 

contrast, the other camp has presented human fMRI evidence suggestive of the existence of 

a single valuation system that discounts future rewards either exponentially or 

hyperbolically (BOX 2).87 The existence of evidence consistent with both camps again 

presents an apparent puzzle. A potential reconciliation is that the striatal-prefrontal network 
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might integrate information encoded elsewhere in the brain into a single value signal, but 

that immediate and delayed outcomes might activate different types of information used to 

compute the value. For example, immediate rewards might activate ‘immediacy markers’ 

that increase the valuation signals seen in the striatal-prefrontal network. These same 

questions are also important to understand from the perspective of brain development. When 

do value signals get computed in their adult form and how do they contribute to important 

choices made by children and adolescents? These and other related questions show that the 

economic framing of decision-making will continue to provide new ways to probe the 

development and function of choice mechanisms in humans.

Many open questions remain in the domain of temporal discounting. First, the discounting 

properties of the habitual and Pavlovian systems in humans have not been systematically 

explored. Second, what are the inputs to the valuation network and why does the 

aggregation of those inputs produce a hyperbolic-like signal in valuation areas such as the 

ventral striatum and the medial OFC? Third, the behavioral evidence suggests that discount 

factors are highly dependent on contextual variables. For example, subjects’ willingness to 

delay gratification depends on whether the choice is phrased as a delay or as a choice 

between two points in time88, on how they are instructed to think about the rewards89, and 

on their arousal level.90 The mechanisms through which such variables affect the valuation 

process are unknown. Fourth, several studies have shown that the anticipation of future 

rewards and punishment can affect subjects’ behavioral discount rates.9192 The mechanisms 

through which anticipation affects valuation are also unknown. Finally, several studies have 

shown that animals make very myopic choices consistent with large hyperbolic discount 

rates.93–9571 96 What is different about how humans incorporate temporal delays into the 

valuation process?

Action selection

Even for choices that involve only one of the valuation systems discussed above, options 

with different values need to be compared in order to make a choice. Little is known about 

how the brain does this. The only available theoretical models come from the literature on 

perceptual decision-making, which has modeled binary perceptual choices as a race-to-

barrier diffusion process.979899–101102 However, it is unclear whether this class of models 

also applies to value-based decision-making, and if so, how they might be extended to cases 

of multi-action choice.

Another important open question has to do with the issue of competition among the different 

valuation systems that arises when an animal has to make a choice between several potential 

actions that are assigned conflicting values (FIG 2). Some preliminary theoretical proposals 

have been made, but the evidence is scarce. Daw et al.103 have suggested that the brain 

arbitrates between the habit and goal-directed valuation systems by assigning control at any 

given time to the system that has the less uncertain estimate of the true value of the actions. 

Since the quality of the estimates made by the habit system increase with experience, in 

practice this means that the habit system should gradually take over the goal-directed system 

with experience.17 Frank has proposed a neural-network model for choice between 

appetitive and aversive habitual valuations.21, 32
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Understanding how the ‘control assignment’ problem is resolved is important for several 

reasons. First, as illustrated in FIG 2, and emphasized by Dayan et al.,38 many apparently 

puzzling behaviors are likely to arise as a result of the conflict between the different 

valuation systems. Second, in most circumstances the quality of decision-making depends 

on the brain’s ability to assign control to the valuation system that makes the best value 

forecasts. For example, it is probably optimal to assign control to the habit system in 

familiar circumstances, but not in rapidly changing environments. Third, some decision-

making pathologies (e.g., OCD and over-eating) might be due to an inability to assign 

control to the appropriate system.

There are many important open questions in the domain of action selection. First, in the case 

of goal-directed choice, does the brain make choices over outcomes, the actions necessary to 

achieve those outcomes, or both? Second, what is the neural basis of the action selection 

process in the Pavlovian, habitual, and goal-directed systems? Third, what are the neural 

mechanisms used to arbitrate between the different controllers, and is there a hierarchy of 

controllers such that some controllers (e.g., Pavlovian) tend to take precedence over others 

(e.g., goal-directed)? Fourth, are there any neural markers that can be reliably used to 

identify goal-directed or habitual behavioral control?

Outcome evaluation

In order to learn how to make good decisions the brain needs to compute a separate value 

signal that measures the desirability of the outcomes generated by its previous decisions. For 

example, it is useful for an animal to know if the last food that it consumed led to illness so 

that it can avoid it in the future.

The computations made by this system, as well as their neural basis, are slowly beginning to 

be understood. The existing evidence comes from several different methods and species. 

Human fMRI studies have shown that activity in the medial OFC at the time a reward is 

being consumed correlates with subjective reports about the quality of the experience for 

odors104, 105106107, tastes108109110 and even music.111 Several related studies have also 

shown that the activity in the medial OFC parallels the reduction in outcome value that one 

would expect after a subject is fed to satiation.112113 This suggests that the medial OFC 

might be an area where positive outcome valuations are computed. Interestingly, other 

human fMRI studies have found positive responses in the medial OFC to the receipt of 

secondary reinforces such as monetary payoffs.114115116 Analogous results have been found 

for negative experiences: subjective reports of pain intensity correlated in human fMRI 

studies with activity in the insula and the anterior cingulate cortex.117, 118

Evidence for the neural basis of the outcome value signal also come from animal studies. A 

monkey electrophysiology experiment by Lee and colleagues has recently found outcome 

value signals in the dorsal anterior cingulate cortex.119 In a series of provocative rat studies, 

Berridge and colleagues have shown that it is possible to increase outward manifestations of 

‘liking’ in rats (e.g., tongue protrusions) by activating subsets of the ventral pallidum and 

nucleus accumbens using opioid agonists.109, 120–122 Interestingly, and consistent with the 
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hypothesis that outcome evaluation signals play a role in learning, the rats exposed to 

opioids agonists subsequently consume more of the reward that was paired with it.

Some recent human fMRI experiments have also provided novel insights about the 

computational properties of the outcome-value signal. De Araujo et al107 showed that 

activity in the medial OFC in response to an odor depended on whether subjects believed 

that they were smelling cheddar cheese or a sweaty sock. In addition, Plassman et al.123 

showed that activity in the medial OFC in response to the consumption of a wine depended 

on beliefs about its price, and McClure et al.108 showed that the outcome-valuation signal 

after consumption of a soda depended on beliefs about its brand. Together, these findings 

suggest that the outcome-valuation system is modulated by higher cognitive processes that 

determine expectancies and beliefs.

Much remains to be understood about the outcome-valuation system. What is the precise 

network responsible for computing positive and negative outcome values in different types 

of domains? How do positive and negative outcome-valuation signals get integrated? How 

are they passed to the learning processes described in the next section? Can they be 

modulated by variables such as long-term goals, social norms, and moral considerations?

Learning

Although some Pavlovian behaviors are innate responses to environmental stimuli, most 

forms of behavior involve some form of learning. In fact, in order to make good choices 

animals need to learn how to deploy the appropriate computations during the different stages 

of decision-making. First, the brain must learn to activate representations of the most 

advantageous behaviors in every state. This is a non-trivial learning problem given that 

animals and humans have limited computational power, yet they can deploy a large number 

of behavioral responses. Second, the valuation systems must learn to assign values to actions 

that match their anticipated rewards. Finally, the action selection processes need to learn 

how to best allocate control among the different valuation systems.

Of all of these questions, the one that is best understood is the learning of action-values by 

the habit system. In this area there has been a very productive interplay between theoretical 

models from computer science (BOX 3) and experiments using electrophysiology in rats and 

monkeys and fMRI in humans. In particular, various reinforcement-learning models have 

been proposed to describe the computations made by the habit system.1124 The basic idea 

behind these models is that a prediction-error signal is computed after every choice. The 

signal is called a prediction error because it measures the quality of the forecast implicit in 

the previous valuation (BOX 3). Every time a learning event occurs, the value of actions is 

changed by an amount that is proportional to the prediction error. Over time, and under the 

appropriate technical conditions, the animal learns to assign the correct value to actions.

The existence of prediction error-like signals in the brain is one of the best documented facts 

in neuroeconomics. Schultz and colleagues initially observed such signals in 

electrophysiology studies performed in midbrain dopamine neurons of 

monkeys.125–128129, 130 The connection between these signals and the reinforcement-

learning models was made in a series of papers in the 1990s by Montague and 
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colleagues.127, 131 In later years several fMRI studies have shown that in humans, the BOLD 

signal in the ventral striatum, an important target of midbrain dopamine neurons, correlates 

with prediction errors in a wide range of tasks.58, 114, 132–137

Although the existing evidence suggests a remarkable match between the computational 

models and the activity of the dopamine system, recent experiments have demonstrated that 

much remains to be understood. First, a monkey electrophysiology study by Bayer and 

Glimcher138 suggests that the phasic firing rates of midbrain dopamine neurons might only 

encode for the positive component of the prediction error (henceforth, the positive prediction 

error). This raises the question of which brain areas and neurotransmitter systems encode the 

negative part (henceforth, the negative prediction error), which is also essential for learning. 

Several possibilities have been proposed. A subsequent analsysis of the previous experiment 

suggested that the magnitude of the negative prediction errors might be encoded in the 

timing of the firing-and-pause patterns of the dopamine cells.139 Some human fMRI studies 

have found a BOLD signal in the amygdala that resembles a negative-prediction error132, 

but others have failed to replicate the finding and have found instead evidence for both types 

of prediction error in different parts of the striatum.140 In turn, Daw and Dayan141 have 

proposed that the two prediction-error signals are encoded by the phasic responses of two 

neurotransmitter systems: dopamine for positive prediction errors and serotonin for 

negative-prediction errors. Second, Tobler et al.76 have shown that midbrain dopamine 

neurons adjust their firing rates to changes in the magnitude of reward in a way that is 

inconsistent with the standard interpretation of prediction errors. The exact nature of these 

adjustments remains an open question.70 Finally, Lohrenz et al.142 have shown that the habit 

system can also learn from observing the outcomes of actions that it did not take, as opposed 

to learning using only direct experience. This form of ‘fictive learning’ is not captured by 

traditional reinforcement-learning models but is common in human strategic learning and 

suggests that the theory needs to be extended in new directions (including imitative learning 

from actions of others).143

Other important questions in the domain of value learning include the following: How does 

the goal-directed system learn the action-outcome and outcome-value representations that it 

needs to compute action values? What are the limitations of the habit system in situations 

where there is a complex credit-assignment problem (because actions and outcomes are not 

perfectly alternated) and delayed rewards? How does the habit system learn to incorporate 

internal and external states in its valuations and to generalize across them? How do the 

different learning systems incorporate expected uncertainty about the feedback signals?70 To 

what extent can the different value systems learn by observation as opposed to direct 

experience?144

The next five years and beyond

Although neuroeconomics is a new field, and many central questions remain to be answered, 

rapid progress is being made. As illustrated by the framework provided in this review, the 

field now has a coherent lexicon and research aims. The key challenge for neuroeconomics 

over the next few years is to provide a systematic characterization of the computational and 

neurobiological basis of the representation, valuation, action comparision, outcome 
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valuation and value learning processes described above. This will prove challenging since, 

as we have seen, there seems to be at least three valuation systems at work that fight over 

control of the decision-making process.

Nevertheless, several developments are welcome and give reason to be hopeful that 

significant progress will be made over the next five years on answering many of the 

questions outlined here. First, is the close connection between theory and experiments, and 

the widespread use of theory-driven experimentation (including behavioral parameters 

inferred from choices that can be linked across subjects or trials to brain activity). Second is 

the rapid adoption of new technologies, such as fast cyclic voltametry in freely-moving 

animals145, which permits quasi-real-time monitoring of neurotransmitter levels for long 

periods of time. Third, is the investigation of decision-making phenomena using different 

species and experimental methods, which permits more rapid progress that would be made 

otherwise.

This is good news because the range of potential applications is significant. The most 

important area of application is psychiatry. Many psychiatric diseases involve a failure of 

one or more of the decision-making processes described here (BOX 4). A better 

understanding of these processes should lead to improved diagnoses and treatment. Another 

area of application is the judicial system. A central question in many legal procedures is how 

to define and measure whether individuals are in full command of their decision-making 

faculties. Neuroeconomics has the potential to provide better answers to this question. 

Similarly, a better understanding of why people experience failures of self-control should 

lead to better public policy interventions in areas ranging from addiction and obesity to 

savings. The field also has the potential to improve our understanding of how marketing 

affects decisions and when it should be regulated. Artificial intelligence is another fertile 

area of application. A question of particular interest is which features of the brain’s decision-

making mechanisms are optimal and should be imitated by artificial systems, and which 

mechanisms can be improved upon. Finally, neuroeconomics might advance our 

understanding of how to train individuals to become better decision-makers, especially in 

conditions of extreme time pressure and large stakes such as policing, war, and fast-paced 

financial markets.
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GLOSSARY

Propositional logic 
system.

A cognitive system that makes predictions about the world 

based on known pieces of information.

Race-to-barrier 
diffusion process.

A stochastic process that terminates when the variable of 

interest reaches a certain threshold value.
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Credit assignment 
problem.

The problem of crediting rewards to particular actions in 

complex environments.

Expected utility 
theory.

A theory that states that the value of a prospect (or random 

rewards) equals the sum of the value of the potential outcomes 

weighted by their probability.

Prospect theory. An alternative theory of how to evaluate prospects (see BOX 1 

for details).
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Box 1. Risk modulators of value in the goal-directed system

Many decisions involve the valuation of rewards and costs that occur probabilistically, 

often called prospects. A central question for the valuation systems is how to incorporate 

probability in the assignment of value. There are two dominant theories in economics 

about how this is done. In expected utility (EU) theory, the value of a prospect equals 

the sum of the value of the individual outcomes ν(x) weighted by their objective 

probability p(x), which is given by ∑xp(x)ν(x). Under some special assumptions on the 

function ν(․), which are popular in the study of financial markets, the EU formula boils 

down to a weighted sum of the expected value and the variance of the prospect.3 The 

appeal of EU comes from the fact that it is consistent with plausible normative axioms 

for decision-making, from its mathematical tractability, and from its success in 

explaining some aspects of market behavior. An alternative approach, called prospect 
theory (PT), states that the value of a prospect equals ∑xπ(p(x))ν(x − r), where the values 

of outcomes now depend on a reference point r, and they are weighted by a non-linear 

function π() of the objective probabilities.12, 13 Reference-dependence can create 

framing effects (analogous to figure-ground switches in vision), in which different 

values are assigned to the same prospect depending on which reference point is 

cognitively prominent. The figure below illustrates the usual assumptions that are 

imposed in the value and probability functions by the two theories. As shown on the left, 

in EU, the value function ν(․) is a concave function of outcomes, and the probability 

function is the identity function. Note that a special case often used in the experimental 

neuroeconomics literature is ν(x)=x, which makes the EU function reduce to the expected 

value of the prospect. The properties of PT are illustrated on the right. The value function 

is usually revealed by choices to be concave for gains, but convex for losses. This 

assumption is justified by the psychologically plausible assumption of diminished 

marginal sensitivity to both gains and losses starting from the reference point. PT also 

assumes that v(x)<−v(−x) for x>0, a property called “loss-aversion”, which leads to a 

kink in the value function. The figure on the bottom-right illustrates the version of 

prospect-theory in which small probabilities are over-weighted and large probabilities are 

underweighted. PT has been successful in explaining some behavior inconsistent with EU 

theory in behavioral experiments with humans13 and monkeys,23 as well as economic 

field evidence.26

Neuroeconomists make a distinction between prospects involving risk and ambiguity. 

Risk refers to a situation where all of the probabilities are known. Ambiguity refers to a 

situation where some of the probabilities are unknown. The EU and PT models described 

above apply to valuation under risk, but not under ambiguity. Several models of 

valuation under ambiguity have been proposed, but none of them has received strong 

empirical support.283336
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Box 2. Temporal modulators of value in the goal-directed system

Many decisions involve the evaluation of rewards and costs that arrive with different 

delays. Thus, the valuation systems require a mechanism for incorporating the timing of 

rewards into their computations. Two prominent models of discounting have been 

proposed in psychology and economics. In the first one, known as hyperbolic 
discounting, rewards and costs that arrive t units of time in the future are discounted by a 

factor 1/(1+kt). Note that the discount factor is a hyperbolic function of time and that a 

lower k is associated with less discounting (i.e., more patience). In the second one, 

known as exponential discounting, the corresponding discount factor is γt. Note that a 

value of γ closer to one is associated with a lower discount factor. An important 

distinction between the two models is illustrated in the left figures below, which depict 

the value of a reward of size R t units of time before it arrives. Note that whereas every 

additional delay is discounted at the same rate γ in the exponential case, in hyperbolic 

discounting initial delays are discounted at a much higher rate, and the discount curve 

flattens out for additional delays.

In most comparative behavioral studies of goal-directed behavior with adequate statistical 

power, hyperbolic discount functions always fits observed behavior better than 

exponential functions.8 Nevertheless, economists and computer scientists find the 

exponential function appealing because it is the only discount function that satisfies the 

normative principle of dynamic consistency, which greatly simplifies modeling. This 

property requires that if a reward A is assigned a higher value than B at time t, then the 

same reward is also assigned a higher value when evaluated at any time t-k. Under 

hyperbolic discounting, in contrast, the relative valuation between the two actions 

depends on when the choice is made. This is known as dynamic inconsistency. The 

figures on the right illustrate this difference. It depicts the comparative value of a reward 

RA received at time 0 with a reward RB received at time t’ as a function of the time when 

the rewards are being evaluated. Note that in the exponential case the relative desirability 

of the two rewards is constant, whereas for the hyperbolic case it depends on the time of 

evaluation.
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Box 3. Reinforcement learning models action value learning in the habitual 
system

Several models from computer science have proved useful in modeling how the habitual 

system learns to assign values to actions.149 All of these models have the following 

structure, which is known as a Markovian decision problem10: (1) the animal can be in 

a finite set of states and can take a finite set of actions; (2) there is a transition function 

T(s,a,s’) that specifies the probability that state s and action a at one time step will result 

in the state s’ at the next time step; and (3) every time step the animal obtains an action 

and state-contingent reward r(a,s). A behavioral rule in this world (called a policy and 

denoted by π(s)) specifies the action that the animal takes in every state. In this world the 

habitual system needs to solve two problems. First, given a policy π, it needs to compute 

the value of taking every action a in every state s. This is given by

(1)

where rt+k denotes the reward received at time t+k and γ>0 is the discount rate. Second, it 

needs to identify the policy that generates the largest sum of exponentially discounted 

rewards (see BOX 3) in every state.

How could the habitual system learn Qπ(s,a)? Let Q̂(s,a) denote the estimate that the 

system has at any point in time. Equation (1) can be rewritten in recursive form as

(2)

Note that if Q̂(s,a) does not satisfy this expression, then it is not a good estimate of the 

value function. Define a prediction error

(3)

which is a sample measure of how close the estimate is to satisfying expression (2). If δt 

>0 the value of the action is overestimated, if δt <0 the value is underestimated. One can 

then use the prediction error to update the estimates of the action values as follows:

(4)

where η is a number between 0 and 1 that determines the speed of learning. This model is 

known as Q-learning22 and it satisfies one important property: subject to some technical 

conditions, the estimated action values converge to those generated by the optimal 

policy.24 It then follows that the animal can learn the optimal policy simply by following 

this algorithm and, at every step of the learning process, selecting the actions with the 

largest values. Two other variants of this model have been proposed as descriptions of 

how the habitual system learns. They are known as SARSA27 and the actor-critic 

model.3135 They differ from Q-learning on the exact specification of the prediction error 

and the update rule, but they are based on essentially the same idea. Note that neither 

SARSA nor the actor-critic model are guaranteed to converge to the optimal policy.

Rangel et al. Page 24

Nat Rev Neurosci. Author manuscript; available in PMC 2015 February 18.

A
utism

 S
peaks A

uthor M
anuscript

A
utism

 S
peaks A

uthor M
anuscript



It is worth emphasizing several properties of these learning models. First, they are 

model-free in the sense that the animal is not assumed to know anything about the 

transition function or reward function. Second, they are able to explain a wide range of 

conditioning behaviors associated with the habitual system, such as blocking, 

overshadowing, and inhibitory conditioning.39 Finally, they are computationally simple 

in the sense that they do not require the animal to keep track of long-sequences of 

rewards to learn the value of actions.

The reinforcement learning models described here are often used to describe the process 

of action value learning in the habitual system. An important open question is what are 

the algorithms used by the Pavlovian and goal-directed systems to update their values 

based on feedback from the environment.
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Box 4. From neuroeconomics to computational psychiatry

In some situations, the brain’s decision-making processes function so differently from 

our societal norms that that we label the ensuing behaviors and perceptions a psychiatric 

disease. While there are real philosophical issues about what constitutes a mental illness, 

the medical community recognizes and categorizes them according to well-accepted 

diagnostic criteria which, so far, have relied almost exclusively on agreed-upon 

collections of behavioral features.2 Despite the almost exclusive emphasis on the 

behavioral categorization of mental disease, neuroscientists have accumulated a 

substantial amount of neurobiological data that impinges directly on psychiatric illness.5 

There are now animal models for nicotine addiction, anxiety, depression, and 

schizophrenia that have produced a veritable flood of data on neurotransmitter systems, 

receptors, and gene expression.6, 7 Thus, there is a substantial body of biological data at 

one end paired with detailed descriptions of the behavioral outcomes at the other end. 

However, there is precious little in-between. This situation is exemplified by the array of 

psychotropic drugs that act on known neuromodulatory systems, and produce known 

changes in behavior, but for which we have little understanding about how they alter the 

brain’s decision-making and perceptual mechanisms. This situation presents an 

opportunity for neuroeconomics and other computationally oriented sciences to connect 

the growing body of biological knowledge to the behavioral endpoints.

Reinforcement-learning models provide insight into how the habitual system learns to 

assign value in a wide range of situations, as well as insight into important 

neuromodulatory systems, such as dopamine, which are perturbed in a range of mental 

diseases.5 Thus, computational models of reinforcement learning provide a new language 

for understanding mental illness, and a starting point for connecting detailed neural 

substrates to behavioral outcomes. For example, reinforcement-learning models predict 

the existence of valuation malfunctions where a drug, disease, or developmental event 

perturbs the brain’s capacity to assign appropriate value to behavioral acts or mental 

states.14–17

Disorders of decision-making can also arise at the action-selection stage, especially when 

there are conflicts among the valuation systems. This presents the posibility of generating 

a new quantifiable taxonomy of mental-disease states. Interestingly, this set of issues is 

closely related to the problem of how to think about the ‘will’ and has applications to 

addiction, OCD, and obesity. These issues relate directly to the idea of executive control 

and the way that it is affected by mental disease. While older ideas about executive 

control have been useful in guiding a description of the phenomenology of control, it is 

our opinion that future progress will require more computational approaches because 

only through such models can competing ideas be clearly differentiated. Such efforts are 

already well underway and a variety of modeling efforts have been applied to executive 

control and decision-making in humans.19–21

Another neuroeconomics concept that is ripe for applications to psychiatry is motivation, 

which is a measure of how hard an animal works in order to retrieve a reward. Disorders 
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of motivation might play an especially important role in mood disorders such as 

depression and in Parkinsons’ disease.2532
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Figure 1. Basic computations involved in making a choice
Value-based decision-making can be broken down into five basic processes: first, the 

construction of a representation of the decision problem, which entails identifying internal 

and external states as well as potential courses of action; second, the valuation of the 

different actions under consideration; third, the selection of one of the actions based on their 

valuations; fourth, after implementing the decision the brain needs to measure the 

desirability of the outcomes that follow; finally, the outcome evaluation is used to update the 

other processes in order to improve the quality of future decisions.
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Figure 2. Conflict between the valuation systems
The different valuation systems are often in agreement. For example, when an individual is 

hungry at meal time, the Pavlovian, habitual and goal-directed systems assign high value to 

the consumption of food. However, conflicts between the systems are also common and may 

lead to poor decision-making. This figure provides examples of conflict among different 

valuation systems and of conflict among different value signals of the same type.
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