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Abstract

By determining protein-protein interactions in normal, diseased and infected cells, we can improve 

our understanding of cellular systems and their reaction to various perturbations. In this protocol, 

we discuss how to use data obtained in affinity purification–mass spectrometry (AP-MS) 

experiments to generate meaningful interaction networks and effective figures. We begin with an 

overview of common epitope tagging, expression and AP practices, followed by liquid 

chromatography–MS (LC-MS) data collection. We then provide a detailed procedure covering a 

pipeline approach to (i) pre-processing the data by filtering against contaminant lists such as the 

Contaminant Repository for Affinity Purification (CRAPome) and normalization using the 

spectral index (SIN) or normalized spectral abundance factor (NSAF); (ii) scoring via methods 

such as MiST, SAInt and CompPASS; and (iii) testing the resulting scores. Data formats familiar 

to MS practitioners are then transformed to those most useful for network-based analyses. The 

protocol also explores methods available in Cytoscape to visualize and analyze these types of 

interaction data. The scoring pipeline can take anywhere from 1 d to 1 week, depending on one’s 

familiarity with the tools and data peculiarities. Similarly, the network analysis and visualization 

protocol in Cytoscape takes 2–4 h to complete with the provided sample data, but we recommend 

taking days or even weeks to explore one’s data and find the right questions.
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INTRODUCTION

AP-MS arose as a result of improved methods to enrich samples and perform separation 

chromatography, as well as advances in the resolution and sensitivity of mass spectrometers. 

AP-MS studies produce large amounts of information-rich data that detail protein-protein 

interactions in a variety of organisms and biological systems. These interactions help 

characterize the functions of proteins, provide detailed catalogs of proteins involved in 

protein complexes and biological processes, and can reveal networks of biological processes 

at local and proteome-wide scales. By bridging these molecular measurements to the 

systems level, we can better understand the genetic, epigenetic and protein-based 

associations of these proteins with disease. Today, the standards for analyzing protein-

protein interactions span a wide spectrum that includes well-established protocols for sample 

preparation, diverse interaction scoring and clustering algorithms, methods for graph theory 

and data mining, and biological networks. This protocol describes how to analyze AP-MS 

data to produce meaningful networks. It presents some of the current thinking and practices 

in MS and network biology and is intended to guide practitioners, mentors and instructors in 

these fields.

All function is local

Analysis of protein-protein interactions can yield insight into the functional relationships 

between proteins. For example, the interactions between co-regulated metabolic enzymes 

can reveal the assembly of higher-order noncovalent protein complexes, called metabolons, 

which channel products to substrates along sequential steps of a metabolic pathway1,2. 

Protein-protein interactions can also reveal relationships between substrates and post-

translational modifying enzymes, such as kinases, phosphatases, acetyltransferases and 

proteases, or with coactivator/co-repressor assemblies that modulate the specificity and 

activation of core complex functions3–11. Recent analyses of protein-protein interactions 

between host and pathogen have yielded new information on how pathogens use cellular 

processes for their own replication, division, budding, invasion and immune evasion. These 

analyses revealed basic cellular processes, such as membrane organization and protein 

trafficking12–20. Analysis of protein-protein interactions is orthogonal, but also 

complementary, to genetic interaction experiments; both provide lists of candidate 

interactions and implicate functional relationships21–24.

AP-MS has become a standard method for discovering protein-protein interactions. 

Traditional methods couple native protein immunoprecipitation with immunological or mass 

spectrometric detection. AP-MS methods, however, use epitope tags on target ‘bait’ proteins 

of interest as affinity capture probes for the identification of the coassociating ‘prey’ 

proteins, without requiring purchase or development of specific antibodies for each new bait 

protein. Furthermore, antibodies raised against proteins of interest, or bait, may disrupt 

protein-protein interactions if the epitope coincides with a protein interface needed for an 

interaction. Affinity tagging has been applied most extensively in yeast, in which over 70% 

of the expressed proteins have been mapped into protein-protein interactions, which can be 

resolved into ~500 major complexes by clustering and network analysis25–27. Numerous 

Morris et al. Page 2

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



protein complexes and sets of proteins from humans, Drosophila and Arabidopsis have also 

been analyzed28–33.

The goal of this protocol is to provide a template for interpreting protein-protein interaction 

data derived from AP-MS experiments. By analyzing these data, rich networks can be 

created to detect even transient interaction partners that may be present at low expression 

levels. As the quality of the network depends on that of the interaction data, our protocol 

begins with an overview of selecting the proper epitope tag, cell line, biochemical conditions 

and instrumentation for experimentation. After these considerations, we provide step-by-step 

guidelines for scoring AP-MS data. We then place these data into context by comparing and 

integrating them with available large data sets that contain known protein-protein 

interactions and Gene Ontology (GO) annotations. Here we work within Cytoscape34,35, a 

common tool used to visualize and analyze networks. We discuss various approaches to 

integrate and analyze data, tailored for AP-MS data, as well as common research questions, 

and then we conclude with steps for generating high-quality images of interaction networks 

for publication figures.

Experimental considerations

Bait selection—The first step to designing an AP-MS study is to select the proteins of 

interest, or baits, that will be used to characterize a network of protein-protein interactions. 

As the proteins in this set of baits are scored against each other, they should be selected to 

maximize the likelihood of identifying interactions that are unique to the bait compared with 

other proteins in the set. For example, if a bait protein contains an RNA-binding domain, 

then at least one other negative-control protein containing an RNA-binding domain should 

be included. This approach helps identify proteins that uniquely interact with the protein of 

interest compared with the class of RNA-binding proteins in general.

Controls—Within each bait set, include a positive control and a negative control. Positive-

control bait may be a protein that previously underwent AP-MS analysis and that has a high-

confidence set of interacting proteins identified by reciprocal binding assays. For example, 

the HIV-1 Vif protein is well established to enrich for elongin-B and elongin-C, cullin-5, 

Rbx2 and CBFb10. GFP is recommended for a negative-control bait that is not expected to 

have specific interactions in most organisms10; any interactions with this protein may be 

related to the epitope tag and resin-capture system.

Cell lines—Ideally, bait proteins would be expressed in the background of the interactome 

targeted for interrogation. However, an important consideration is that the input material 

needed for AP and MS analysis is reasonably large (<25 million cells yield microgram-scale 

quantities of expressed bait protein)13,17,36. Thus, the experimental design must balance 

optimizing bait expression with maintaining relevance to the biology or tropism of the 

proteins of interest. For the purposes of rapid and high-throughput screening, transient 

transfection of an epitope-tagged protein is a rapid approach that is also amenable to genetic 

manipulation through mutagenesis or alternate tagging strategies10.

Unfortunately, the variety of cell lines amenable to transient transfection is limited. Thus, 

depending on the scale of the study, one may need to generate a more relevant and stable 
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cell line that expresses the bait proteins. Stable cell lines may be engineered to incorporate 

inducible expression, such as using a line that stably expresses the Tet-repressor protein. 

This method may optimize the expression of the bait protein to approximate endogenous 

expression levels37. Engineering stable expression systems may require the development of 

multiple clones to select for optimal expression levels, which generally requires much more 

time36. Another possibility is to express and purify a bait protein in one heterologous 

expression system, such as HEK293, and then incubate this bait in trans with the desired 

lysate. This method is less desirable, as proteins of interest are not expressed in vivo but are 

extracted and bound to isolated protein in vitro, thereby requiring relevant interactions to be 

stably formed in a lysate38.

Genome engineering approaches, such as clustered regularly interspersed short palindromic 

repeats (CRISPR) or transcription activator–like effector nuclease (TALEN) technologies, 

can also be considered when generating cell lines that express affinity-tagged proteins39. 

These methods help directly fuse affinity tags to proteins of interest within their locations in 

the genome, thus maintaining genomic contexts that regulate endogenous gene expression 

levels. Currently, these approaches are somewhat specialized and can be expensive, 

depending on the scale of the study; however, they are rapidly improving and will probably 

become standard procedure in many laboratories within a few years. Furthermore, strategies 

for cellular reprogramming convert nearly any cell type into an induced pluripotent stem 

(iPS) cell that can be differentiated into a number of specialized cell types. These iPS cells 

can be generated from cell material taken directly from patients. iPS cells can also be 

subjected to genome engineering (e.g., introducing a single point mutation), which maintains 

an isogenic background for comparing mutant and wild-type proteins of interest.

Affinity tags—A number of synthetic or naturally occurring affinity tags have been 

implemented in AP-MS studies. Common epitope tags include FLAG, Strep, Myc, 

hemagglutinin, protein A, His6-tag, calmodulin-binding protein, GFP and maltose-binding 

protein, which are reviewed in ref. 40. In some cases, multiple tags are fused together, such 

as 2×Strep3×FLAG, which is widely used by the authors of this protocol and which contains 

five tandem affinity tags of two types. Most combinations of these tags would be sufficient 

for AP-MS analysis, but the conditions required to bind and elute different tags may be 

substantially different and should be identified in the literature. For example, efficiently 

eluting a 3×FLAG-tagged protein from anti-FLAG resin requires detergent in the elution 

buffer. Notably, we recommend tagging both the N and C termini, in case one terminus 

disrupts interactions or protein function. Our tag of choice is generally the 2×Strep tag for 

lower reagent costs and ability to elute with a small molecule that is LC–tandem MS (LC-

MS/MS) compatible (desthiobiotin), rather than requiring competition with an excess of 

peptide (such as for FLAG elution). Selection of a tandem affinity purification (TAP) versus 

a single-affinity step strategy is usually made when highly refined or stable complexes are 

sought (reviewed in ref. 41). On the other hand, a rapid capture-release strategy with a single 

affinity step is expected to produce more interaction candidates, including interesting 

transient interactions but also with additional false positives41. We note that every tag has its 

own specific background protein profile, such as biotin-cofactor enzymes (e.g., 
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carboxylases) associated with the Strep tag system or STK38 and the associated CRAPome 

for FLAG-tagged baits42.

Affinity purification—Early AP-MS approaches used tandem affinity tags to perform 

sequential APs that yielded highly pure protein complexes that could be characterized by 

MS25. At that time, analyzing a complex protein mixture with MS platforms was limited, 

which caused nonspecifically interacting proteins in the purification to obscure the 

identification of true members of a protein complex. However, more stringent purification 

procedures generally require substantially more starting material and include strict wash 

steps. Unfortunately, these stringent conditions may exclude identifying interactions that are 

transient or that occur with low-abundance proteins.

More modern MS platforms are increasingly sensitive in characterizing mixtures of complex 

proteins. In parallel, using single-step purification procedures, magnetic beads rather than 

agarose resins (faster wash times), cryogenic lysis of the cell pellet or in-line 

chromatographic strategies, potentially with microfluidic devices, can all improve sample 

recovery and manipulation speed for capturing transient interactions8,43–45. Unfortunately, 

these methods also increase the degree to which nonspecifically interacting proteins are 

represented in the final sample analyzed by MS29,36,46. Thus, the challenge in protein 

network analysis has shifted from optimizing methods to obtain highly pure protein 

complexes to developing bioinformatics methods to differentiate true protein interactions 

from background. This challenge is the focus of the following section.

We recommend that the purification be eluted in-solution, rather than, for example, eluted 

by boiling the affinity resin with SDS sample buffer and running the sample into a gel. First, 

strategies that maintain the purified sample in-solution commonly use competitive elution 

that specifically elutes the bait protein from the resin (e.g., eluting from anti-FLAG resin 

with FLAG peptide and eluting from Strep-Tactin resin with biotin). Eluting with SDS 

sample buffer is highly nonspecific and includes proteins that bind nonspecifically to the 

naked affinity resin. Second, in-gel digestion procedures are time-consuming and inefficient. 

For example, hydrophobic peptides may be difficult to extract from gel pieces, and gel lanes 

are often separated into multiple slices that require a separate MS analysis47.

We also recommend that gel electrophoresis and silver staining be performed to assay the 

quality of expression and AP, as well as complexity of the eluate. Although the sensitivity of 

mass spectrometers has now advanced beyond silver staining, a band at the predicted 

molecular weight of the tagged bait proteins is almost always readily detected by silver 

staining. In addition, the availability of a silver-stained gel allows one to confirm by MS the 

true molecular weight of identified proteins, such that alternative splice forms or otherwise 

modified proteins can be accurately identified. Western blots are also recommended to 

verify that epitope-tagged proteins are expressed and seem intact.

MS analysis—Sample preparation methods are fairly standardized and generally include 

denaturation of proteins with chaotropes such as urea or guanidinium hydrochloride, 

reduction of disulfide bonds with a reducing agent, alkylation of free cysteine residues and 

proteolytic digestion with trypsin or an alternate protease such as LysC48,49. After digestion, 
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samples are typically desalted with C18 cartridges or tips to remove salts and other digestion 

impurities.

Commonly, the MS platform for AP-MS analyses is implemented by LC-MS/MS. There are 

countless platforms capable of identifying proteins, most of which include an up-front, in-

line HPLC equipped with C18 chromatography columns. These columns separate peptides 

with an organic gradient that elutes directly into the mass spectrometer coupled with a nano-

electrospray source for ionization. Data are generally acquired by standardized methods for 

data-dependent acquisition that collect the maximum number of informative mass spectra 

within a short time. High-resolution and high mass accuracy systems (e.g., systems equipped 

with Orbitrap or time-of-flight mass analyzers) have been used in many studies, but they are 

not absolutely required. Low-resolution systems are also excellent for most AP-MS 

applications, and they are often more sensitive than high-resolution systems. To identify 

HIV-human protein-protein interactions, our laboratory regularly uses a Thermo Scientific 

Velos Pro dual linear ion trap system that replicates work performed using an Orbitrap XL 

system12. Cases in which a high-resolution system would be required include assessing 

quantitative differences in protein interactions, such as the response of protein interactions to 

drugs, or comparisons between protein mutations that may cause more subtle changes to 

protein interactions. Stable isotope-labeling strategies may also be appropriate for obtaining 

quantitative comparisons of interactions and are reviewed elsewhere50.

Matching raw MS data to peptide sequences can be performed using a number of proteomics 

software packages that include suitable scoring for ranking the probability of correct peptide 

identification and protein inference. Common packages include commercially licensed 

Mascot51 and SEQUEST52, and open-source MaxQuant53, X!Tandem54 or Protein 

Prospector55 packages. All of these database search programs are suitable for MS data 

processing; our laboratories use the Protein Prospector suite. It is recommended that raw MS 

data be searched against a database concatenated with a ‘decoy’ database containing all the 

original database sequences randomized or reversed in amino acid sequence order56. Decoy 

hits can be used to estimate the false-positive rate of peptide and protein identifications, and 

thus they can be used to select a peptide identification score cutoff that results in a desired 

false-positive rate. Generally, a protein false-positive rate of 1% is accepted in the field. See 

the review in Nesvizhskii57 for details about matching raw data to peptide sequences.

After these steps, which are commonly done by a core facility or collaborators with 

expertise in MS–based proteomics, users should obtain a table that lists for each sample the 

accession numbers and descriptions for proteins identified and the number of peptides 

identified for each protein, as well as supporting database search statistics commonly 

reported as an expectation value for evaluating the quality of the identification. Another 

output is a measure of peptide, and therefore protein abundance, such as the ‘spectral count’, 

which is the number of total MS/MS spectra assigned to a protein in a sample. Spectral 

counting approximates the relative protein abundance in samples, which can be used for 

comparative statistical analysis of protein enrichment across multiple AP-MS 

experiments58,59. For data obtained on high-resolution instruments, the peptide 

measurements can also be output as either intensity or peak areas for a given peptide species 
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using label-free quantification results. This method more quantitatively measures peptide 

and thus protein abundance in different samples.

Further considerations—Although AP-MS may reveal interacting proteins, it does not 

fully detail the assembly of the protein complex. This limitation is because AP-MS does not 

easily distinguish direct from indirect interactions (i.e., with intermediate interactors 

between bait and prey proteins), and it does not resolve highly connected proteins that may 

participate in multiple distinct complexes and cellular functions. Furthermore, AP-MS is 

biochemically constrained and does not necessarily capture proteins in a natural 

physiological state or consider compartmentalization and other features of the cell. These 

limitations can yield misleading results. Inferences around the association rate, stability and 

stoichiometry of complex components may eventually be accessible with the incorporation 

of more quantitative proteomic methods60. However, additional experiments are still 

required to elucidate the molecular interactions of complex formation. Confirmatory binary 

interaction analysis, obtained through two-hybrid methods or high-density mutagenesis 

mapping of interactions, can help resolve the direct protein-protein interactions. Now, 

standard mammalian two-hybrid analysis is performed in relevant cell lines61 and has served 

our own projects in confirming interactions between candidate virus and human protein-

protein interactions46,62. To reach higher levels of molecular precision, high-resolution 

biophysical analyses, such as calorimetry, sedimentation analysis, fluorescence monitoring, 

surface plasmon resonance and other structural methods can be used.

The sample data sets

For the purposes of this protocol, we consider two different sample data sets: the recently 

published data on the interaction between the host and HIV proteins by Jäger et al.12 and a 

larger network of yeast protein-protein interactions by Collins et al.63.

The Jäger data set is characteristic of a focused, quantitative AP-MS experiment that has 

relatively few bait proteins and pulls down a larger set of prey proteins. Although these 

particular data resulted from an experiment on host-pathogen interactions, similar data sets 

might result from experiments looking for targeted protein-protein interactions, potentially 

under different biological conditions. We take the Jäger data set from ‘raw’ AP-MS results 

(Supplementary Data 1) to a normalized, filtered and scored data table (Supplementary Data 

2). This table is imported into Cytoscape for network analysis and visualization. The goal in 

analyzing the network found from a low-density data set of this form is generally to 

understand the biological context of the interactions and to form hypotheses about biological 

function. This typically involves augmenting the network with other known interactions, as 

we do in the network analysis protocol.

The Collins data set (Supplementary Data 3) is a combination of two large AP-MS yeast 

interactome experiments26,27,64, which we have chosen on the basis of its public availability 

and high quality. This data set (and the two it combines) attempts to systematically 

determine a large portion of the interactome of a species, which involves using all proteins 

as bait proteins to get all possible combinations of proteins. In analyzing higher-density data 

sets such as these, the goal is often to find or confirm complexes65 and to analyze the 
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relationship between nodes and edges in the network (network topology) to find ‘hubs’ in 

the network66. We thus refer to this data set in the clustering steps of the network analysis 

protocol and produce a Cytoscape session file with the clustering results (Supplementary 

Data 4).

A step-by-step tutorial following the network analysis procedure (Steps 11–33) in Cytoscape 

is available as Supplementary Methods.

Computational scoring pipeline

It is useful to categorize raw AP-MS results into four classes of protein-protein interactions: 

(Class I) interactions that occur in the cell (i.e., biologically relevant complexes); (Class II) 

physically existing interactions that do not occur in the cell and that are only observed as an 

artifact of sample preparation (e.g., cell lysis allowing proteins from different compartments 

to interact); (Class III) interactions involving contaminant proteins; and (Class IV) 

physically non-existing interactions detected by error. The goal of scoring is to reliably 

highlight interactions of Class I on the basis of interaction properties (features) measured or 

derived from single and cross-experiments to diminish Class II interactions, and then to use 

multiple approaches to filter out Class III and IV errors. Although some experimental 

techniques can discriminate between biologically relevant and irrelevant interactions (e.g., 

stable isotope labeling by amino acids in cell culture (SILAC) labeling, larger numbers of 

technical and biological replicates), these approaches are not readily available on a large 

scale. Instead, a variety of computational scoring pipelines have been developed to identify 

biologically relevant interactions among a large number of irrelevant interactions in raw AP-

MS data. These scoring pipelines usually comprise three stages: preprocessing, scoring and 

testing.

Pre-processing—In the pre-processing stage, we recommend a number of quality control 

steps to clean up the list of identified prey. Common filtering procedures involve removing 

known contaminants, as well as protein groups that have no uniquely identified peptides 

assigned to them. Contaminant or background proteins can originate from the epitope-

tagging system, the solid support or other biological factors such as protein misfolding. For 

example, avidin captures both Strep-tagged constructs and endogenously biotinylated 

proteins, and FLAG-tagged capture has highly specific, reproducible interactions with a 

cadre of proteins, called ‘frequent fliers’67. The recently published CRAPome42 compiles a 

freely available list of contaminants identified by the AP-MS community. Another, more 

elusive, source of contamination is from ‘carry-over’ proteins that were left behind during 

previous runs on a given machine. Carry-over contamination is higher when a particular 

protein is overexpressed to increase the efficiency of the AP, and it is longer lasting when 

the protein is hydrophobic. Although this problem can be addressed by performing elaborate 

washing conditions, we found that additional in silico filtering steps minimize the impact of 

carry-over. A computational approach to this problem is to sort all MS results in the order 

they were run and to scan for half-life-like patterns of decreasing raw values (e.g., 

intensities, spectral counts or number of uniquely identified peptides) in consecutive runs.

Morris et al. Page 8

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



A crucial step in pre-processing is normalizing the raw MS values so that they can be used 

as a quantitative feature to average or compare the abundance of a given protein across 

different APs. Raw protein measurements derived from AP-MS data include the number of 

unique peptides, spectral counts and MS1 intensities. Unfortunately, data from different AP-

MS runs (or replicates) contain inherent biases and variations, resulting in a signal corrupted 

by systematic or even random changes68. Therefore, properly quantifying and normalizing 

AP-MS runs allow the user to directly compare runs. Several quantification approaches have 

been developed, such as the SIN, exponentially modified protein abundance index, NSAF 

and distributed NSAF69. The SIN and NSAF scores are the most linear and reproducible 

across different technical and biological replicates69, and they were chosen for use in this 

protocol. The result of this step is a 2D bait-prey matrix of runs (columns) by all detected 

proteins (rows) with values corresponding to an abundance metric that quantifies each bait-

prey interaction.

Before proceeding to the scoring stage, we recommend comparing all replicate AP-MS runs 

to identify potential errors (e.g., bait annotation mistakes and technical errors) and to collect 

more data on pull-downs with baits that show a high degree of variation. Multiple biological 

and/or technical replicates of a sample (we recommend at least three, and in some cases up 

to seven replicates, depending on sample availability and instrument time) are required to 

ensure more accurate and comprehensive determination of biologically relevant 

interactions12,68. To compare all AP-MS runs, use any distance metric (e.g., Pearson 

product-moment correlation coefficient and Euclidean distance metric) on the 2D bait-prey 

matrix to analyze the replicate correlation with unsupervised clustering (e.g., hierarchical 

clustering) and heat map visualization. The result of the pre-processing stage is therefore a 

quantified, normalized and filtered 2D bait-prey matrix of interaction data from which a 

number of biologically irrelevant Class III and IV interactions have been removed.

Scoring—In the scoring stage of the pipeline, AP-MS bait-prey pairs are assigned scores to 

help distinguish biologically relevant interactions from those that are irrelevant. Several 

scoring methods have been developed, including the following: (i) Z-score for calculation of 

specificity46; (ii) significance scores for pairwise co-occurrence of interactions based on 

randomly shuffled preys70; (iii) a combination of machine-learning algorithms using 

probabilistic mass spectra scores and measurement of reproducibility27,63; (iv) a composite 

score consisting of bait-prey abundance, specificity and reproducibility (CompPASS32 and 

MiST10); and (v) a mixture model with Bayesian statistical inference (SAInt71–73). The 

performance of these algorithms depends on the nature of the data. For example, scoring 

methods are affected differently by the topology of the protein-protein interaction network, 

the number of baits, replicates and control experiments, the level of expected contamination 

and the size of the data set. Refer to Table 1 for a comparison of the performance of scoring 

algorithms taking these factors into account. In practice, multiple scoring algorithms should 

be applied to a given AP-MS data set and then assessed on a case-by-case basis in the testing 

stage.

Testing—The testing stage resolves which (if any) of the scoring methods, or their 

composites, most accurately predicted the biologically relevant bait-prey pairs. Testing 
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should include one or both of the following strategies: (i) evaluation of a benchmark of 

known ‘ground truth’ bait-prey pairs, or (ii) selection of a subset of the unknown bait-prey 

pairs with the best scoring from different rankings, followed by additional characterization 

through orthogonal experiments (for example, an interaction can be validated by 

coimmunoprecipitation studies using antibodies against the prey protein). In the Jäger 

paper12, the authors applied the MiST, SAInt and CompPASS scores to our AP-MS data set, 

and then tested it on a benchmark of 39 known HIV-human protein-protein interactions. 

They found that the MiST score is the most accurate among all the tested scores. For 

example, at the threshold of 0.75 (resulting in 387 bait-prey pairs from experiments done in 

HEK cell-line), the recall number of known bait-prey pairs for the SAInt, CompPASS and 

MiST scores was 19, 29 and 32, respectively. At the same threshold, the recall number of 

bait-prey pairs involving ribosomal proteins (most probably Class II–IV interactions) for the 

MiST score was only 3, compared with 32 and 75 for SAInt and CompPASS, respectively. 

In the detailed protocol that follows, we outline the steps that transform a raw AP-MS data 

file with Prospector search results (Supplementary Data 1) into a set of scored bait-prey 

interactions (Supplementary Data 2) by the MiST algorithm.

Data transformation and network analysis

After the scoring pipeline, our AP-MS data were transformed from a raw set of values to a 

quantified, normalized and filtered 2D bait-prey matrix and then to a table of accurately 

scored bait-prey interactions (Supplementary Data 2). This table is a common result format 

for AP-MS interaction studies, which is the input for the network analysis and visualization 

of our data. This table is also an acceptable format for data deposition into public 

repositories, such as IMEx (http://www.imexconsortium.org/submit-your-data). Public 

deposition is strongly recommended—and sometimes required—before publishing related 

findings. In general, making interaction data publically accessible improves many of the 

methods and resources used in the scoring and network analysis procedures presented in this 

protocol.

By nature, the results of an AP-MS experiment are networks. Cytoscape is a widely used 

tool for analyzing and visualizing biological networks (http://cytoscape-

publications.tumblr.com/archive). This tool has been used for analyzing expression data35 

and genetic interactions74, as well as protein-protein interaction data derived from yeast 

two-hybrid experiments75 and AP-MS27. An advantage of Cytoscape is its open 

architecture, which allows its core functionality to be extended by the development of apps. 

An analysis of an AP-MS network might use several of these apps, all of which may be 

accessed through the Cytoscape App Store (http://apps.cytoscape.org).

The network analysis section of the protocol below follows what a Cytoscape user might do 

to analyze an AP-MS data set; however, the specific steps might be performed in a number 

of different packages or platforms. Bioinformaticians might use Python scripts, R, 

MATLAB or any number of different tools along the way. Cytoscape is a convenient tool 

for end users, but it is not the only way to analyze and visualize a data set.
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Network analysis—The fundamental goal of analyzing the scored AP-MS data is to form 

or confirm hypotheses about cellular function. This might involve enriching the data set with 

known interactions or determining the functions of specific interactions or groups of 

interactions. For our protocol, we assume that a bait protein uniquely and independently 

binds to each prey protein (i.e., the ‘spoke’ model)65. For our low-density data, the protocol 

outlined below augments the network to find evidence in known protein-protein interaction 

databases (e.g., BioGRID76, Reactome77, STRING78, CORUM79 and IntAct80) that suggest 

a more complex interaction. These additions to the network are useful for forming 

hypotheses, but we strongly recommend that the user conduct confirmatory experiments to 

determine the exact nature of the complex. This may be particularly important in perturbed 

systems (e.g., diseased or infected cells) in which the publically available protein-protein 

interaction databases might only apply to normal cells. For our high-density data (such as 

our Collins example; Supplementary Data 3), we have often used the prey proteins as bait 

proteins so that we can assume the spoke model and use clustering approaches to determine 

when the interactions suggest complexes50,81.

In the protocol below, we use several methods to understand the data set, although this is not 

a complete set of available network analysis techniques. To understand the scope of the 

available approaches, users can refer to recent reviews28,50,82. For our protocol, we use 

network augmentation, functional annotation, enrichment analysis, topology analysis and 

clustering. A brief introduction of each of these approaches follows.

Network augmentation

Network augmentation uses additional known protein-protein interactions to enhance 

experimental results. For low-density data sets, this method can determine whether multiple 

prey proteins might have been pulled down as a complex rather than as a single interaction. 

As previously mentioned, there are a large number of public databases of known protein-

protein interactions. We recommend only using interactions that have been experimentally 

verified, either by direct immunoprecipitation assays or some other biochemical technique. 

High-throughput techniques such as yeast two-hybrid screening might have too much noise 

to give accurate information, but CORUM79 is valuable for human complexes. Most of the 

public repositories provide information about the type of assay used to determine the 

interaction and allow you to select only certain types. Resources such as GeneMANIA83 and 

PSICQUIC84 also support queries across multiple repositories.

Once you have chosen a set of public repositories, you will then find the interactions 

between your prey proteins and add them to your network. In the PROCEDURE, we use 

Cytoscape’s features for this process, but there are several other ways to add these 

interactions to your network. Network augmentation may also be useful to explore potential 

interactions with your prey proteins and other proteins not in your experimental set. For 

example, one Cytoscape app, the Agilent Literature Search App85, searches literature 

abstracts to find relevant terms that suggest interactions. Another option is to add a gene of 

interest to your network to see whether it interacts with your prey proteins. As with other 

augmentation approaches, these tools are useful for forming hypotheses and should be 

verified using other experimental approaches.
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Functional annotation

The goal in functional annotation is to note information about the known biological function 

of prey proteins or bait-prey interactions. Annotation is often done using GO86, and, in 

Cytoscape, it involves the addition of GO terms to the node (protein) or edge (interaction) of 

interest. GO provides a very rich set of terms, which can cause the number of terms 

associated with a particular protein to become overwhelming. Thus, a reduced (or 

‘slimmed’) set of terms, called GO-slim (http://www.geneon-tology.org/GO.slims.shtml), is 

often more useful for annotating your network at the right level, and it is less redundant.

Enrichment analysis

Enrichment analysis determines whether a subset of your network is enriched in some 

associated function87,88. One approach to this analysis is a statistical technique that 

determines whether some terms are over-represented (enriched) in a subset of the data set. 

For example, consider an AP-MS experiment looking at the interactions between HIV and 

human cells. To determine whether HIV pathogen proteins target specific aspects of the 

cellular machinery, the network can be functionally annotated with GO, and then each of the 

bait protein’s interaction partners can undergo enrichment analysis. If these proteins are 

more likely to share a set of GO terms than one might expect, on the basis of a random 

assignment of all terms in the network, those proteins are likely to be involved in that 

biological process or cellular function (depending on the branch of GO). There are several 

tools for performing ontology-based enrichment analysis, including web-based (e.g., 

DAVID89,90) and various Cytoscape apps (e.g., BiNGO91, ClueGO92, NOA93 and 

ReactomeFI94). When using these tools, be aware of the source and version of their 

underlying ontology data.

An additional statistical approach to enrichment analysis is to use a ‘guilt-by-association’ 

technique95. In this technique, if a gene associates with a group of genes that tend to have a 

particular function, that gene is likely to also have that function. This technique might be 

useful when a protein in an AP-MS experiment has no annotated function but several 

interaction partners. We do not use this technique in our protocol, but several Cytoscape 

apps provide tools that use guilt by association to functionally annotate genes or proteins in 

an interaction network (GeneMANIA83).

Topology analysis

Another common technique for analyzing AP-MS networks is to evaluate the topology of 

the network. This method is seldom used for low-density networks (bait proteins will 

obviously be hubs), but it might be informative in higher-density networks in which the 

proteins represent a significant proportion of a cell’s proteome, or when a particular cellular 

function or mechanism is being studied. Network topology is often defined by 

measurements that include the following:

• Node degree—the number of nodes that interact with this node,

• Degree centrality—a measure of how central a node is based on normalizing its 

node degree (can also be a measure of the entire network),
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• Betweenness centrality—the tendency of a node to be on the shortest path between 

other nodes in the network,

• Closeness centrality—the tendency of a node to be close (as measured by shortest 

path) to other nodes in the network, and

• Eigenvector centrality—a measure of the influence of a node in a network that 

considers connections to higher scoring nodes more than connections to lower 

scoring nodes.

Many of the above measures may be summed over all nodes to get a sense of the topology 

of the network as a whole. In terms of looking at protein-protein interaction networks 

generated from AP-MS experiments, proteins that have a high node degree (hubs) or have a 

high betweenness centrality are candidate essential proteins. To explore network topology 

measures, see Pavlopoulos et al.96, Grindrod and Kibble97, Koschützki and Schreiber98 and 

Vidal et al.99. Although Cytoscape 3 includes the Network Analyzer100 functionality in the 

core, other apps such as CentiScaPe101 are also available.

Clustering

Clustering (also known as unsupervised classification) is a very common technique used in 

high-density networks for finding close associations that might suggest complexes or 

partitioning the network for simpler visualization and analysis. Several algorithms have been 

published for finding complexes within networks, including MCL102, MCODE103, 

RNSC104 and SPC105 (see the comparison by Brohee and van Helden106 or the overview by 

Moschopoulos et al.107). Krogan et al.27 used MCL to find putative complexes in their data, 

but Collins et al.63 used a hierarchical cluster approach to generate an adjacency matrix 

view of the network. The clusterMaker2 app108 for Cytoscape supports many of these 

algorithms and visualizations, although there are several other apps that implement one or 

more clustering algorithms.

Network visualization

There are two major goals for network visualization: exploration and communication. 

Exploration is useful to form hypotheses and to develop an understanding of the data set, 

whereas communication often involves abstracting or filtering the data set to show the 

relevant information. Abstracting or filtering data too early in the analysis of a data set can 

obscure important relationships. In contrast, not filtering irrelevant data or abstracting data 

results can obscure the evidence for specific hypotheses. We explore both of these 

approaches in our visualization steps below. This protocol focuses on visualizing the 

network as a node-link diagram, in which nodes represent the proteins and links (edges) 

represent the interactions. Although there are alternative representations for interaction 

networks, such as adjacency matrices, they are much less commonly used.
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MATERIALS

EQUIPMENT

Hardware requirements

• Personal computer with Internet access; we also recommend a screen with 1,920 × 

1,080 (HD) resolution and at least 8 GB of RAM

Software requirements

• Microsoft Excel

• R (downloaded from http://cran.r-project.org/)

• MiST software, available from https://github.com/everschueren/mist

• SAInt software, available from http://saint-apms.sourceforge.net/

• Java Standard Edition, version 6 or 7 (download from http://java.oracle.com)

• Cytoscape 3.1 or later. Cytoscape may be downloaded from http://

www.cytoscape.org

• Cytoscape apps. These may be downloaded from http://apps.cytoscape.org or 

through Cytoscape’s App Manager.

• These include: clusterMaker2 (http://apps.cytoscape.org/apps/clusterMaker2); 

BridgeDB (http://apps.cytoscape.org/apps/BridgeDB); BiNGO (http://

apps.cytoscape.org/apps/bingo); and

• enhancedGraphics (http://apps.cytoscape.org/apps/enhancedGraphics)

EQUIPMENT SETUP

Data sets—Jäger et al.12 is a systematic study using AP-MS of the interactions between 

HIV proteins and human proteins in two different human cell lines. Supplementary Data 1 

corresponds to Supplementary Data 1 in Jäger et al.12. Supplementary Data 2 in this paper 

corresponds to Supplementary Data 3 in Jäger et al.12.

The study by Collins et al.63 is a combination of two high-quality AP-MS studies27,64 of the 

yeast interactome that uses the overlap of the two data sets to compute a probabilistic score 

for each edge to overcome some of the noise inherent in the data. The Cytoscape session file 

Supplementary Data 3 is derived from the public repository provided by the authors at http://

interactome-cmp.ucsf.edu/ (see Physical Interactions → PE Scores → Downloads).

PROCEDURE

Part 1—scoring the data: filtering the raw input ● TIMING ~30 min

▲ CRITICAL A step-by-step tutorial following the network analysis procedure (Steps 11–

33) in Cytoscape is available as Supplementary Methods.
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1| Filter the Prey column in the ‘raw’ AP-MS output file (Supplementary Data 1) 

to remove nonunique and ‘decoy’ protein groups identified by the search 

algorithm.

? TROUBLESHOOTING

2| (Optional) Filter the Prey column to remove common contaminants that are 

described in peer-annotated resources such as CRAPome42, the MaxQuant 

contaminant file53 or a custom list of commonly identified contaminants in your 

laboratory.

Preparing the input matrix for scoring ● TIMING ~1–2 h

3| Organize the data set into a 2D bait-prey matrix for MiST or SAInt. MiST and 

SAInt input matrix formats are compatible, but the CompPASS format is not 

publicly available. See the Supplementary Data 1 tabs ‘HEK_MiST_input’ and 

‘Jurkat_MiST_ input’ for examples. Rows 1–3 are the matrix header; populate 

these rows as described here:

Row 1 Experiment identifier for each unique AP-MS run (immunoprecipitation column)

Row 2 Bait identifier that groups a set of replicated purifications (Bait column)

Row 3 Baits to exclude when computing specificity feature values. If no baits are excluded, set this 
value to the bait name to exclude itself

4| Populate the columns of a single spreadsheet as described in the table below. For 

the quantification values in columns 5 to the end, any of the following MS 

measurement types are allowed as long as the choice is consistent across 

samples. We ordered them from most quantitative but more prone to noise to 

least quantitative but more robust: Summed MS1 intensity measurements per 

protein (these are the values we used in the ‘Intensity’ column of Supplementary 

Data 1); summed spectral counts per protein; and number of uniquely identified 

peptides.

Column 1 Protein identifiers as a unique list of all identified proteins in all immunoprecipitations 
(Prey column)

Column 2 Protein Peptide Atlas identifiers (note: for SAInt input format compatibility, this 
column is required; or set to 1; for MiST values can be set to zero)

Column 3 Protein sequence length (length column) or molecular weight, which will be used to 
scale abundance. Both are allowed

Column 4 Prey type (PreyType column): for SAInt, fill the column with C for known 
contaminants, R for known non-contaminants (especially hubs), and N for all other 
proteins. For MiST, the column can contain any value

Column 5–end Quantification values for each protein (row) in each individual AP-MS run (column). 
Use a neutral value, such as 0, for prey not identified in a particular run

5| (Optional) Identify carry-over proteins from previous MS runs by inspecting 

quantification values that have a half-life–like pattern in a sequence of 

consecutive runs (columns). If a pattern diminished systematically and the 
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potentially carried-over protein is not detected in a biological replicate, then the 

likelihood that carry-over caused this pattern is high. In this case, we 

recommend either to set the carry-over value in the matrix to your neutral value 

or to keep a list of carry-over bait-protein pairs to inspect after scoring.

Inspecting reproducibility (optional) ● TIMING ~4 h

6| Inspect the reproducibility between biological replicates and identify mislabeled 

experiments, if any, by computing a run-times-run correlation matrix of matched 

preys. Compute a pairwise Pearson correlation matrix for all experiments using 

the built-in cor() function in R.

7| Cluster and visualize this correlation matrix with the heatmap() function in R, 

which performs a hierarchical clustering of the correlation matrix. Verify that 

biological replicates cluster in groups, not including negative controls. Remove 

low-quality replicates.

Computing the score ● TIMING 30 min–1 d

8| Compute the bait-prey score by running the most suitable scoring algorithms 

(Table 1) for your data set. The run time for any scoring algorithm is polynomial 

with respect to the data set size.

9| (Optional) Evaluate the accuracy of the scoring algorithm(s) on a data set of 

known high-confidence interactions. If such a data set is unavailable, then 

generate one by experimentally testing a few (<10) high-scoring bait-prey 

pairs12.

10| Sort bait-prey scores in descending order and determine a threshold. If you 

evaluated the accuracy of the scoring algorithm (Step 9), then choose a threshold 

on the basis of a false-positive rate of 5%. If not, use the threshold 

recommended by the developers (i.e., MiST score 0.75 (ref. 10), SAInt score 

0.95 (ref. 73) and CompPASS score 95th percentile32).

Part 2—network analysis: data import ● TIMING ~30 min–2 h

▲ CRITICAL See Supplementary Methods for a more detailed, step-by-step process.

11| Import AP-MS data from the table of scored bait-prey interactions generated in 

Steps 1–10 (Supplementary Data 2). The table of scored interactions includes 

additional information about the bait and prey proteins and their interactions. 

Each row in the table represents a scored bait-prey interaction. Edge bait-prey 

interactions are represented in the network as an edge between the bait and prey 

proteins, which are represented as nodes. Interaction information (e.g., scores) is 

associated with the edges, and information about the bait and prey proteins is 

associated with the nodes. For some software (e.g., Cytoscape), multiple passes 

are needed for the import process. First, import the interactions (edges) with all 

interaction data. Do not overfilter the interaction data too early; most software 

packages provide filtering tools that allow you to remove edges later (Fig. 1). 
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Note that for the Jäger data set (Supplementary Data 2) the Score Average 

column is imported as an edge attribute.

12| Import information about the bait proteins (e.g., protein name, identifier and any 

scoring you want to associate with the protein, rather than the edge). When you 

are working with the low-density sample data set, only import the Bait column.

13| Import information about the prey proteins (e.g., protein name, identifier and 

any scoring you want to associate with the protein, rather than the edge). In the 

example shown in Figure 2, the following information was imported: Gene 

Symbol, GeneID, Protein Name, PreyAccesion, HEKScore and JurkatScore. It is 

worth noting that HEKScore and JurkatScore are more properly associated with 

edges. In this case, they are associated with the prey proteins for visualization 

purposes (Step 31).

14| (Optional) Map identifiers. An unfortunate challenge in bioinformatics is that 

many identifiers (e.g., UniProt, Entrez Gene and sequence identifiers) are 

associated with the same biological entity. To use existing protein-protein 

interaction data, a consistent identifier must exist between your data set and the 

public interaction data. For AP-MS data, UniProt protein identifiers are a good 

choice. To map the identifiers, choose an imported column to map from (e.g., 

Entrez Gene; GeneID column in Supplementary Data 4), and map that column 

to UniProt (see Supplementary Methods for Cytoscape instructions).

? TROUBLESHOOTING

Enriching the network with public interaction data (optional) ● TIMING ~4 h

15| Enrich your data with existing protein-protein interaction data (Steps 17 and 18 

can be done in the opposite order, depending on the tools being used). Enriching 

a data set with public protein-protein interaction data can provide missing 

connections between proteins that were actually pulled down as a complex. 

First, choose a data repository from which to extract data. The repository should 

share identifiers with those either imported or mapped in previous steps.

? TROUBLESHOOTING

16| By using all of the prey proteins, search the repository for interaction data. Note 

that public repositories search for interaction data for each protein provided, but 

not between all proteins. This step adds a number of proteins (and potentially 

small molecules) that are not part of the original data set.

17| Merge the AP-MS experimental network with the public protein-protein 

interaction network (Fig. 3).

18| Filter the resulting network to only include interactions between proteins (both 

bait and prey) that were part of the AP-MS data set. The public network may 

also have pulled in a number of interactions between the AP-MS prey proteins 

and small molecules. Depending on the specific experiment, these interactions 

could be removed.
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19| Visualize the resulting network and filter out any other interactions that are not 

relevant or are of uncertain quality. For example, some of the added interactions 

may be computationally derived and will not have good experimental evidence 

to justify them. These interactions should be removed.

20| To simplify the network, remove loops and collapse duplicate edges (Fig. 4).

Functional annotation ● TIMING ~2–3 h

21| Functionally annotate the proteins with GO86 terms. We recommend including 

both term identifiers and descriptors. The first are easy to map to other resources 

and the second provide the human readable text. There are several ways to add 

GO terms and descriptions to the network. Most involve mapping from a protein 

identifier to the terms annotated to that identifier. This process may need to be 

done in two phases: first, map from the protein identifier to the list of GO 

identifiers; then, map the list of GO identifiers to a list of GO descriptions.

Network topology analysis (optional) ● TIMING ~1 h

22| For high-density data sets in which prey proteins have also been used as baits, 

we recommend calculating various network parameters and measuring the 

network topology. These measures can provide clues to the potential essentiality 

of proteins, critical pathways and overall network topology (e.g., scale-free). 

First, calculate the node degree for all nodes. High-degree nodes (hubs) are often 

either essential genes or promiscuous binders. Look at the high-degree proteins 

and check against a repository of known promiscuous binders (e.g., 

CRAPome42). Consider removing promiscuous binders from the network.

23| Calculate betweenness centrality (and any other centrality measures of interest) 

for the network. Betweenness centrality is another indication of the potential 

essentiality109 of proteins.

Clustering analysis (optional) ● TIMING ~2–3 h

24| Clustering using any of the published techniques can provide useful clues to 

protein complexes and their interactions. Although several algorithms partition 

networks, two common approaches are MCL102 and MCODE103. Before using a 

network partition algorithm, calculate a hierarchical cluster using an edge score 

as the metric to get an overall sense of the network clusters.

25| Visualize the resulting cluster as a heat map, and look for tight clusters on the 

diagonal and off-axis interactions. Tight clusters on the diagonal suggest 

complexes, whereas off-axis interaction might suggest co-complexes or 

interactions between complexes. Figure 5 shows the heat map from the 

Cytoscape app clusterMaker2 (ref. 108) using the data set from Collins et al.63 

after performing the hierarchical cluster.

26| Partition the network using MCL102, MCODE103 or some other cluster 

algorithm that portions networks. The Cytoscape app clusterMaker2 (ref. 108) 

includes both of these algorithms and several others.
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27| Visualize the resulting network. As with hierarchical clustering, clusters 

strongly suggest complexes. Adding inter-cluster edges back may infer some 

inter-complex interactions. Figure 6 shows the partitioned network resulting 

from an MCL cluster of the Collins et al.63 data set performed by the Cytoscape 

app clusterMaker2 (ref. 108).

Over-representation analysis ● TIMING ~3–4 h

28| Over-representation analysis can provide clues about the functions of protein-

protein interactions, complexes or specific bait proteins. For each of the clusters 

calculated in Step 7 for high-density data, or bait protein and all of its interactors 

for low-density data, use a tool such as DAVID90, BiNGO91 or ClueGO92 to 

determine whether the cluster or group is functionally enriched for any 

particular set of terms or pathways.

? TROUBLESHOOTING

Network visualization ● TIMING 2 h–1 d

29| The final visualization of the results depends on several factors: significant 

results, generated hypotheses and the audience. Network visualization tools 

provide a number of methods for adding visual styles to nodes and edges that 

represent associated data. These steps lead to a particular visual result, similar 

one shown in Jäger et al.12. See Figure 7 for an image generated with Cytoscape 

and the enhancedGraphics app. First, change the color and size of the bait 

proteins to distinguish them from the prey.

30| Map the thickness of the AP-MS results to the Average Score so that results 

with a higher score show as thicker lines. If you enriched the network with 

public interactions (Steps 15–20), make added interactions thinner and even 

slightly transparent.

31| To show the differential binding for Jurkat and HEK cells, split the nodes in half 

and use different color gradients for the left half scaled by the JurkatScore and 

the right half scaled by the HEKScore.

32| Some manual positioning of nodes may be required, but a good starting point is 

to use a force-directed layout.

33| Save the resulting image as a PDF, SVG or some other vector format. A 

Cytoscape session with the results from this workflow is available in 

Supplementary Data 4.

?TROUBLESHOOTING

Troubleshooting tips are provided in Table 2 for common issues with bioinformatics tools 

used in this protocol. More specific tips for performing network analysis steps with 

Cytoscape and associated apps are included in the detailed tutorial (Supplementary 

Methods).
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● TIMING

Part 1—scoring the data

Steps 1 and 2, filtering the raw input: ~30 min

Steps 3–5, preparing input matrix for scoring: ~1–2 h

Steps 6 and 7, inspecting reproducibility (optional): ~4 h

Steps 8–10, computing the score: 30 min–1 d

Part 2—network analysis

Steps 11–14, data import: ~30 min–2 h

Steps 15–20, enriching the network with public interaction data (optional): ~4 h

Step 21, functional annotation: ~2–3 h

Steps 22 and 23, network topology analysis (optional): ~1 h

Steps 24–27, clustering analysis (optional): ~2–3 h

Step 28, over-representation analysis: ~3–4 h

Steps 29–33, network visualization: 2 h–1 d

ANTICIPATED RESULTS

This protocol traces the steps from raw AP-MS data to scoring and network analysis to 

visualization and image export. Herein, the protocol applied to the low-density data set from 

Jäger et al.12 provides results that support hypotheses about the function of HIV proteins 

VPU, VIF and VPR. Over-representation analysis and the combined scores from the scoring 

protocol suggest that VPU has a statistically significant interaction with proteins involved in 

ATP synthesis, whereas VIF and VPR have a statistically significant interaction with 

proteins involved in catabolic processes and RNA splicing, respectively (Step 28). In the 

high-density data set, the hierarchical cluster heat map suggests strong off-axis interactions 

between two sets of mitochondrial ribosomal proteins, and it shows the full extent of the 

large subunit of the mitochondrial ribosome complex in yeast (Fig. 5). The MCL cluster of 

the same data shows these proteins grouped together in a single cluster (Fig. 6). This 

protocol demonstrates some of the advantages of using multiple algorithms to explore AP-

MS data in a network context (Fig. 7).
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Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The work of J.H.M. and A.R.P. is supported by grant no. P41 GM103504 (the National Resource for Network 
Biology (NRNB)). J.H.M. is also supported by grant no. P41 GM103311 (Resource for Biocomputing, 
Visualization, and Informatics (RBVI)). G.M.K. is supported by the National Institute of General Medical Sciences 
(NIGMS) grant no. 8P41 GM103481. E.V. and J.R.J. are supported by US National Institutes of Health grant nos. 

Morris et al. Page 20

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



P50 GM082250, P01 AI090935, P01AI091575 and P01 AI106754. P.C. is supported by a Howard Hughes Medical 
Institute Predoctoral Fellowship. A.L.G. is supported by the Walter K. Evans Prememorial Fellowship.

References

1. Sumegi B, Sherry AD, Malloy CR, Evans C, Srere PA. Is there tight channelling in the tricarboxylic 
acid cycle metabolon? Biochem Soc Trans. 1991; 19:1002–1005. [PubMed: 1794455] 

2. De la Fuente IM, et al. Global self-regulation of the cellular metabolic structure. PLoS ONE. 2010; 
5:e9484. [PubMed: 20209156] 

3. Li J, Buchner J. Structure, function and regulation of the hsp90 machinery. Biomed J. 2013; 36:106–
117. [PubMed: 23806880] 

4. Gao W, Bohl CE, Dalton JT. Chemistry and structural biology of androgen receptor. Chem Rev. 
2005; 105:3352–3370. [PubMed: 16159155] 

5. Obsil T, Obsilova V. Structure/function relationships underlying regulation of FOXO transcription 
factors. Oncogene. 2008; 27:2263–2275. [PubMed: 18391969] 

6. Rivera-Molina FE, Novick PJ. A Rab GAP cascade defines the boundary between two Rab GTPases 
on the secretory pathway. Proc Natl Acad Sci USA. 2009; 106:14408–14413. [PubMed: 19666511] 

7. Ortiz D, Medkova M, Walch-Solimena C, Novick P. Ypt32 recruits the Sec4p guanine nucleotide 
exchange factor, Sec2p, to secretory vesicles; evidence for a Rab cascade in yeast. J Cell Biol. 2002; 
157:1005–1015. [PubMed: 12045183] 

8. Chen GI, Gingras AC. Affinity-purification mass spectrometry (AP-MS) of serine/threonine 
phosphatases. Methods. 2007; 42:298–305. [PubMed: 17532517] 

9. Couzens AL, et al. Protein interaction network of the mammalian Hippo pathway reveals 
mechanisms of kinase-phosphatase interactions. Sci Signal. 2013; 6:rs15. [PubMed: 24255178] 

10. Jäger S, et al. Purification and characterization of HIV-human protein complexes. Methods. 2011; 
53:13–19. [PubMed: 20708689] 

11. Joshi P, et al. The functional interactome landscape of the human histone deacetylase family. Mol 
Syst Biol. 2013; 9:672. [PubMed: 23752268] 

12. Jäger S, et al. Global landscape of HIV-human protein complexes. Nature. 2012; 481:365–370. 
[PubMed: 22190034] 

13. Greninger AL, Knudsen GM, Betegon M, Burlingame AL, DeRisi JL. ACBD3 interaction with 
TBC1 domain 22 protein is differentially affected by enteroviral and kobuviral 3A protein binding. 
mBio. 2013; 4:e00098–00013. [PubMed: 23572552] 

14. Dyer MD, et al. The human-bacterial pathogen protein interaction networks of Bacillus anthracis, 
Francisella tularensis, and Yersinia pestis. PLoS ONE. 2010; 5:e12089. [PubMed: 20711500] 

15. Coiras M, et al. Application of proteomics technology for analyzing the interactions between host 
cells and intracellular infectious agents. Proteomics. 2008; 8:852–873. [PubMed: 18297655] 

16. Cristea IM, et al. Tracking and elucidating alphavirus-host protein interactions. J Biol Chem. 2006; 
281:30269–30278. [PubMed: 16895903] 

17. Dyer MD, Murali TM, Sobral BW. The landscape of human proteins interacting with viruses and 
other pathogens. PLoS Pathog. 2008; 4:e32. [PubMed: 18282095] 

18. Filippova M, Parkhurst L, Duerksen-Hughes PJ. The human papillomavirus 16 E6 protein binds to 
Fas-associated death domain and protects cells from Fas-triggered apoptosis. J Biol Chem. 2004; 
279:25729–25744. [PubMed: 15073179] 

19. Hartlova A, Krocova Z, Cerveny L, Stulik J. A proteomic view of the host-pathogen interaction: 
the host perspective. Proteomics. 2011; 11:3212–3220. [PubMed: 21726044] 

20. Henderson BR, Percipalle P. Interactions between HIV Rev and nuclear import and export factors: 
the Rev nuclear localisation signal mediates specific binding to human importin- J Mol Biol. 1997; 
274:693–707. [PubMed: 9405152] 

21. Breslow DK, et al. Orm family proteins mediate sphingolipid homeostasis. Nature. 2010; 
463:1048–1053. [PubMed: 20182505] 

22. Brandman O, et al. A ribosome-bound quality control complex triggers degradation of nascent 
peptides and signals translation stress. Cell. 2012; 151:1042–1054. [PubMed: 23178123] 

Morris et al. Page 21

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



23. Jonikas MC, et al. Comprehensive characterization of genes required for protein folding in the 
endoplasmic reticulum. Science. 2009; 323:1693–1697. [PubMed: 19325107] 

24. Kelley R, Ideker T. Systematic interpretation of genetic interactions using protein networks. Nat 
Biotechnol. 2005; 23:561–566. [PubMed: 15877074] 

25. Gavin AC, et al. Functional organization of the yeast proteome by systematic analysis of protein 
complexes. Nature. 2002; 415:141–147. [PubMed: 11805826] 

26. Ho Y, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass 
spectrometry. Nature. 2002; 415:180–183. [PubMed: 11805837] 

27. Krogan NJ, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. 
Nature. 2006; 440:637–643. [PubMed: 16554755] 

28. Ewing RM, et al. Large-scale mapping of human protein-protein interactions by mass 
spectrometry. Mol Syst Biol. 2007; 3:89. [PubMed: 17353931] 

29. Goudreault M, et al. A PP2A phosphatase high density interaction network identifies a novel 
striatin-interacting phosphatase and kinase complex linked to the cerebral cavernous malformation 
3 (CCM3) protein. Mol Cell Proteomics. 2009; 8:157–171. [PubMed: 18782753] 

30. Guruharsha KG, et al. A protein complex network of Drosophila melanogaster. Cell. 2011; 
147:690–703. [PubMed: 22036573] 

31. Rubio V, et al. An alternative tandem affinity purification strategy applied to Arabidopsis protein 
complex isolation. Plant J. 2005; 41:767–778. [PubMed: 15703063] 

32. Sowa ME, Bennett EJ, Gygi SP, Harper JW. Defining the human deubiquitinating enzyme 
interaction landscape. Cell. 2009; 138:389–403. [PubMed: 19615732] 

33. Zhou Z, Licklider LJ, Gygi SP, Reed R. Comprehensive proteomic analysis of the human 
spliceosome. Nature. 2002; 419:182–185. [PubMed: 12226669] 

34. Shannon P, et al. Cytoscape: a software environment for integrated models of biomolecular 
interaction networks. Genome Res. 2003; 13:2498–2504. [PubMed: 14597658] 

35. Cline MS, et al. Integration of biological networks and gene expression data using Cytoscape. Nat 
Protoc. 2007; 2:2366–2382. [PubMed: 17947979] 

36. Moorman NJ, Sharon-Friling R, Shenk T, Cristea IM. A targeted spatial-temporal proteomics 
approach implicates multiple cellular trafficking pathways in human cytomegalovirus virion 
maturation. Mol Cell Proteomics. 2010; 9:851–860. [PubMed: 20023299] 

37. Al-Hakim AK, Bashkurov M, Gingras AC, Durocher D, Pelletier L. Interaction proteomics 
identify NEURL4 and the HECT E3 ligase HERC2 as novel modulators of centrosome 
architecture. Mol Cell Proteomics. 2012; 11:M111 014233. [PubMed: 22261722] 

38. Dubois F, et al. Differential 14-3-3 affinity capture reveals new downstream targets of 
phosphatidylinositol 3-kinase signaling. Mol Cell Proteomics. 2009; 8:2487–2499. [PubMed: 
19648646] 

39. Musunuru K. Genome editing of human pluripotent stem cells to generate human cellular disease 
models. Dis Model Mech. 2013; 6:896–904. [PubMed: 23751357] 

40. Chang IF. Mass spectrometry-based proteomic analysis of the epitope-tag affinity purified protein 
complexes in eukaryotes. Proteomics. 2006; 6:6158–6166. [PubMed: 17072909] 

41. Westermarck J, Ivaska J, Corthals GL. Identification of protein interactions involved in cellular 
signaling. Mol Cell Proteomics. 2013; 12:1752–1763. [PubMed: 23481661] 

42. Mellacheruvu D, et al. The CRAPome: a contaminant repository for affinity purification-mass 
spectrometry data. Nat Methods. 2013; 10:730–736. [PubMed: 23921808] 

43. Kean MJ, Couzens AL, Gingras AC. Mass spectrometry approaches to study mammalian kinase 
and phosphatase associated proteins. Methods. 2012; 57:400–408. [PubMed: 22710030] 

44. Cristea IM, Williams R, Chait BT, Rout MP. Fluorescent proteins as proteomic probes. Mol Cell 
Proteomics. 2005; 4:1933–1941. [PubMed: 16155292] 

45. Gerber D, Maerkl SJ, Quake SR. An in vitro microfluidic approach to generating protein-
interaction networks. Nat Methods. 2009; 6:71–74. [PubMed: 19098921] 

46. Greninger AL, Knudsen GM, Betegon M, Burlingame AL, Derisi JL. The 3A protein from 
multiple picornaviruses utilizes the Golgi adaptor protein ACBD3 to recruit PI4KIII. J Virol. 
2012; 86:3605–3616. [PubMed: 22258260] 

Morris et al. Page 22

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



47. Granvogl B, Ploscher M, Eichacker LA. Sample preparation by in-gel digestion for mass 
spectrometry–based proteomics. Anal Bioanal Chem. 2007; 389:991–1002. [PubMed: 17639354] 

48. Medzihradszky KF. In-solution digestion of proteins for mass spectrometry. Methods Enzymol. 
2005; 405:50–65. [PubMed: 16413310] 

49. Medzihradszky KF, Leffler H, Baldwin MA, Burlingame AL. Protein identification by in-gel 
digestion, high-performance liquid chromatography, and mass spectrometry: peptide analysis by 
complementary ionization techniques. J Am Soc Mass Spectrom. 2001; 12:215–221. [PubMed: 
11212006] 

50. Kaake RM, Wang X, Huang L. Profiling of protein interaction networks of protein complexes 
using affinity purification and quantitative mass spectrometry. Mol Cell Proteomics. 2010; 
9:1650–1665. [PubMed: 20445003] 

51. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by 
searching sequence databases using mass spectrometry data. Electrophoresis. 1999; 20:3551–3567. 
[PubMed: 10612281] 

52. Eng JK, McCormack AL, Yates JR. An approach to correlate tandem mass spectral data of 
peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom. 1994; 5:976–
989. [PubMed: 24226387] 

53. Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p. p.b.-range 
mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008; 26:1367–1372. 
[PubMed: 19029910] 

54. Craig R, Beavis RC. TANDEM: matching proteins with tandem mass spectra. Bioinformatics. 
2004; 20:1466–1467. [PubMed: 14976030] 

55. Chalkley RJ, Baker PR, Medzihradszky KF, Lynn AJ, Burlingame AL. In-depth analysis of 
tandem mass spectrometry data from disparate instrument types. Mol Cell Proteomics. 2008; 
7:2386–2398. [PubMed: 18653769] 

56. Elias JE, Gygi SP. Target-decoy search strategy for increased confidence in large-scale protein 
identifications by mass spectrometry. Nat Methods. 2007; 4:207–214. [PubMed: 17327847] 

57. Nesvizhskii AI. A survey of computational methods and error rate estimation procedures for 
peptide and protein identification in shotgun proteomics. J Proteomics. 2010; 73:2092–2123. 
[PubMed: 20816881] 

58. Choi H, Fermin D, Nesvizhskii AI. Significance analysis of spectral count data in label-free 
shotgun proteomics. Mol Cell Proteomics. 2008; 7:2373–2385. [PubMed: 18644780] 

59. Liu H, Sadygov RG, Yates JR III. A model for random sampling and estimation of relative protein 
abundance in shotgun proteomics. Anal Chem. 2004; 76:4193–4201. [PubMed: 15253663] 

60. Gingras AC, Raught B. Beyond hairballs: the use of quantitative mass spectrometry data to 
understand protein-protein interactions. FEBS Lett. 2012; 586:2723–2731. [PubMed: 22710165] 

61. Iwabuchi K, Li B, Bartel P, Fields S. Use of the two-hybrid system to identify the domain of p53 
involved in oligomerization. Oncogene. 1993; 8:1693–1696. [PubMed: 8502489] 

62. Sasaki J, Ishikawa K, Arita M, Taniguchi K. ACBD3-mediated recruitment of PI4KB to 
picornavirus RNA replication sites. EMBO J. 2012; 31:754–766. [PubMed: 22124328] 

63. Collins SR, et al. Toward a comprehensive atlas of the physical interactome of Saccharomyces 
cerevisiae. Mol Cell Proteomics. 2007; 6:439–450. [PubMed: 17200106] 

64. Gavin AC, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature. 2006; 
440:631–636. [PubMed: 16429126] 

65. Bader GD, Hogue CW. Analyzing yeast protein-protein interaction data obtained from different 
sources. Nat Biotechnol. 2002; 20:991–997. [PubMed: 12355115] 

66. Gursoy A, Keskin O, Nussinov R. Topological properties of protein interaction networks from a 
structural perspective. Biochem Soc Trans. 2008; 36:1398–1403. [PubMed: 19021563] 

67. Dunham WH, Mullin M, Gingras AC. Affinity-purification coupled to mass spectrometry: basic 
principles and strategies. Proteomics. 2012; 12:1576–1590. [PubMed: 22611051] 

68. Griffin NM, et al. Label-free, normalized quantification of complex mass spectrometry data for 
proteomic analysis. Nat Biotechnol. 2010; 28:83–89. [PubMed: 20010810] 

Morris et al. Page 23

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



69. McIlwain S, et al. Estimating relative abundances of proteins from shotgun proteomics data. BMC 
Bioinformatics. 2012; 13:308. [PubMed: 23164367] 

70. Yu X, Ivanic J, Wallqvist A, Reifman J. A novel scoring approach for protein co-purification data 
reveals high interaction specificity. PLoS Comput Biol. 2009; 5:e1000515. [PubMed: 19779545] 

71. Breitkreutz A, et al. A global protein kinase and phosphatase interaction network in yeast. Science. 
2010; 328:1043–1046. [PubMed: 20489023] 

72. Choi H, et al. SAINT: probabilistic scoring of affinity purification-mass spectrometry data. Nat 
Methods. 2011; 8:70–73. [PubMed: 21131968] 

73. Choi H, et al. Analyzing protein-protein interactions from affinity purification-mass spectrometry 
data with SAINT. Curr Protoc Bioinform. 2012; 39:8.15.1–8.15.23.

74. Michaut M, et al. Protein complexes are central in the yeast genetic landscape. PLoS Comput Biol. 
2011; 7:e1001092. [PubMed: 21390331] 

75. Bandyopadhyay S, et al. A human MAP kinase interactome. Nat Methods. 2010; 7:801–805. 
[PubMed: 20936779] 

76. Chatr-Aryamontri A, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 
2013; 41:D816–823. [PubMed: 23203989] 

77. Croft D, et al. The Reactome pathway knowledgebase. Nucleic Acids Res. 2014; 42:D472–477. 
[PubMed: 24243840] 

78. Franceschini A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage 
and integration. Nucleic Acids Res. 2013; 41:D808–815. [PubMed: 23203871] 

79. Ruepp A, et al. CORUM: the comprehensive resource of mammalian protein complexes--2009. 
Nucleic Acids Res. 2010; 38:D497–501. [PubMed: 19884131] 

80. Orchard S, et al. The MIntAct project–IntAct as a common curation platform for 11 molecular 
interaction databases. Nucleic Acids Res. 2014; 42:D358–363. [PubMed: 24234451] 

81. Sardiu ME, Florens L, Washburn MP. Evaluation of clustering algorithms for protein complex and 
protein interaction network assembly. J Proteome Res. 2009; 8:2944–2952. [PubMed: 19317493] 

82. Gavin AC, Maeda K, Kuhner S. Recent advances in charting protein-protein interaction: mass 
spectrometry-based approaches. Curr Opin Biotechnol. 2011; 22:42–49. [PubMed: 20934865] 

83. Montojo J, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. 
Bioinformatics. 2010; 26:2927–2928. [PubMed: 20926419] 

84. Aranda B, et al. PSICQUIC and PSISCORE: accessing and scoring molecular interactions. Nat 
Methods. 2011; 8:528–529. [PubMed: 21716279] 

85. Vailaya A, et al. An architecture for biological information extraction and representation. 
Bioinformatics. 2005; 21:430–438. [PubMed: 15608051] 

86. Ashburner M, et al. Gene ontology: tool for the unification of biology. The Gene Ontology 
Consortium. Nat Genet. 2000; 25:25–29. [PubMed: 10802651] 

87. Huang DW, et al. DAVID Bioinformatics Resources: expanded annotation database and novel 
algorithms to better extract biology from large gene lists. Nucleic Acids Res. 2007; 35:W169–175. 
[PubMed: 17576678] 

88. Subramanian A, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting 
genome-wide expression profiles. Proc Natl Acad Sci USA. 2005; 102:15545–15550. [PubMed: 
16199517] 

89. Jiao X, et al. DAVID-WS: a stateful web service to facilitate gene/protein list analysis. 
Bioinformatics. 2012; 28:1805–1806. [PubMed: 22543366] 

90. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists 
using DAVID bioinformatics resources. Nat Protoc. 2009; 4:44–57. [PubMed: 19131956] 

91. Maere S, Heymans K, Kuiper M. BiNGO: a Cytoscape plugin to assess overrepresentation of gene 
ontology categories in biological networks. Bioinformatics. 2005; 21:3448–3449. [PubMed: 
15972284] 

92. Bindea G, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and 
pathway annotation networks. Bioinformatics. 2009; 25:1091–1093. [PubMed: 19237447] 

93. Zhang C, et al. NOA: a Cytoscape plugin for network ontology analysis. Bioinformatics. 2013; 
29:2066–2067. [PubMed: 23749961] 

Morris et al. Page 24

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



94. Wu G, Feng X, Stein L. A human functional protein interaction network and its application to 
cancer data analysis. Genome Biol. 2010; 11:R53. [PubMed: 20482850] 

95. Oliver S. Guilt-by-association goes global. Nature. 2000; 403:601–603. [PubMed: 10688178] 

96. Pavlopoulos GA, et al. Using graph theory to analyze biological networks. BioData Mining. 2011; 
4:10. [PubMed: 21527005] 

97. Grindrod P, Kibble M. Review of uses of network and graph theory concepts within proteomics. 
Exp Rev Proteomics. 2004; 1:229–238.

98. Koschutzki D, Schreiber F. Centrality analysis methods for biological networks and their 
application to gene regulatory networks. Gene Regul Syst Biol. 2008; 2:193–201.

99. Vidal M, Cusick ME, Barabasi AL. Interactome networks and human disease. Cell. 2011; 
144:986–998. [PubMed: 21414488] 

100. Doncheva NT, Assenov Y, Domingues FS, Albrecht M. Topological analysis and interactive 
visualization of biological networks and protein structures. Nat Protoc. 2012; 7:670–685. 
[PubMed: 22422314] 

101. Scardoni G, Petterlini M, Laudanna C. Analyzing biological network parameters with 
CentiScaPe. Bioinformatics. 2009; 25:2857–2859. [PubMed: 19729372] 

102. Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of 
protein families. Nucleic Acids Res. 2002; 30:1575–1584. [PubMed: 11917018] 

103. Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein 
interaction networks. BMC Bioinformatics. 2003; 4:2. [PubMed: 12525261] 

104. King AD, Przulj N, Jurisica I. Protein complex prediction with RNSC. Methods Mol Biol. 2012; 
804:297–312. [PubMed: 22144160] 

105. Blatt M, Wiseman S, Domany E. Superparamagnetic clustering of data. Phys Rev Lett. 1996; 
76:3251–3254. [PubMed: 10060920] 

106. Brohee S, van Helden J. Evaluation of clustering algorithms for protein-protein interaction 
networks. BMC Bioinformatics. 2006; 7:488. [PubMed: 17087821] 

107. Moschopoulos CN, et al. Which clustering algorithm is better for predicting protein complexes? 
BMC Res Notes. 2011; 4:549. [PubMed: 22185599] 

108. Morris JH, et al. clusterMaker: a multi-algorithm clustering plugin for Cytoscape. BMC 
Bioinformatics. 2011; 12:436. [PubMed: 22070249] 

109. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein 
networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007; 
3:e59. [PubMed: 17447836] 

Morris et al. Page 25

Nat Protoc. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 1. 
Screenshot of a network import dialog showing the import of Supplementary Table 4 from 

Jäger et al.12. Purple and orange columns represent the source and target of an interaction, 

respectively, and blue columns represent data to be associated with the interaction. Columns 

may be indicated as interaction data by clicking on the column header.
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Figure 2. 
Screenshot of a table import dialog showing the import of Supplementary Table 4 from 

Jäger et al.12. The blue column indicates the key column that is used to map the data to the 

nodes. Grayed columns are not imported.
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Figure 3. 
Screenshot showing the merging of the IntAct imported network with our original AP-MS 

data set. The Advanced Network Merge tab was opened, but no changes were made.
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Figure 4. 
The merged and filtered network. This figure was produced by selecting each bait protein, 

extending the selection to all first neighbors and then doing a force-directed layout that was 

restricted to the selected nodes. The colors and shapes were adjusted by creating a visual 

style in Cytoscape.
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Figure 5. 
Screenshot of the JTreeView viewer from clusterMaker2 after a hierarchical cluster of the 

PE scores from the Collins et al.63 data set. The highlighted section shows the off-axis 

grouping between proteins of the mitochondrial ribosome. PE, purification enrichment.
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Figure 6. 
Cytoscape screenshot showing the clustered network resulting from an MCL cluster on the 

high-density data set from Collins et al.63. The inset highlights an individual cluster.
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Figure 7. 
Final visualized network from the Jäger et al.12 data set showing the Jurkat (purple gradient 

on the right-hand side of the nodes) and HEK293 scores (blue gradient on the left). 

Interactions from the AP-MS experiment are shown as green lines in which the thickness of 

the line reflects the average score and interactions merged from IntAct are shown as gray 

lines.
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TABLE 1

AP-MS scoring algorithms.

Algorithm Pros Cons

MiST Intuitive feature set
Includes specificity as feature
Robust performance
Configurable feature weights

Bias toward ‘one-hit-wonders’ or background proteins when over-
weighing specificity or reproducibility, respectively
Works best with a larger number of baits

SAInt Discriminates between background or true 
interactions for abundant proteins
Configurable parameters
Robust performance on any data set size

Poor prediction of low-abundance and specific-interacting proteins
May be computationally expensive with large data sets

CompPASS Intuitive feature set
Includes specificity as feature

Convoluted formula without feature weights
Unbalanced scores for unevenly distributed number of replicates in a 
data set

Z-score Simple and intuitive Limited feature set
Does not work on small data sets

Comparison of pros and cons for a set of scoring algorithms commonly used with AP-MS data.
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TABLE 2

Troubleshooting table.

Step Problem Possible solution

1 How to choose threshold for 
protein identification search
No proteins are retained after 
filtering of contaminants

Choose a threshold that produces <1% false-discovery rate (i.e., < or = 1 decoy protein ID among a 
list of 100 protein hits). Orthogonal validation experiments are recommended for any proteins that 
score at the bottom of the list at statistical levels near the decoy matches
Reconsider the experimental design (i.e., selection of cell line, epitope tagging construct and 
purification procedure). Confirm that the bait is expressed (e.g., by immunodetection). Confirm the 
bait is captured and released by the purification procedure with a positive control such as GFP with 
the same epitope tag. Consider an alternative tagging strategy in case of interference. Consider 
cloning a subdomain of the protein of interest. If the protein is toxic to the cells, in vitro transcription 
and translation or Tet-inducible systems may be more suitable

14,15 No mapping IDs (or 
interactions) are returned
Mapping (or interaction 
query) takes too long

Confirm the type of source IDs. For a given type, e.g., Entrez Gene, confirm the nature of the ID, 
e.g., numeric identifiers or gene names
Try a small sample query to test whether the service is working at all. If connecting via web services, 
check your internet connection and firewall settings. If available, consider downloading their 
database for local access

28 The GO terms returned are 
different from those that were 
expected or those obtained 
using another tool

Each ontology analysis tool should provide information on which versions of their source ontologies, 
e.g., GO, are used. Consider the date of the current version, the frequency of updates and any pre-
processing of the ontology data

Nat Protoc. Author manuscript; available in PMC 2015 February 19.


