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Abstract

Neural correlates of value have been extensively reported in a diverse set of brain regions. 

However, in many cases it is difficult to determine whether a particular neural response pattern 

corresponds to a value-signal per se as opposed to an array of alternative non-value related 

processes, such as outcome-identity coding, informational coding, encoding of autonomic and 

skeletomotor consequences, alongside previously described “salience” or “attentional” effects. 

Here, I review a number of experimental manipulations that can be used to test for value, and I 

identify the challenges in ascertaining whether a particular neural response is or is not a value 

signal. Finally, I emphasize that some non-value related signals may be especially informative as a 

means of providing insight into the nature of the decision-making related computations that are 

being implemented in a particular brain region.
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Introduction

Interest in the neurobiological substrates of value-learning and value-based decision-making 

has surged in the past decade, following the emergence of nascent disciplines such as the 

fields of neuroeconomics and decision-neuroscience (Camerer, 2008; Fehr and Camerer, 

2007; Glimcher and Rustichini, 2004; Levy et al., 2010; Montague and Berns, 2002; Sanfey 

et al., 2006). The prevailing assumption in these domains is that the brain encodes a 

representation of the expected value or utility of stimuli and/or of actions, and that in 

decision-making situations, those representations are used to guide choice such that actions 

are taken to maximize future expected rewards. Consistent with this proposed framework, 

experiments in humans using neuroimaging methods, and in animals using 

neurophysiological recordings, have uncovered evidence for value-related neuronal activity 

in a wide array of neural structures during learning and decision-making tasks. These 

findings suggest that a diverse network of brain regions participate in the encoding of value, 

and have led to proposals that some of these structures participate directly in the decision-

process whether over goods (or stimuli) or over actions linked to selection of those goods.

However, ascertaining whether a neuronal response truly corresponds to a value or 

subjective utility signal is a rather challenging endeavor. Here I outline some of the 

problems in inferring that a particular neuronal response pattern encodes a value signal per 

se or else a number of other non-value related processes. A point that has frequently been 

NIH Public Access
Author Manuscript
Neurosci Biobehav Rev. Author manuscript; available in PMC 2015 February 18.

Published in final edited form as:
Neurosci Biobehav Rev. 2014 June ; 43: 259–268. doi:10.1016/j.neubiorev.2014.03.027.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



made before is that reward-related responses may be confounded with attentional 

mechanisms, sometimes also referred to as “attention”, “motivation” or “salience” (Horvitz, 

2000; Leathers and Olson, 2012; Maunsell, 2004; Roesch and Olson, 2004). I will consider 

this possibility here, but also identify other less often highlighted but equally problematical 

confounding signals to a valuation account. These include differential encoding of sensory 

information about an outcome, informational signaling of an outcome, and representation of 

behavioral responses. I then consider viable steps to determining whether a particular 

neuronal response truly corresponds to a value signal. Finally, I argue that even if signals 

hitherto presumed to correspond to value turn out to represent something else, such signals 

should not be ignored but instead properly categorized as they might still play an important 

and perhaps even critical role in the processes of learning, value computation and choice.

Summary of different types of putative value signals

Before embarking on consideration of the type of signals that may confound value, it is 

worth briefly first considering how value can be defined, and then summarizing the different 

types of value signals that have been reported in the brain.

What is value?

There are multiple approaches to the definition of value. Here I discuss a variety of 

approaches:

One approach is to define value as some function which pertains to the relative 

attractiveness of a particular good at the time of choice, and which is maximized as a result 

of the decision process (Rangel et al., 2008).

A related approach, is to adopt the notion of utility as used in economics and to apply this to 

the definition of value in neuroscience. In economics, “utility” is a function that describes a 

set of preferences an individual has over a set of goods. If the individual prefers good A over 

good B, then by definition good A will have a higher utility than good B. Translating this to 

neuroscience, we might expect that some neural process encoding utility would show an 

ordered relationship in its responses (such as for example by changes in average firing 

rates), to the stimuli presented to the animal, such that the neuronal responses are greater for 

a good that is more preferred by the animal compared to a good that is less preferred. Here, 

utility/value is inferred directly from behavior, and neural representations of this function 

are assumed to reflect behavioral preferences (Dean, 2013).

Another strongly related approach to the preference approach in economics arises from the 

behavioral neuroscience literature, and that is to define value in terms of the motivating 

properties of a stimulus for instrumental action (Rolls, 2007). The degree to which an animal 

is prepared to work (i.e. perform some kind of effortful action) to obtain a stimulus, relates 

to the degree to which the animal finds that stimulus rewarding.

Yet another approach is to define value is in terms of the subjective “pleasure” that is 

engendered by a particular stimulus. The experienced utility of a good, is the pleasure or 

happiness that arises from its consumption (Bentham, 2007; Kahneman et al., 1997) The 
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challenge in using such a definition in experimental work is that it is very difficult to access 

such subjective “pleasure” states, particularly in animals, although some have argued for the 

existence of clear behavioral proxies for such subjective evaluations even in animals 

(Berridge, 1996). In humans, one can simply ask participants to verbally or otherwise rate 

their subjective pleasure. However this does require adopting the assumption that human 

participants have reliable insight into the nature of their affective disposition.

Although these definitions of value differ, by and large we would expect them to make 

similar predictions about when a particular stimulus would be deemed valuable or not, as 

well as to make similar predictions about the expected pattern of neural responses tracking 

value. However, under some situations, the definitions may lead to divergent predictions. 

Most notably, under situations where behavior becomes habitized, an action can be selected 

resulting in attainment of a good that is not actually preferred by the animal (Dickinson, 

1985; see below for further discussion of habits). Under those conditions, both the revealed 

preference and work motivation operationalizations of value would yield an inference that 

this particular good has high value for the animal, because that is what is reflected in the 

action-selection behavior. However, once the good is actually attained by the animal as a 

result of the habitual action(s), the animal would not actually consume the good. Some have 

also proposed that the motivation to work for a good or “wanting” can be neurally and 

sometimes behaviorally dissociable from its subsequent evaluation (or “liking”) (Berridge, 

1996). Thus, it is clear that how one defines value, has non-trivial implications for how one 

interprets value-signals in the brain.

Different types of value signals

Now I will consider the existence of different types of value signal as they have been 

described in the brain:

Outcome value codes

Valuation responses that are presumed to occur in response to the receipt of an outcome, 

have been referred to as an experienced value or outcome value (O’Doherty, 2004). Many 

studies have reported neuronal responses to the receipt of rewarding or aversive stimuli in 

the literature, in both human neuroimaging studies and in animal neurophysiological 

recordings. As I will consider later, probably only a subset of these can unambiguously be 

ascertained to correspond to experienced value per se.

Predictive value codes

We now consider value codes that are elicited on the basis of predictions about the value of 

future outcomes. I will call these collectively predictive value codes. This type of signal can 

be further subdivided into a number of unique forms of valuation code:

One form of predictive value-signal are Pavlovian values– these correspond to a 

representation of the value of an expected outcome signaled by a discriminative stimulus. 

Such signals have been widely reported in the orbitofrontal cortex and amygdala as well as 

the ventral striatum in both rats, monkeys and humans (Gottfried et al., 2002; Paton et al., 

2006; Schoenbaum et al., 1998).
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Another class of predictive value-signal corresponds to what are variously described as 

“offer values”, “stimulus values”, or “goal-values” – these correspond to the expected value 

of a prospective outcome or goal as this goal is being evaluated at the point of choice, 

typically under situations where other prospective outcomes or goals are also available. Such 

signals have been reported in the monkey central orbitofrontal cortex, as well as in human 

ventromedial prefrontal cortex (Padoa-Schioppa and Assad, 2006; Plassmann et al., 2007).

Yet more value signals arise when an animal or human must render a choice over different 

actions in order to obtain a goal outcome. Collectively these signals can be called “action-

values”. Action-value signals have been reported in a number of brain regions including the 

striatum, lateral intra-parietal cortex and supplementary motor cortices (Lau and Glimcher, 

2007; Platt and Glimcher, 1999; Samejima et al., 2005; Sohn and Lee, 2007; Sugrue et al., 

2004; Wunderlich et al., 2009).

Finally, post-decision value signals have been reported corresponding to the value of the 

option that is ultimately chosen in a decision-task, particularly in medial and central 

orbitofrontal cortex (Hampton et al., 2006; Padoa-Schioppa and Assad, 2006; Wunderlich et 

al., 2009, 2010).

I will now consider competing explanations for different value signals.

Outcome identity coding vs outcome valuation

Any outcome whether a rewarding, aversive or affectively neutral event, has perceptual 

properties: attributes that distinguish it from other stimuli in the world. Thus, any difference 

found in neural activity in response to different outcomes might reflect these sensory 

properties as opposed to the underlying value of those outcomes. This problem is 

particularly stark under situations where outcomes differ in their sensory modalities such as 

for example by comparing responses to juice reward vs a painful cutaneous stimulation as a 

means of determining rewarding vs aversive responding outcome values. However, the 

problem is not overcome even when using reward stimuli in the same sensory modality by 

e.g. comparing a sweet vs a salty taste, and is not unique to appetitive vs aversive 

comparisons, as it is equally evident even when comparing responses to two different 

rewarding stimuli (such as a more vs less preferred reward).

One way to attempt to circumvent this difficulty would be to use the same stimulus (such as 

a particular juice reward), and instead manipulate the intensity or magnitude of the outcome 

provided. However, once again, any variation in outcome magnitude or intensity will result 

in a change not only in outcome utility, but also in the sensory properties, such that those 

properties will be either more “concentrated”, or more plentiful at the time of perception. 

Thus, variation in any sensory quality of the stimulus will typically involve a conflation 

between those stimulus properties and the ensuing valuation changes. Compounding this 

issue is the fact that sensory (non-value related) encoding of outcome representations have 

been reported even in brain regions traditionally associated in value processing such as the 

orbitofrontal cortex (Grabenhorst and Rolls, 2011; Klein-Flugge et al., 2013; McDannald et 

al., 2014; McNamee et al., 2013).
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Predictions of outcome identity vs predictive value codes

Leaving aside the difficulty in discriminating outcome identity from outcome value, lets turn 

instead to predictive coding of value. Lets first consider Pavlovian values. Pavlovian value 

signals depend on associations being formed between a conditioned stimulus or cue and an 

outcome value, thus when the cue is presented, a representation is elicited of the value of the 

outcome. One approach to assess value representations elicited by Pavlovian cues, is to pair 

one cue with the subsequent delivery of a rewarding outcome, and another cue with the 

subsequent delivery of either an aversive, neutral outcome or even the absence of an 

outcome. Neuronal responses exhibiting differences between responses elicited to the cue 

paired with the rewarding outcome vs the cue paired with the aversive outcome might be 

taken as evidence for predictive value coding. However, as with outcome codes, it is very 

difficult to rule out the possibility that any cue showing differential responses based on its 

association with a particular outcome is being driven not by differences in value for that 

outcome but instead by differences in the outcome’s sensory properties. In other words, 

instead of indexing a stimulus→outcome value code, one might be identifying responses 

engendered by a stimulus → outcome identity association (i.e. a stimulus→stimulus code). 

Note that this is the not the same issue as attributing neuronal activity to the perceptual 

identify of the CS itself. Effects of CS-identity can be disambiguated from outcome signals 

by simply altering the contingencies between pairs of CSs and respective outcomes so that 

for example a CS initially paired with a rewarding outcome now predicts an aversive 

outcome and a CS initially paired with an aversive outcome now predicts a rewarding 

outcome. However, such a manipulation cannot rule out effects arising from the sensory 

properties of the outcome itself that could mimic a value response. Manipulating outcome 

contingency (by altering outcome probability) or outcome magnitude can also not exclude 

an outcome identity account, as the former would not only alter expected value but also 

potentially alter the associative strength of the link between the cue stimulus and the 

outcome identity, while the latter would simply alter the intensity of the sensory features of 

the outcome representation (Fig. 1). Outcome identity effects can also be manifested for 

signals observed in more complex learning and choice situations in which predictive 

information about a potential outcome are being represented, including goal-values, action-

values and chosen-values.

An informational signaling role for outcomes and cues

In order to solve a learning or decision problem, an animal or human not only needs to know 

about the expected subjective value of different possible actions or goals, but also needs to 

have the ability to infer which state of the world (or of the decision problem in particular) 

they are in. This is particularly so under situations where decision-problems have a hidden 

structure. This is perhaps best illustrated by an example. In a probabilistic instrumental 

reversal-learning task as used in a number of studies (Cools et al., 2002; Hampshire et al., 

2012; O’Doherty et al., 2003; O’Doherty et al., 2001), there are two available options, one 

of which a subject can select on a given trial. One of these options if chosen typically yields 

a monetary reward with a high probability and a loss outcome otherwise, while the other 

option if chosen typically yields a monetary reward with a low probability, otherwise with a 

high probability it yields a monetary loss. After a period of time according to some arbitrary 
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and often probabilistic rule, the contingencies reverse so that the previously highly rewarded 

stimulus now yields losses, while the previously highly loss predicting stimulus now yields 

gain with high probability. The hidden structure in this task is the knowledge that the 

contingencies on the two options are fully anti-correlated, so that when the expected value of 

one is high the other is low and vice-versa, as well as the knowledge that periodically the 

contingencies will reverse. Once a reversal is known to occur then the EVs on the two 

options can simply be switched by the subject, without the need to re-learn the expected 

values. In this context then, an outcome (such as winning or losing money) not only yields 

experienced value in and of itself, but is also informative as to what state of the decision-

problem the subject is in. More precisely, if an outcome is a monetary loss, then this may 

provide some evidence in support of the possibility that a reversal has occurred (because 

monetary losses are more likely to occur if the formerly good option is now the bad option), 

whereas if an outcome is a monetary gain, this may provide evidence in support of the 

possibility that the correct stimulus is being selected and a reversal has not occurred. It is 

easy to see therefore that outcomes in this task are serving two very distinct purposes: one is 

simply related to experienced value, the other is providing evidence about the underlying 

state of the task, and in particular where the participant is in the task state-space. Thus if one 

is comparing neural responses to e.g. a monetary gain vs a monetary loss on such a 

paradigm, then differential activity observed to gains vs losses could reflect either 

experienced value, or else informational signaling about the probability with which a 

reversal has occurred (see also O’Doherty, 2007).

Going beyond the reversal learning example, informational signaling effects can manifest on 

any task in which there are multiple states and in which different rules may operate to drive 

reinforcement as a function of the configuration of the state-space. Neural activity observed 

in response to either a cue or an outcome during performance of any such task may 

potentially correspond not just to expected value but also to informational signaling.

Response-related coding elicited by predictive cues and/or outcomes

Another important feature of outcomes that is likely to be uncontroversial to most, yet one 

that is rarely considered in the course of interpreting neural data, is that in addition to 

generating a subjective experienced value, a highly valued outcome will also yield an array 

of unconditioned reflexes, both skeletomotor and autonomic. The precise patterning of these 

will depend on the specific outcome involved. For instance, a food outcome will generate 

consummatory activity (increased salivation, licking), along with increased physiological 

arousal including increased heart rate, along with insulin release etc, while a different type 

of reward such a kiss by your partner may yield a different pattern of skeletomotor and 

physiological responding. Consequently, it is challenging to separate out neural activity 

related to valuation per se, from activity related to the effects of valuation on motor and 

physiological responses. Even more stark differences in responses are going to be evident 

when comparing appetitive vs aversive outcomes, where one type of outcome promotes 

consummation and/or approach while the other promotes expulsion and/or avoidance.

Of course we have known since Pavlov that skeletomotor and behavioral responses also 

come to be elicited by cues as a function of associative learning (Pavlov, 1927). Thus, when 
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interpreting responses to Pavlovian predictive cues, or indeed any other predictive value 

signal such as option-values, chosen-values or action-values, it is entirely feasible that 

differentiable neuronal activity observed correspond not to a valuation representation per se, 

but instead to neural activity related to the generation of, or representation of a conditioned 

response elicited by a cue yielding a valuable outcome.

“Salience”, attention and valuation

A long appreciated confound of value in the literature is the fact that valuable stimuli are 

likely to be “salient” to an animal in the sense that such an item can draw attentional 

resources, and result in enhanced perceptual and/or cognitive processing of that item 

(Horvitz, 2000; Maunsell, 2004; Zink et al., 2006).

As with value itself, the construct of salience is often not very precisely defined. One type of 

salience-type mechanism that has received careful and specific definitional treatment is the 

notion that changes in uncertainty in the predictiveness of a cue during associative learning 

can be used to modulate the rate of learning involving that cue (see (Behrens et al., 2007; 

Mackintosh, 1975; Payzan-LeNestour and Bossaerts, 2011; Pearce and Hall, 1980; Roesch 

et al., 2012). However, the construct of salience is often used to refer to other effects such as 

changes in the emotional intensity of a response to a stimulus, or in terms of the 

motivational properties of a stimulus for action, that would not be captured by such a 

specific definition (Berridge, 2012; Gray et al., 2007).

How does one separate out a salience account from valuation? One approach that has been 

used is to compare neural responses to appetitive outcomes or to cues that predict appetitive 

outcomes to responses elicited by aversive outcomes or predictors of aversive outcomes. If a 

neuron or fMRI BOLD response scales differently for appetitive and aversive stimuli, such 

as for example responding only to appetitive and not aversive, or increasing to appetitive or 

decreasing to aversive stimuli, then the claim could be made that this is a value signal. On 

the other hand, if the neuronal response and/or BOLD activation increases as a function of 

the presentation of both appetitive and aversive stimuli (but not to affectively neutral 

stimuli), then the argument could be made that this is an attentional and/or arousal signal. In 

fMRI studies, a bivalent signal along these lines could occur even if the underlying neuronal 

population encodes faithfully encodes a value signal so long as the underlying neuronal 

population within that region contains distinct but spatially inter-mixed sub-populations of 

neurons, some of which positively encode value, and others which negatively encode value. 

Average activity at the level of fMRI might therefore suggest an arousal code, whereas in 

fact these neurons might implement a faithful value code.

However, for single or multi-unit neurophysiological recording studies it is possible to 

ascertain the response properties of individual neurons and determine whether they respond 

uniquely to appetitive or aversive stimuli or both. Studies performed along these lines have 

claimed evidence for value signals in some areas (e.g. orbitofrontal cortex), while other 

brain regions such as supplementary motor cortex and more recently intraparietal sulcus 

have been suggested to encode salience/attentional signals (Leathers and Olson, 2012; 

Roesch and Olson, 2004). However, there is another important caveat to this interpretation 
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that needs to be born in mind. Specifically, the type of task used to assess responses to 

aversive predictors and aversive outcomes is crucial. One possibility is to use an 

instrumental avoidance paradigm in which the animal is performing an action in order to 

avoid obtaining the aversive outcome. However, the “relief” that follows from avoidance of 

an aversive outcome can act as a reward in a similar manner to the way in which missing out 

on an expected rewarding outcome can be actually aversive (Solomon and Corbit, 1974). If 

an animal therefore succeeds in responding to avoid aversive outcomes, then that animal 

may come to predict in that situation that there is a high prospect of avoiding that outcome 

and hence obtaining the reward that follows from the relief of successful avoidance. Neural 

signals encoding expected value in response to discriminative stimuli during the avoidance 

paradigm could therefore represent the expected reward that would follow from successfully 

avoiding the aversive outcome. Thus, neurons found to respond to both predictors of reward 

and predictors of aversive outcomes in an instrumental context could simply be representing 

expected reward and not expected punishment. Therefore, an instrumental avoidance 

paradigm is problematical as a means of discriminating valence from salience/attentional 

accounts. The other paradigm that could be deployed to test for these different types of 

response profiles is a Pavlovian one, in which the animal is not required to make any type of 

response but instead a particular cue is followed reliably by an aversive outcome while 

another cue is followed reliably by an appetitive outcome. In these circumstances, finding 

overlapping scaling neural activity in response to both types of cues would be more 

convincing evidence for a salience code, because there is no possibility to ascribe to the 

aversive cue, activity related to encoding of the positive hedonic consequences arising from 

avoiding the now inescapable aversive outcome.

In the case of the theoretically more constrained notion of salience as reflecting 

predictiveness around cue-uncertainty, value can arguably be more definitively clearly 

separated out from such cue uncertainty signals and indeed a number of studies have 

accomplished precisely this (Behrens et al., 2007; Payzan-LeNestour et al., 2013; Roesch et 

al., 2010).

Reinforcer Devaluation/Revaluation

Another approach to measuring neural responses to valuation is to measure activity to a 

particular outcome, or a cue, or action associated with a given outcome, before and after 

inducing a change in the experienced utility of that outcome through a procedure called 

reinforcer devaluation. This involves feeding the subject to satiety on a particular outcome, 

thereby inducing a change in the value of that outcome, or alternatively separately pairing 

the outcome with an aversive event such as illness (Rolls et al., 1981). The advantages of 

this procedure are that any changes in activation measured in response to the stimulus 

following the devaluation procedure, can be assumed to be related to a change in the reward-

value of the associated outcome, as opposed to the sensory features of the outcome simply 

because the sensory features of the outcome remain constant from pre to post devaluation. 

Perhaps the biggest obstacle to reinforcer devaluation manipulations as a practical means for 

studying predictive values or decision-values in most experimental contexts but especially in 

single-unit neurophysiology, is that testing must be done in extinction (that is by presenting 

the cue or action but without presenting the outcome), in order that activity observed reflects 

O’Doherty Page 8

Neurosci Biobehav Rev. Author manuscript; available in PMC 2015 February 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



the retrieval of the outcome value from the previously learned association as opposed to 

merely reflecting re-learning of an association between a given cue or action and the 

outcome in its now current devalued state. However, if an outcome is presented in 

extinction, then humans and animals will very quickly stop responding to the outcome in an 

instrumental context or stop exhibiting conditioned responses in a Pavlovian context. As a 

consequence, there may be only a very small number of trials prior to extinction reaching 

asymptote during which it is possible to measure the effects of the devaluation procedure on 

cues or actions associated with a given outcome. This small number of trials is anathema to 

the trial averaging needed for extracting meaningful signals with either neurophysiological 

or neuroimaging methods, although in some cases it has proved possible to obtain 

significant effects in spite of those limitations (Gottfried et al., 2003; Valentin et al., 2007). 

One possible work-around to the trial averaging problem is to perform multiple sequential 

devaluation protocols, as a means of building up sufficient numbers of measurements. 

However, such a procedure also engenders the complication that if the devaluation 

procedure comes to be expected (i.e. incorporated into meta-knowledge about the task 

procedure), then ensuing neural activity may not simply reflect the value of the expected 

outcome but rather task-related cognitive signals as discussed previously. Furthermore, it 

could be argued that reinforcer devaluation does not completely rule out stimulus-

confounds, as habituation of the sensory features of the stimulus may occur during the 

devaluation process, particularly if the means of devaluing of the outcome is through 

feeding to satiation. Evidence mitigating against this possibility is that the subjective ratings 

of the sensory intensity of a devalued outcome during selective satiation procedures in 

humans typically does not change from pre to post devaluation (Rolls et al., 1981). 

However, evidence from subjective ratings of this sort may not suffice to rule out the 

possibility that sensory habituation could occur somewhere in the sensory pathways 

following a devaluation episode.

Revealed preferences

Yet another approach to establishing neural correlates of value is to make use of the choice 

behavior or “revealed” preferences of an individual and use that information to derive an 

underlying subjective utility for certain goods or decision options which can in turn be 

related to neural activity elicited by those goods. A good example of this approach is the 

work by Tremblay and Schultz (1999), who presented monkeys with blocks of trials in 

which in a given block two out of three different types of juice reward were presented to 

monkey while activity was recorded from a region of central orbitofrontal cortex. Each 

monkey had a clear preference ordering over the three juices, and it was found that activity 

of some neurons in OFC scaled according to those preferences. In particular, some neurons 

responded strongly to the most preferred juice out of the pair of juices that was presented in 

a given block. Importantly, the main factor driving the activation of those neurons was 

which juice was preferred by the monkey out of a given pair within a block, such that if the 

most and middle preferred juice were presented, the neurons responded strongly to the most 

preferred juice and only weakly to the middle preferred juice, but if the middle and the least 

preferred juice were presented, the neurons now responded strongly to the middle preferred 

juice. Thus, this class of orbitofrontal neuron appeared to encode the relative preference the 
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monkey has for a given juice outcome within a block. Such a response profile is unlikely to 

be accounted for in terms of the sensory features of the outcomes because the same middle 

preferred outcome with the same sensory features is presented in both types of trial blocks, 

yet the neuron responds differently depending on the relative preference the monkey has for 

that item within a block.

Another example of this approach is a study by Padoa-Schioppa and Assad (2006) who 

repeatedly presented choices involving pairs of juice rewards in differing quantities to 

monkeys. For a given pair of items they then plotted the choice data as a function of 

different offer quantities for the two goods, and fit a choice sigmoid function to that data as 

a means of determining the relative subjective value the monkey has for each good. This 

subjective choice function was also fit to neural data measured in the orbitofrontal cortex, in 

order to find populations of neurons corresponding to the subjective value for each option 

(offer values), as well as for the option that is chosen on a given trial (chosen values). The 

fitting of a subjective preference function derived from behavior to neural data can 

potentially overcome issues of stimulus-identity confounds, provided that changes in the 

stimulus properties do not strongly correlate with changes in subjective preference. In the 

Padoa-Schioppa and Assad example, in which the monkey is given choices between 

different quantities of two different goods, there is potential for a confound to emerge 

between the magnitude of the expected outcome which will be associated with varying 

stimulus properties and the subjective value of that outcome. To overcome this, Padoa-

Schioppa and Assad were able to make use of the fact that the same food items were 

presented on multiple sessions whereby the monkey’s relative preferences changed from 

session to session (in essence implicitly taking into account devaluation and revaluation of 

the food items on the part of the monkey for the food items), thereby enabling simple effects 

of stimulus properties to be taken into account.

A similar approach has been adopted in a number of studies examining inter-temporal 

choice, in which an individual is given a choice between a smaller reward delivered sooner 

and a larger reward delivered later. By varying the amount of rewards on offer at the two 

points, and the length of time before the later reward is delivered, and presenting choices 

between these sooner and later options, it is possible to derive a subjective function 

describing an individual’s subjective preferences for rewards at different time delays. 

Typically such a function shows a fall off in the subjective value of the reward the longer the 

interval between the distal reward and the soonest available reward. This typical profile can 

be fit using hyperbolic (or exponential) function(s), enabling inference to be made about the 

subjective inter-temporal preferences for a given individual. Those same functions can then 

be fit to neural data (fMRI or neurophysiology), in order to ascertain areas correlating with 

subjective utility for different choice options. For example, using this approach Kable and 

Glimcher (2007), presented human subjects with repeated choices between a fixed 

immediate monetary reward and a time and magnitude varying distal monetary reward, 

finding activity in a number of areas including medial prefrontal cortex correlating with the 

subjective value of the chosen option derived from the subjective preference function. 

Stimulus confounds are unlikely in the case of inter-temporal studies involving abstractly 

presented decision options and monetary rewards simply because it is implausible that there 
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are stimulus features which correlate in an orderly fashion with the magnitude of the abstract 

reinforcer.

A related approach that has been used in human studies is to obtain a proxy behavioral 

measure of subjective decision-utility, by assessing individual’s “willingness to pay” (WTP) 

for a particular item (Chib et al., 2009; Plassmann et al., 2007). In these types of paradigms, 

many different types of items such as food items or trinkets are presented to participants, 

and WTP is collected for each item and then correlated against the fMRI data in order to 

isolate regions correlating with subjective decision-utility. In the case of the WTP approach, 

simple stimulus confounds are perhaps not likely given that the items can vary considerably 

along a number of stimulus dimensions yet still have similar WTPs (e.g. a food item vs a t-

shirt). Nevertheless, within some domains such as food-items, it is likely that some 

elemental stimulus features of a good such as its sweetness, saltiness, caloric content etc. are 

going to correlate to some extent (albeit perhaps not in a simple linear fashion) with the 

overall value assigned to that good.

These points notwithstanding, while the revealed preference approach offers a lot of 

potential for ruling out stimulus-feature accounts of neural value correlates, the approach 

still faces challenges when it comes to separating out “value” per se from consequences of 

value such as skeletomotor and autonomic responses.

Relevance of non-value related outcome representations

Non-value related features of outcomes are important in their own right for understanding 

the computations underpinning learning and decision-making and the contribution of 

specific brain areas to these computations:

Outcome identity in goal-directed and Pavlovian control

For goal-directed instrumental control, representing outcome identity is a crucial interim 

step in enabling the associated incentive value of an outcome to be retrieved. According to 

associative theories of goal-directed learning, associations between states, actions and 

outcome identity are used to facilitate retrieval of an associated outcome value (Balleine and 

Dickinson, 1998). Computational theories of goal-directed control such as model-based 

reinforcement-learning (Daw et al., 2005), also require outcome-identity to be represented 

within the cognitive model of the world, before the value of that outcome can be accessed 

and an action-value can be computed. Thus, neural signals of outcome identity elicited by 

cues or actions if found in the brain during performance of a goal-directed task, may be a 

critical component signal for goal-directed action. Characterizing where and how such 

signals are represented is therefore essential for unraveling how goal-directed behavior is 

implemented at the neural level. At least some forms of Pavlovian conditioning involve 

associations between stimuli and outcome-identity (stimulus-stimulus associations) that in 

turn retrieve outcome values in a manner parallel to that which occurs in the goal-directed 

instrumental system. This type of Pavlovian association is devaluation sensitive (Colwill and 

Motzkin, 1994).

O’Doherty Page 11

Neurosci Biobehav Rev. Author manuscript; available in PMC 2015 February 18.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Somatic consequences of outcomes

Once outcome-identities are elicited, it is an open question how outcome-values are then 

subsequently retrieved. In the phenomenon of “incentive-learning” (Balleine and Dickinson, 

1998), it has been shown that for the purposes of goal-directed control, rats are not able to 

construct the value of an outcome in a particular motivational state without first having to 

experience the outcome in that state. For example, if the rat learns to perform an action to 

obtain a novel food when hungry, if the rat is subsequently sated so that the food should no 

longer be valuable, the rat doesn’t adjust its behavior in the sated state unless it first 

experiences the novel food in that sated state. The rat may therefore need to link being in a 

sated context with the somatic consequences of experiencing a food in that state in order to 

compute a valuation. This process, which resembles that postulated in the somatic-marker 

hypothesis (Bechara et al., 1994), could suggest that the mechanism by which outcome-

values are used to guide action-selection depends on ultimately retrieving somatic-states 

associated with those outcomes contingent on being in a particular motivational state. The 

implication of this notion is that, understanding how the brain encodes somatic 

consequences elicited by outcomes in a given motivational state is also a key element in 

understanding how it is that values for goal-directed actions are computed, as is establishing 

how and via which learning-mechanisms does outcome-identity become linked to such 

somatic representations.

For Pavlovian conditioning, visceral and autonomic signals elicited to cues predicting 

particular outcomes (or UCSs) are key conditioned responses – present during both 

appetitive and aversive Pavlovian conditioning.

Skeletomotor responses

In Pavlovian conditioning a series of reflexive skeletomotor responses can also come to be 

elicited by the conditioned stimulus alongside visceral and autonomic responses. Perhaps the 

most well characterized are the responses of approaching and/or orienting to an appetitive 

stimulus, or avoiding and/or orienting away from an aversive stimulus (Brown and Jenkins, 

1968; Jarvik and Kopp, 1967). Another example are consummatory responses elicited in 

anticipation of the onset of the outcome, such as chewing or sucking behavior in anticipation 

of a food or liquid reward respectively. A critical distinction has been made in the 

conditioning literature between outcome-general conditioned responses and outcome-

specific conditioned responses (Balleine and Killcross, 2006; Konorski, 1948). Approach 

and avoidance are good examples of outcome-general conditioned responses because they 

can be elicited very generally in response to cues associated with many different outcomes, 

so long as those outcomes are appetitive and aversive respectively. On the other hand, 

consummatory responses such as chewing or sucking may be very specific to the type of 

outcome with which a cue is associated (Jenkins and Moore, 1973). Evidence is emerging 

that outcome-specific and outcome-general coding may be a very important distinction at 

the neural level too, with specific structures such as the basolateral nucleus of the amygdala 

and the shell of the nucleus accumbens implicated in the former, while the centromedial 

nucleus and core of the accumbens is implicated in the latter (Balleine and Killcross, 2006). 

As a consequence, characterizing the extent to which neural activity in a given area in 
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response to cues that predict outcomes represent or are associated with the elicitation of 

conditioned responses is vital for understanding the type of conditioning a given brain 

region is involved in mediating and for addressing the type of outcome representation a 

given set of neurons are involved in implementing.

Multiple routes to behavior: the role of historical values and non-value 

related behavioral response systems

It is also important to consider that behavior can be controlled in an adaptive manner using 

mechanisms that eschew value representations based on the current value of an associated 

outcome entirely. This can happen in both instrumental and Pavlovian learning situations. In 

instrumental conditioning, a distinction has been made between goal-directed actions which 

are outcome sensitive and habitual actions which are insensitive to outcome value, in that 

habitual responding will persist on an action that leads to a previously valued outcome even 

if that outcome is no longer considered valuable to the organism (Dickinson, 1985). It has 

been suggested that habitual actions are acquired via the formation of stimulus-response 

associations without involving any explicit associative link to the outcome produced by that 

response (Balleine and Dickinson, 1998). Importantly, habits are shaped by reinforcement, 

that is, according to Thorndike’s law of effect, they are strengthened under situations where 

responses lead to rewarding outcomes and weakened when they lead to non-rewarding 

outcomes (Thorndike, 1898). Thus, the extent to which a habit develops will be determined 

by the extent to which a given response led to a rewarding outcome in the past. However, 

because habits are not sensitive to the current incentive value of the outcome i.e. because 

they are devaluation insensitive, they can be thought of as reflecting historical or cached 

value, but not reflecting current outcome value.

Behavioral control divorced from current outcome value can also occur in Pavlovian 

conditioning. Analogous to stimulus-response habits in the instrumental domain, Pavlovian 

cues can become associated directly with conditioned reflexes (i.e. CS→CR), without 

necessitating any intervening representation of the associated outcome (UCS) or the value of 

such an outcome (Everitt et al., 2003). The behavioral expression of such an association 

would be devaluation insensitive. Although prevailing behavioral evidence appears to 

suggest the dominance of devaluation sensitivity in the expression of Pavlovian conditioned 

responses (Colwill and Motzkin, 1994; Holland and Straub, 1979), such tests have been 

applied to only some classes of conditioned responses, and thus the presence of a direct 

associative route between conditioned stimuli and conditioned reflexes remains an open 

possibility. The possible presence of different learning mechanisms spanning instrumental 

and Pavlovian behavioral control, underlines the importance of discriminating outcome-

sensitive value-signals from other types of relevant signals when measuring neural activity.

Dopamine, value and prediction error

Another value-related signal reported in the brain concerns the phasic activity of dopamine 

neurons that have been found to resemble a prediction error signal from formal 

computational models (Hollerman and Schultz, 1998; Mirenowicz and Schultz, 1994; 

Morris et al., 2006; Roesch et al., 2007; Schultz, 1998). In the context of this discussion, one 
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question that could arise is whether or not dopamine neurons are reflecting a value-related 

response (i.e. the derivative of value with respect to time), or whether these neurons are 

instead encoding some other non-value-related feature such as salience/arousal or stimulus-

identity coding. The relative homogeneity of reward-selective dopamine neurons 

(Hollerman and Schultz, 1998) as showing an increasing response to unpredicted reward 

outcomes, and a decreasing response to omitted reward outcomes would exclude a simple 

salience/arousal account for those neurons (although such an interpretation has been 

proposed for a subset of dopamine neurons in the posterior lateral substantia nigra, see 

Matsumoto and Hikosaka, 2009). For reward-selective dopamine neurons, the homogeneity 

in those responses also suggests that it is unlikely that such neurons encode prediction errors 

about detailed sensory features of a stimulus, that for example could be used to learn 

different stimulus-stimulus associations unrelated to value. Consistent with this, (Lak et al., 

2014), reported that dopamine neurons encode prediction errors that correlate better with 

subjective value over a range of different goods (different juices and solid food), as opposed 

to sensory features of those outcomes.

As yet unknown is whether or not the prediction side of the computation being used to 

generate prediction errors (i.e. where PE = outcome value – predicted value), is a signal that 

indexes predictions about current outcome values, or whether instead those predictions are 

“model-free”, which though representing historically the degree of reward associated with 

that stimulus or response, might not index the current value of the outcome to the animal. 

The way to address this question is to test whether these neurons decrease their activity in 

response to a cue that is associated with an outcome that was previously highly rewarding 

but is now devalued (Balleine et al., 2008). Such a manipulation should help to elucidate 

whether or not dopamine neurons are involved in facilitating learning of goal-directed or 

“model-based” value signals that index the current incentive value of an associated outcome, 

or whether these neurons contribute instead to the learning of “model-free” or historical 

value signals such as habits (Daw et al., 2005). It is important to note that even if the 

dopamine neurons are receiving an input from historical value predictions as opposed to 

predictions about current outcome value, re-exposure of the animal to the actual outcome 

itself following devaluation, would nevertheless still induce a gradual updating of the value 

of an associated cue or action via dopamine-mediated learning. This is because the now 

changed outcome value would still be predicted to result in a change in the prediction error 

code following re-exposure to the outcome, thereby facilitating incremental convergence of 

historical value signals to the current outcome value.

Causal manipulations of neuronal systems and circuits as a means of 

testing for value

So far we have focused on evidence about value-representations that can be garnered from 

correlative measures of brain function such as neurophysiological recordings or 

neuroimaging. This leaves open the extent to which methods that can elucidate causal 

relationships between neuronal activity and behavior can discriminate value from value-

related computations. There is a very large literature describing the use of experimental 

lesion approaches in rodents and non-human primates as a means of ascertaining the causal 
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role of brain regions such as the orbitofrontal cortex, amygdala, ventral striatum and 

elsewhere in value-related behavior, as well as complementary approaches examining the 

effects of circumscribed brain lesions in human patients on value-related behavior. For 

example, lesions of the orbitofrontal cortex and amygdala have been found to render animals 

insensitive to outcome value following reinforcer devaluation based on discriminative 

stimuli (Baxter et al., 2000; Pickens et al., 2003), and effects have also been reported 

following lesions in this area on other aspects of value-related behavior (Noonan et al., 

2010). Lesions of rodent prelimbic cortex, and dorsomedial striatum abolish the selection of 

instrumental actions based on current outcome value (Balleine and Dickinson, 1998; Yin et 

al., 2004; Yin et al., 2005). Relatedly, human patients with lesions of the ventromedial 

prefrontal cortex have been found to be impaired on a variety of value-related decision 

making and learning tasks (Bechara et al., 1994; Fellows and Farah, 2005; Hornak et al., 

2004; Rolls et al., 1994). The recent emergence of molecular technologies for specific 

optical (Williams and Deisseroth, 2013) and pharmacological stimulation (Shapiro et al., 

2012), most typically in rodents, but also potentially in monkeys, has opened up a whole 

new avenue for fine-grained spatially and temporally specific causal manipulations in brain 

circuits. Can these approaches provide insight into the question of whether or not a given 

neuronal signal is involved in encoding value per se or some other variables?

Let’s consider a few scenarios. First of all, imagine a situation where a lesion in a given area 

X, does cause impairment in the performance of behavior on a value-related task. Can we 

assume that this implies the area is involved in encoding value? It is entirely possible that a 

lesion which impacts on or abolishes signals that are precursors for generating a value 

signal, such as stimulus identity representations, could also result in an impairment in value-

related behavior. It does not follow that this region is necessarily involved in encoding the 

value signal per se, but rather that this area could be providing an input into a value-signal 

computation being performed further downstream. Similarly, even if we imagine the 

situation where a specific set of neurons are optogenetically, electrically or otherwise 

stimulated, which in turn exert an effect on value-related behavior, this also does not 

necessarily imply the neurons are necessarily computing value per se. So long as the 

identified neurons are encoding some variable relevant to the subsequent computation of 

value, or to the manner in which a value signal is subsequently transformed to guide 

behavior, then a manipulation of those neurons might impact on value-related behavior, 

without necessitating a direct role for those neurons in encoding value.

Conversely, we could consider the situation where a given region or set of neurons have 

been causally manipulated and there is no reported effect on value-related behavior. Does 

the absence of an effect allow us to exclude the possibility that these neurons are involved in 

value computations? Due to the possibility of redundancy in neural systems, and because of 

the hypothesized existence of multiple control and learning systems for guiding behavior, 

which often may yield similar behavioral responses (e.g. goals, habits and Pavlovian 

control) (Balleine et al., 2008; Balleine and Dickinson, 1998), it is entirely possible that the 

absence of an effect in a given stimulation or lesion protocol on behavior might occur due to 

the fact that one of the systems left intact after the lesion continues to drive behavior in a 

similar manner to that which occurred prior to the lesion. For example, a lesion to a region 

known to impact on goal-directed control, might still leave the habitual and Pavlovian 
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systems in place which would continue to drive adaptive value-related behavior in many 

circumstances. Of course, with a behavioral protocol that is sufficiently sensitive to the 

distinct contributions from different learning systems, it may be possible to disambiguate 

effects of lesions to one or other system (e.g. Yin et al. 2004; 2005). However, in general, in 

causal brain manipulations as with any other experimental approach, one needs to be 

cautious about interpreting the absence of a significant effect as evidence in support of the 

null hypothesis.

It is important to emphasize that this discussion is no way arguing against causal 

manipulations as an essential complement to correlative measures. The argument being 

made here is only that one cannot necessarily pin-point the precise computation being 

implemented by a given neural process (such as in encoding value representations per se) 

solely from a causal manipulation.

How in practice is it possible to distinguish value from its consequences?

Out of several methods discussed here for assessing value, the most successful approaches 

are those that attempt to explicitly divorce non-value related outcome-features from 

subjective value by experimentally manipulating the value of the outcome itself while 

leaving sensory features constant through devaluation/revaluation of the outcome, or in a 

revealed preference approach, particularly under situations where preferences to the same 

objects change over time, or where preferences to different types of goods are measured 

without obvious stimulus-features that correlate with those preferences.

However, such approaches still face challenges from the fact that concomitant changes in 

visceral, autonomic and skeletomotor activity will follow as a function of changes in value. 

Neural responses to these signals can potentially be misattributed as value. One essential 

step to resolving this challenge would be to obtain detailed physiological measurements of 

autonomic and skeletomotor responses during an experiment (such as by monitoring pupil 

dilation, skin conductance, facial electromyography, body movement etc.) as this could 

enable such effects to be taken into account as potential drivers of neural activity. By pitting 

such correlates against a value signal during statistical analysis it may be possible to 

differentiate value per-se from its sequelae. One natural approach to this question is to 

deploy a similar approach used to attempt to disambiguate attentional effects from value, 

which is to compare and contrast neural, skeletomotor and autonomic responses to both 

appetitive and aversive predicting cues, actions or outcomes. Some autonomic patterns are 

common across appetitive and aversive situations, thus enabling value signals which 

respond differentially to appetitive and aversive situations to be dissociated from such 

autonomic responses (Cacioppo et al., 2000; Lang et al., 1993). Neurons encoding such non-

specific signals can be dissociated from value signals because value signals will show 

differential activity to aversive vs appetitive predictions. However, other responses such as 

faciomotor reactions, consummatory reactions, and approach or avoidance behaviors are 

known to be much more specific to particular appetitive vs aversive situations, and may 

therefore be more difficult to fully differentiate from value per se (Kreibig, 2010; Lang et 

al., 1993).
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Another viable approach is to make use of the fact that such autonomic and skeletomotor 

reactions are more likely to be driven by the average expected reward or punishment in a 

given situation, as opposed to being elicited in response to the value of specific available 

possible actions or goals prior to choice, particularly when multiple actions and/or multiple 

goals are available. For instance, if a given neuronal population is found to encode the value 

for a given action but not the value of other actions, or a set of neurons is found to encode 

the value of a specific available goal but not other goals, such neural activity can be feasibly 

de-correlated from the overall expected reward or punishment in a given scenario, especially 

if the action or goal in question ends up not being chosen by the animal on a given trial. In 

this way, it should be possible to disambiguate value signals for particular actions and/or 

goals from skeletomotor and autonomic reactions elicited in anticipation of the outcome as a 

consequence of the choice situation.

Concluding remarks: What are the implications for decision neuroscience/

neuroeconomics?

We have considered a variety of experimental protocols used in the literature for testing 

whether or not activity in a particular neuron, set of neurons, or BOLD signal relates to 

encoding of value signals in the brain. As we have seen, it is surprisingly challenging to 

definitively determine whether a given measured neural signal corresponds to a value 

response per se or a myriad of other possible signals, including the sensory features of an 

associated outcome or responses elicited by the outcome or cues predicting that outcome 

whether physiological, cognitive or skeletomotor. We have also considered the possibility 

that some classes of behavioral controllers (in both Pavlovian and instrumental domains) 18 

may not even require access to predictions about current outcome value in order to produce 

adaptive responses, such as in the case of stimulus-response habits and Pavlovian cue-reflex 

associations.

Overall, the main argument being made here is the importance of distinguishing between 

different possible accounts for neural response patterns found in experimental manipulations 

of value. By doing so, it will be possible to not only gain a better understanding of how and 

where value-signals are represented in the brain, but also to better characterize how such 

signals are constructed from non-value precursors, as well as to begin to establish the way in 

which value signals are ultimately transformed in order to influence behavior.
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Figure 1. 
Schematic of a simple experiment aimed at detecting neural responses to expectation of 

magnitude and probability of a juice outcome. Even if a cue is retrieving sensory features of 

the outcome (e.g. its sweetness, odor, texture or some combination thereof) but not its value, 

putative neural responses to the cue would still scale with both magnitude (the intensity of 

the sensory experience) and probability (the strength of the stimulus-stimulus association 

formed). Thus, distinguishing neural signals encoding cue-outcome associations that are 

entirely sensory based (i.e. cue → outcome sensory features) from cue-outcome associations 

that retrieve underlying values (cue → value(outcome)), is challenging using this type of 

manipulation.
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