Published in final edited form as: *J Infect Dis.* 2009 February 15; 199(4): 537–546. doi:10.1086/596507.

Patterns of Gene Transcript Abundance in the Blood of Children with Severe or Uncomplicated Dengue Highlight Differences in Disease Evolution and Host Response to Dengue Virus Infection

Hoang Truong Long^{#1}, Martin L. Hibberd^{#3}, Tran Tinh Hien², Nguyen Minh Dung², Tran Van Ngoc², Jeremy Farrar^{1,4}, Bridget Wills^{1,4}, and Cameron P. Simmons^{1,4}

¹Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam

²Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam

³Genome Institute of Singapore, Singapore

⁴Centre for Tropical Medicine, University of Oxford, Churchill Hospital, Oxford, United Kingdom

[#] These authors contributed equally to this work.

Abstract

DNA microarrays and specific reverse-transcription polymerase chain reaction assays were used to reveal transcriptional patterns in the blood of children presenting with dengue shock syndrome (DSS) and well-matched patients with uncomplicated dengue. The transcriptome of patients with acute uncomplicated dengue was characterized by a metabolically demanding "host-defense" profile; transcripts related to oxidative metabolism, interferon signaling, protein ubiquination, apoptosis, and cytokines were prominent. In contrast, the transcriptome of patients with DSS was surprisingly benign, particularly with regard to transcripts derived from apoptotic and type I interferon pathways. These data highlight significant heterogeneity in the type or timing of host transcriptional immune responses precipitated by dengue virus infection independent of the duration of illness. In particular, they suggest that, if transcriptional events in the blood compartment contribute to capillary leakage leading to hypovolemic shock, they occur before cardiovascular decompensation, a finding that has implications for rational adjuvant therapy in this syndrome.

Dengue viruses (DENVs) are arboviruses that can cause an acute, systemic febrile illness that varies in its severity. Dengue is endemic in many countries in tropical regions and is a major public health problem. As yet, no vaccine or specific antiviral therapy is available for the prevention or management of dengue.

Dengue hemorrhagic fever (DHF) is a severe presentation of DENV infection. The important clinical events in DHF are hemorrhagic manifestations and capillary leakage

^{© 2009} by the Infectious Diseases Society of America. All rights reserved.

Reprints or correspondence: Dr. Cameron Simmons, Oxford University Clinical Research Unit, Hospital for Tropical Diseases, 190 Ben Ham Tu, District 5, Ho Chi Minh City, Vietnam (csimmons@oucru.org).

Potential conflicts of interest: none reported.

syndrome. At its most severe, capillary leak results in hypovolemic shock, or dengue shock syndrome (DSS); this requires urgent intravenous fluid resuscitation to restore intravascular volume. A risk factor for DHF/DSS is secondary infection with a DENV serotype distinct from the individual's DENV infection history [1-3]. The basis for secondary infection as a risk factor for severe disease has been ascribed to the infection-enhancing potential of sub-or nonneutralizing antibodies from a previous infection [4], cross-reactive memory T cells that secrete vasodilatory cytokines [5-7], and host genetic predisposition [8, 9]. Studies to investigate the pathogenesis of dengue are made more challenging by the absence of a robust animal model of disease.

There remains considerable uncertainty as to how the DENV-host interaction results in vascular leak, the most important clinical characteristic of DHF. Early viral load in vivo appears to be important, given that patients with DHF have significantly higher serum viral loads and NS1 concentrations (possibly driven by antibody-dependent enhancement) than do patients with dengue fever (DF) [10, 11]. DHF has also been associated with a robust host inflammatory immune response—significantly greater plasma concentrations of inflammatory cytokines [12-14] and activated lymphocytes are found in patients with DHF than in those with DF [7, 15].

Type I interferons (IFN- a/β) are likely important in the host defense against DENV infection. Mice deficient in IFN- a/β receptors are more susceptible to DENV infection [16], and IFN- a/β can protect cells against DENV infection in vitro [17]. Once infected, however, DENV nonstructural proteins can functionally attenuate the activity of IFN- a/β -mediated antiviral mechanisms, suggesting an evolved viral strategy for escaping early innate immune defenses [18, 19]. Finally, the process of antibody-dependent enhancement of infection may result in attenuation of IFN- a/β -mediated up-regulation of transcription factors important to innate antiviral effector mechanisms [20].

Genomewide gene expression studies of dengue represent an opportunity to identify novel markers associated with immunity and disease pathogenesis. Ubol et al. [21] demonstrated an early difference in the transcriptome between children with DF and those with DHF, and we previously found that transcripts from type I IFN–stimulated genes (ISGs) were less abundant in adult patients with DSS than in those with less-severe dengue [22]. The present study describes global patterns of gene transcript abundance in whole blood from 2 groups of pediatric patients with dengue who exhibited different clinical phenotypes after identical illness durations. A key finding was the relatively low abundance of transcripts from ISGs among patients with DSS at the time of cardiovascular decompensation.

METHODS

Patients and clinical investigations

From July to November 2005, we prospectively enrolled 111 children with acute dengue into a study of transcriptional responses in whole blood at the Hospital for Tropical Diseases (HTD), Ho Chi Minh City, Vietnam. Written informed consent was obtained from the parents of each patient. The study protocol was approved by the Scientific and Ethical Committee of HTD and the Oxfordshire Tropical Research Ethical Committee. Clinical and

hematological assessments were performed daily. Samples for RNA analysis were collected at the time of hospital admission and at a 1-month follow-up visit. Hemoconcentration was determined by comparing the maximum hematocrit recorded during hospitalization with the value recorded at convalescence. On the basis of World Health Organization classification criteria, 27 patients had DSS (pulse pressure of 20 mm Hg with poor peripheral perfusion and rapid, weak pulse) and were admitted to the intensive care unit and received appropriate resuscitation. The remaining 84 patients had dengue without evidence of cardiovascular compromise. We have used the term "uncomplicated dengue" to refer to these hospitalized patients because they did not require any significant clinical interventions and were managed throughout in the general dengue ward.

For the 27 patients with DSS, we selected RNA samples from 9 patients who presented to the hospital with DSS on the fourth day of illness (with the day of onset of symptoms taken as day 1) for microarray analysis. For each patient with DSS, an age- and (where possible) sex-matched control patient with uncomplicated dengue and an identical duration of illness was selected.

Dengue serology and polymerase chain reaction (PCR)

Serological testing of paired plasma samples was performed using a dengue IgM and IgG capture ELISA (Panbio). The interpretation of primary versus secondary acute serological profiles was performed as suggested by the manufacturer. An internally controlled and serotype-specific real-time reverse-transcription PCR (RT-PCR) assay was used to measure DENV loads in plasma, as described elsewhere [22].

RNA extraction

Whole blood (2.5 mL) was collected directly into PAXgene RNA tubes (Qiagen) at the bedside. RNA extraction was performed using PAXgene RNA kits (Qiagen).

Gene expression microarray

Biotinylated amplified cRNA was generated by in vitro transcription technology using the Illumina TotalPrep RNA Amplification Kit (Ambion), in accordance with the manufacturer's instructions. After purification, 850 ng of cRNA was hybridized to an Illumina HumanRef-8 V1BeadChip (containing probes to 23,961 RefSeq gene sequences) at 55°C for 18 h, in accordance with the manufacturer's instructions. This was followed by washing, blocking, and streptavidin-Cy3–staining steps. Finally, the chip was scanned with an Illumina Bead Array Reader confocal scanner.

Array normalization

Standard normalization procedures (GeneSpring GX software; version 7.3; Silicon Genetics) for 1-color array data were used. In brief, data transformation was corrected for low signal, with values recorded at <0.01 increased to the minimum (0.01). Per-chip (mean) normalization accounted for chip variability by dividing all of the measurements on each chip by a 50th percentile value. Per-gene normalization accounted for variability between probe sets for different genes. Only genes that were detected in at least 1 sample were included in further analysis (13,535 genes). Analysis of variance (ANOVA) *t* test (unequal

variances, nonmultiple corrections, and false discovery rate <5%) was used for all comparisons.

TaqMan low-density array

Whole-blood total RNA (300 ng) was reversed transcribed using the High-Capacity cDNA Archive Kit (Applied Biosystems). PCR was performed using Microfluidic cards (Applied Biosystems), in accordance with the manufacturer's instructions. Transcript abundance data (cycle threshold $[C_T]$ value) for each gene was manually checked to remove the falsepositive values, using SDS software (version 2.2) and RQ Manager (version 2.2.2; Applied Biosystems). Relative transcript abundance was determined using the 2^{-1} CT method [23]. In brief, this method uses a single sample, termed the "calibrator sample," as a comparator for every unknown sample's gene expression level. The calibrator can be any sample chosen to have all of the genes expressed ($C_{\rm T}$ value of <36 cycles). The calibrator is analyzed on every assay plate with the unknown samples of interest. The relative fold difference is calculated using the following formula: fold induction = 2^{-C_T} , where $C_T = (C_T \text{ of gene})$ of interest in unknown sample – C_T of 18S gene in unknown sample) – (C_T of gene of interest in calibrator – $C_{\rm T}$ of 18S gene in calibrator). The fold differences in transcript abundance in samples from patients with different clinical phenotypes were compared by the Mann-Whitney U test, using MultiExperiment Viewer software (version 4.1.01; available at: http://www.tm4.org) [24].

Pathway analysis

Ingenuity Pathway Analysis software (version 7; Ingenuity Systems) was used to analyze enriched or less-abundant gene lists. For canonical pathways, the significance of the association was measured using Fisher's exact test to calculate a *P* value determining the probability that the association between the genes in the data set and those in the canonical pathway is explained by chance alone.

Statistical analysis

ANOVA was used to analyze microarray data, using GeneSpring GX software. The Mann-Whitney U test was used to analyze quantitative RT-PCR data, using MultiExperiment Viewer. Differences for which P < .05 were regarded as significant.

RESULTS

Patient population

The aim of the present study was to describe early whole-blood transcriptional responses in 2 groups of pediatric patients (n = 9 per group), comparing children presenting with uncomplicated dengue and children presenting with DSS. The clinical and hematological characteristics, including absolute counts of the major lymphocyte subsets, for the 18 patients with dengue are described in table 1. Patients with DSS had lower platelet nadirs and, on the basis of changes in hemoconcentration, significantly greater vascular leak than did patients with uncomplicated dengue (table 1). On the fourth day of illness, when blood samples for microarray analysis were collected, patients with DSS had significantly higher

absolute counts of CD3⁺CD8⁺ T cells (table 1) but significantly lower plasma viremia levels than did patients with uncomplicated dengue (table 1).

Microarray data analysis

Analysis was focused on identifying transcripts that were differentially abundant between acute (day 4) and convalescent (day 30) samples. For the resulting 13,535 gene transcripts, we applied the following criteria in all comparisons: (1) gene transcripts were detected in at least 50% of samples, (2) the mean fold change between 2 conditions was >1.5-fold, and (3) the false-discovery rate was <5%. By these criteria, microarray data analysis revealed 3092 gene transcripts that were differentially abundant (523 less abundant and 2569 enriched) in acute samples from patients with DSS compared with that in autologous convalescent samples and 2471 gene transcripts that were differentially abundant (267 less abundant and 2204 enriched) in acute samples from patients with uncomplicated dengue compared with that in autologous convalescent samples. There were 1197 genes common to the 2 gene lists. The 100 most differentially abundant transcripts in acute and convalescent samples from each patient group are listed in tables 2 and 3.

Uncomplicated dengue: acute versus convalescent samples

Unsupervised pathway analysis of transcripts either significantly enriched (n = 2204) or underrepresented (n = 267) in acute samples (relative to that in autologous convalescent samples) was used to identify biological themes in the transcriptome of patients with uncomplicated dengue. Transcripts significantly enriched in acute samples were derived from genes in pathways associated with oxidative metabolism, mitochondrial dysfunction, protein ubiquitination, and nucleotide metabolism, suggesting a highly active metabolic state consistent with a host response to infection (figure 1). Of immune-response pathways, the IFN pathway was most prominent, followed by interleukin (IL)–10, antigen presentation, and IL-6 signaling pathways. In contrast, among transcripts that were significantly less abundant in acute samples, there were no significant molecular themes arising from pathway analysis, most likely because of the small number (n = 267) of elements for analysis. Thus, the biological processes highlighted in the enriched population of transcripts are consistent with a metabolically demanding host response in which IFN-driven immune processes and cytokine networks are prominent.

DSS: acute versus convalescent samples

Surprisingly, unsupervised pathway analysis of transcripts significantly enriched (n = 2569) in acute samples from children with DSS did not identify any significant pathway or biological process (figure 2). Unsupervised analysis of underrepresented transcripts in acute samples (n = 523) implicated the death receptor, apoptotic, and IL-10 signaling pathways as being features of this "downregulated" transcriptome (figure 3). However, the strength of the association between these pathways and samples was not as robust as that observed between acute and convalescent samples in children with uncomplicated dengue (figure 1). Remarkably then, at a time when capillary leakage had precipitated hypovolemic shock in these afebrile patients with DSS, the whole-blood transcriptome appeared relatively muted from an immune-defense perspective.

The absence of a strong transcriptional signature in the blood of children with DSS is in stark contrast with the prominent molecular themes identified in acute samples in febrile children with uncomplicated dengue (figure 1). These differences between acute and convalescent samples did not result from intrinsic differences between convalescent samples in the 2 patient groups; unsupervised comparison of these convalescent samples identified just 138 differentially abundant transcripts among 13,535 transcripts analyzed. Collectively, these data suggest fundamental differences in the evolution of the transcriptional response between these 2 groups of children with identical durations of illness but different clinical phenotypes.

Uncomplicated dengue versus DSS

The transcriptional profiles of acute samples from patients with uncomplicated dengue and those with DSS were compared directly to identify differentially abundant gene transcripts. The rationale for this comparison was to compare the host response in these 2 groups of patients with identical durations of illness but distinct clinical phenotypes and disease evolution. In unsupervised analysis, 1749 transcripts were differentially abundant between patients with acute uncomplicated dengue and those with DSS; transcripts from 1030 genes were enriched and 719 were less abundant in patients with uncomplicated dengue (table 4).

Unsupervised pathway analysis of transcripts significantly enriched in patients with uncomplicated dengue implicated the death receptor, IFN, apoptosis, IL-6, NF- κ B, and IL-10 signaling pathways as being immune function–related processes distinguishing uncomplicated dengue from DSS (figure 4*A*). Unsupervised pathway analysis of transcripts less abundant in patients with uncomplicated dengue identified a diverse set of pathways (figure 4*B*), with the majority associated with cellular metabolic activities and not immune function. Collectively and in the context of the samples available, these data identify apoptotic and immune function–related molecular pathways as defining the transcriptional difference between these 2 groups of children with identical durations of illness but different clinical outcomes.

RT-PCR validation of gene transcript abundance

TaqMan RT-PCR assays were used to validate the relative abundance of transcripts identified as being differentially expressed between (1) acute versus convalescent samples from children with uncomplicated dengue and (2) acute samples from children with DSS versus those from children with uncomplicated dengue. The selection of gene transcripts to validate was influenced by 2 guiding themes: (1) they were biologically replicated in the array (i.e., they were relatively consistent between patient samples) and (2) genes related to immune function should be prominent, because these pathways distinguished uncomplicated dengue from DSS and, in general, a focus on the immune transcriptome would serve the wider purpose of informing models of immunopathogenesis. Validation of gene transcript abundance was performed with acute RNA samples from 8 patients with DSS (6 of whom were included in the microarray analysis) and 8 matched patients with uncomplicated dengue (6 of whom were included in the microarray analysis).

RT-PCR: acute versus convalescent samples among patients with uncomplicated dengue

Sixty-nine transcripts related to immune response were selected for validation by RT-PCR assays from among all transcripts significantly enriched in acute samples from patients with uncomplicated dengue relative to convalescent samples. Emphasis was placed on validating canonical ISGs, because these were highly enriched in the microarray (figure 1). Of the 69 transcripts selected, 64 (93%) were also differentially abundant when measured by RT-PCR, including those from 34 ISGs (figure 5*A*-5*C*). In addition to ISGs, transcripts more abundant in acute samples and relevant to pathogenesis included those from genes for complement factors (C2, C1qA, C1qB, C1qG, and C3aR), chemokines (CCL2, CCL8, and CXCL10), Toll-like receptor (TLR) 2 and 7, and cig5/viperin.

RT-PCR: acute versus convalescent samples among patients with DSS

Nineteen transcripts related to immune response were selected for validation by RT-PCR assays from among transcripts differentially abundant in acute samples from patients with DSS relative to convalescent samples; of these, 11 transcripts were validated by RT-PCR (figure 6), with transcripts from the complement pathway being most prominent.

RT-PCR: acute uncomplicated dengue versus acute DSS

Fifty-nine transcripts related to immune response were selected for validation by RT-PCR assays from among transcripts significantly enriched in acute samples from patients with uncomplicated dengue relative to those from patients with DSS; this included 47 transcripts also investigated in the comparison of acute versus convalescent samples from patients with uncomplicated dengue (figure 5A-5C). Of these 59 transcripts, 30 (51%) were also differentially abundant when measured by RT-PCR (figure 7A and 7B), including those from 17 ISGs. In addition to ISGs, transcripts from genes for chemokines (CCL2, CCL8, and CXCL10) were prominently more abundant in acute samples from patients with uncomplicated dengue.

Collectively, these RT-PCR data serve to validate one of the central findings of the microarray analysis: the prominence of IFN-related transcripts in the host-defense profile of the transcriptome of acute uncomplicated dengue versus convalescent samples and, conversely, their relative underabundance in children at the time of hypovolemic shock.

DISCUSSION

The present study attempted to better understand DSS by defining the whole-blood transcriptome at the time of hypovolemic shock and comparing it with that in autologous convalescence samples and to that in samples from well-matched children with acute uncomplicated dengue. A key and unexpected finding was the immunologically muted transcriptional profile in children with DSS relative to that in their own convalescent samples and to that in children with acute uncomplicated dengue but an identical duration of illness. In particular, transcripts belonging to pathways associated with apoptosis, cytokine signaling (IL-6 and IL-10), NF- κ B, and IFN were less abundant in patients with DSS at the time of cardiovascular compromise, despite the presence of a measurable viremia. These data suggest that significant heterogeneity exists in the type or timing of host immune

Capillary leakage leading to DSS is the most common life-threatening complication of dengue in children living in settings of endemicity. DSS typically occurs around the time of defervescence and at a time when the DENV burden is in steep decline. Host immune responses, driven at least in part by overall viral antigenic mass, have been repeatedly nominated as being important in promoting clinically significant capillary leakage (reviewed in [25]). The rationale for the present study was to better understand the host response at the time of vascular decompensation in pediatric patients with dengue. The patients with DSS in this study were afebrile at the time of hypovolemic shock (day 4) and on average had significantly lower viremias than did the comparison group of children with uncomplicated dengue, who, in contrast, were all still febrile. In essence then, although matched by duration of illness, overall serological response, age, and sex, these 2 groups of children had contrasting disease evolution profiles when samples for microarray analysis were collected.

Consistent with the concept that the patients in this study had different disease evolution profiles, we observed starkly different whole-blood transcriptional profiles between afebrile children with DSS and febrile children with uncomplicated dengue. Transcripts associated with type I IFN-beginning with the dsRNA-sensing molecule melanoma differentiationassociated protein 5 and extending to canonical ISGs plus chemokines (CCL2, CCL8, and CXCL10), complement subunits/receptors, and transcription factors and TLRs-were significantly more abundant in samples from febrile children with uncomplicated dengue than in autologous convalescent samples. Several of the ISGs (OAS1, OAS2, OAS3, IRF7, SOCS1, STAT1, and viperin) identified in this study were also abundant in the transcriptome of febrile Singaporean adults with uncomplicated dengue [26] and in experimentally DENVinfected macaque monkeys [27]. These prominent genes and pathways may serve as candidate genes in future host genetic studies of dengue susceptibility. In contrast, the transcriptome of patients with DSS at the time of decompensation was, from an immunedefense perspective, highly muted and instead contained a greater abundance of transcripts from metabolic pathways than that in patients with uncomplicated dengue and the same duration of illness. A possible explanation for this muted, or even repressed, immuneresponse signature is that the host-defense transcriptional profile is observed well before the point of defervescence and cardiovascular decompensation in patients with DSS. In this scenario, a very high initial viral antigen burden drives a rapid and robust host-defense transcriptional response that wanes by the time of defervescence and cardiovascular decompensation as viral antigen is cleared by secondary humoral and cellular immune responses. Paradoxically, the rapidity and strength of this antigen-driven secondary response, along with other risk factors, may largely account for the extent of capillary leakage in children with secondary dengue [12].

A conceivable but perhaps less likely explanation for the missing host-defense profile at the time of decompensation in patients with DSS is that it is attenuated throughout the course of disease. This attenuated response might be related to intrinsic host-genetic influences on gene expression, or it might be a virus-mediated phenomenon—either could result in higher

initial viral burdens in vivo. Relatedly, the capacity of DENV non-structural proteins to inhibit the activation of ISGs in vitro has been well documented [18, 19]. Finally, the absence of an inflammatory transcriptome at the time of cardiovascular decompensation may explain why adjuvant corticosteroid use in patients with established DSS has little efficacy [28]—there is essentially little in the way of an inflammatory transcriptional response to modulate.

This present study extends our previous observations in adults with DSS, albeit using a different chip technology [22]. In contrast to our previous study, the present study was more comprehensive in that it sampled RNA from pediatric patients matched by age, sex, and duration of illness and validated a wider panel of transcripts by RT-PCR. A limitation of our present study is the relatively small sample size and lack of samples collected very early during the evolution of disease. In addition, the relative lack of known pathways associated with the many transcripts more abundant in patients with DSS may also reflect our incomplete understanding of transcriptional networks. Future studies will focus on the very early host viral events in febrile children who subsequently progress to DSS. Ultimately, a better understanding of the molecular evolution of DSS could help identify novel biomarkers that have prognostic utility and form the rationale for new clinical interventions for this important disease.

Acknowledgments

We thank Ling Ling (Genome Institute, Singapore) for expert advice on microarray analysis. We also thank the doctors, nurses, and participating patients at the Hospital for Tropical Diseases for contributing to the study.

Financial support: Wellcome Trust (Vietnam; grant B9RJIX0); Singapore Agency for Science Technology and Research (Singapore).

References

- 1. Thein S, Aung MM, Shwe TN, et al. Risk factors in dengue shock syndrome. Am J Trop Med Hyg. 1997; 56:566–72. [PubMed: 9180609]
- Burke DS, Nisalak A, Johnson DE, Scott RM. A prospective study of dengue infections in Bangkok. Am J Trop Med Hyg. 1988; 38:172–80. [PubMed: 3341519]
- Sangkawibha N, Rojanasuphot S, Ahandrik S, et al. Risk factors in dengue shock syndrome: a prospective epidemiologic study in Rayong, Thailand. I. The 1980 outbreak. Am J Epidemiol. 1984; 120:653–69. [PubMed: 6496446]
- 4. Halstead SB, Lan NT, Myint TT, et al. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis. 2002; 8:1474–9. [PubMed: 12498666]
- Mangada MM, Endy TP, Nisalak A, et al. Dengue-specific T cell responses in peripheral blood mononuclear cells obtained prior to secondary dengue virus infections in Thai schoolchildren. J Infect Dis. 2002; 185:1697–703. [PubMed: 12085313]
- Loke H, Bethell DB, Phuong CX, et al. Strong HLA class I–restricted T cell responses in dengue hemorrhagic fever: a double-edged sword? J Infect Dis. 2001; 184:1369–73. [PubMed: 11709777]
- 7. Mongkolsapaya J, Dejnirattisai W, Xu XN, et al. Original antigenic sin and apoptosis in the pathogenesis of dengue hemorrhagic fever. Nat Med. 2003; 9:921–7. [PubMed: 12808447]
- Loke H, Bethell D, Phuong CX, et al. Susceptibility to dengue hemorrhagic fever in Vietnam: evidence of an association with variation in the vitamin D receptor and Fc gamma receptor IIa genes. Am J Trop Med Hyg. 2002; 67:102–6. [PubMed: 12363051]

- Stephens HA, Klaythong R, Sirikong M, et al. HLA-A and -B allele associations with secondary dengue virus infections correlate with disease severity and the infecting viral serotype in ethnic Thais. Tissue Antigens. 2002; 60:309–18. [PubMed: 12472660]
- Libraty DH, Endy TP, Houng HS, et al. Differing influences of virus burden and immune activation on disease severity in secondary dengue-3 virus infections. J Infect Dis. 2002; 185:1213–21. [PubMed: 12001037]
- 11. Vaughn DW, Green S, Kalayanarooj S, et al. Dengue viremia titer, antibody response pattern, and virus serotype correlate with disease severity. J Infect Dis. 2000; 181:2–9. [PubMed: 10608744]
- Green S, Vaughn DW, Kalayanarooj S, et al. Early immune activation in acute dengue illness is related to development of plasma leakage and disease severity. J Infect Dis. 1999; 179:755–62. [PubMed: 10068569]
- Juffrie M, Meer GM, Hack CE, et al. Inflammatory mediators in dengue virus infection in children: interleukin-6 and its relation to C-reactive protein and secretory phospholipase A2. Am J Trop Med Hyg. 2001; 65:70–5. [PubMed: 11504411]
- Azeredo EL, Zagne SM, Santiago MA, et al. Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever. Immunobiology. 2001; 204:494–507. [PubMed: 11776403]
- Green S, Pichyangkul S, Vaughn DW, et al. Early CD69 expression on peripheral blood lymphocytes from children with dengue hemorrhagic fever. J Infect Dis. 1999; 180:1429–35. [PubMed: 10515800]
- Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR, Harris E. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and Bcell-dependent immunity are less critical. J Virol. 2004; 78:2701–10. [PubMed: 14990690]
- Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E. Modulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol. 2000; 74:4957–66. [PubMed: 10799569]
- Jones M, Davidson A, Hibbert L, et al. Dengue virus inhibits alpha interferon signaling by reducing STAT2 expression. J Virol. 2005; 79:5414–20. [PubMed: 15827155]
- Munoz-Jordan JL, Laurent-Rolle M, Ashour J, et al. Inhibition of alpha/beta interferon signaling by the NS4B protein of flaviviruses. J Virol. 2005; 79:8004–13. [PubMed: 15956546]
- Mahalingam S, Lidbury BA. Suppression of lipopolysaccharide-induced antiviral transcription factor (STAT-1 and NF-kappa B) complexes by antibody-dependent enhancement of macrophage infection by Ross River virus. Proc Natl Acad Sci USA. 2002; 99:13819–24. [PubMed: 12364588]
- 21. Ubol S, Masrinoul P, Chaijaruwanich J, Kalayanarooj S, Charoensirisuthikul T, Kasisith J. Differences in global gene expression in peripheral blood mononuclear cells indicate a significant role of the innate responses in progression of dengue fever but not dengue hemorrhagic fever. J Infect Dis. 2008; 197:1459–67. [PubMed: 18444802]
- Simmons CP, Popper S, Dolocek C, et al. Patterns of host genome-wide gene transcript abundance in the peripheral blood of patients with acute dengue hemorrhagic fever. J Infect Dis. 2007; 195:1097–107. [PubMed: 17357045]
- 23. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-} CT method. Methods. 2001; 25:402–8. [PubMed: 11846609]
- 24. Saeed AI, Sharov V, White J, et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques. 2003; 34:374–8. [PubMed: 12613259]
- Rothman AL. Dengue: defining protective versus pathologic immunity. J Clin Invest. 2004; 113:946–51. [PubMed: 15057297]
- Fink J, Gu F, Ling L, et al. Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis. 2007; 1:e86. [PubMed: 18060089]
- Sariol CA, Munoz-Jordan JL, Abel K, et al. Transcriptional activation of interferon-stimulated genes but not of cytokine genes after primary infection of rhesus macaques with dengue virus type 1. Clin Vaccine Immunol. 2007; 14:756–66. [PubMed: 17428947]
- Panpanich R, Sornchai P, Kanjanaratanakorn K. Corticosteroids for treating dengue shock syndrome. Cochrane Database Syst Rev. 2006; 3:CD003488. [PubMed: 16856011]

Figure 1. Pathway analysis of transcripts enriched in acute samples from patients with uncomplicated dengue.

Shown are the top 20 canonical pathways identified by unsupervised pathway analysis of filtered microarray data representing transcripts enriched (n = 2204) in acute samples (day 4 of illness) from patients with uncomplicated dengue relative to autologous convalescent samples (day 30). The strength of the statistical association is indicated by the length of the bars. The ratio value reflects the proportion of gene elements on the enriched gene list that belong to one of these canonical pathways.

Figure 2. Pathway analysis of transcripts enriched in acute samples from patients with dengue shock syndrome (DSS).

Figure 3. Pathway analysis of transcripts less abundant in acute samples from patients with dengue shock syndrome (DSS).

Shown are the top 20 canonical pathways identified by unsupervised pathway analysis of filtered microarray data representing transcripts less abundant (n = 523) in acute samples (day 4 of illness) from patients with DSS relative to autologous convalescent samples (day 30). The strength of the statistical association is indicated by the length of the bars. The ratio value reflects the proportion of gene elements on the enriched gene list that belong to one of these canonical pathways.

Long et al.

Figure 4. Pathway analysis of transcripts enriched or less abundant in acute samples from patients with uncomplicated dengue relative to that in acute samples from patients with dengue shock syndrome (DSS).

Shown are the top 20 canonical pathways identified by unsupervised pathway analysis of filtered microarray data representing transcripts significantly enriched (n = 1030) (A) or less abundant (n = 719) (B) in acute samples (day 4 of illness) from patients with uncomplicated dengue relative to that in acute samples from patients with DSS. The strength of the statistical association is indicated by the length of the bars. The ratio value reflects the proportion of gene elements on the enriched gene list that belong to one of these canonical pathways.

Long et al.

Figure 5. Reverse-transcription polymerase chain reaction (RT-PCR) validation of transcripts enriched in acute samples from patients with uncomplicated dengue relative to autologous convalescent samples.

Shown in panel A is a heat map of individual patient samples filtered on those transcripts enriched in acute samples (day 4 of illness) from patients with uncomplicated dengue relative to autologous convalescent samples (day 30) (n = 69) that were selected for RT-PCR validation. The gene symbols of canonical type I interferon–stimulated genes are underlined next to the heat map. Shown in panels B and C are graphs representing the mean fold difference in abundance for 64 (93%) of the 69 transcripts that were validated by RT-PCR. The fold difference is shown for both microarray analysis (*black bars*) and RT-PCR analysis (*white bars*), with values >1 indicating greater abundance in acute samples. Five of the 69 transcripts were not validated by RT-PCR (shown by the black vertical line next to the heat map).

Figure 6. Reverse-transcription polymerase chain reaction (RT-PCR) validation of transcripts enriched or less abundant in acute samples from patients with dengue shock syndrome (DSS) relative to that in convalescent samples.

Long et al.

Figure 7. Reverse-transcription polymerase chain reaction (RT-PCR) validation of transcripts enriched in acute samples from patients with uncomplicated dengue relative to that in acute samples from patients with dengue shock syndrome (DSS).

Shown in panel A is a heat map of individual patient samples filtered on those transcripts (n = 59) enriched in acute samples from patients with uncomplicated dengue relative to that in acute samples from patients with DSS that were selected for RT-PCR validation. The gene symbols of canonical type I interferon–stimulated genes are underlined next to the heat map. Shown in panel B is a graph representing the mean fold difference in the abundance of 30 (51%) of the 59 transcripts that were validated by RT-PCR. The fold difference is shown for both microarray analysis (*black bars*) and RT-PCR analysis (*white bars*), with values >1 indicating greater abundance in acute samples. Twenty-nine of the 59 transcripts were not validated by RT-PCR (shown by the black vertical line next to the heat map).

	Table 1	
Characteristics of the p	atient population sam	pled for whole-blood RNA

Variable	Uncomplicated dengue (n = 9)	DSS $(n = 9)$	P ^a
Male sex, no. (%)	5 (55.6)	4 (44.4)	
Age, range, years	9–14	10–14	
Day of illness	4	4	
Febrile, no. (%)	9 (100)	0 (0)	
Fever day ^b	-2.5 (-4 to -1)	0	
Infecting serotype, no.			
DENV-1	4	1	
DENV-2	0	7	
DENV-3	5	0	
DENV-4	0	1	
Clinical severity, no.			
DF	7		
DHFII	2		
DHFIII		8	
DHFIV		1	
Viremia, mean (range), cDNA copies/mL	48,317,364 (19,775–163,000,000)	819,735 (24–4,234,125)	.006
Secondary infection, no. (%)	9 (100)	9 (100)	
Platelet nadir, cells/µL	44,000 (34,000–110,000)	24,000 (11,000–86,000)	
Hemoconcentration, %	15.11 (-9 to 22)	28 (13–53)	.001
Cell counts, cells/µL			
CD3 ⁺ T cells	649 (262–1097)	845 (599–1387)	
CD3 ⁺ CD4 ⁺ T cells	331 (161–649)	371 (155–561)	
CD3 ⁺ CD8 ⁺ T cells	207 (67–309)	417 (293–752)	.01
CD19 ⁺ B cells	196 (75–352)	229 (109–502)	
CD16 ⁺ CD56 ⁺ NK cells	124 (37–424)	148 (51–236)	

NOTE. Data are median (range) values, unless otherwise indicated. DENV, dengue virus; DF, dengue fever; DHF, dengue hemorrhagic fever; DSS, dengue shock syndrome.

^aMann-Whitney U test.

 ${}^{b}{}_{\rm The}$ day of deferve scence was regarded as fever day 0.

Table 2

Top 100 differentially abundant transcripts in samples from febrile patients with uncomplicated dengue collected on day 4 relative to autologous convalescent samples collected on day 30

GenBank	Symbol	Fold change*	Full name
NM_002982	CCL2	+771	Chemokine (C-C motif) ligand 2
NM_005623	CCL8	+580.4	Chemokine (C-C motif) ligand 8
NM_002391	MDK	+133.2	Midkine (neurite growth-promoting factor 2)
NM_023930	KCTD14	+120.5	Potassium channel tetramerization domain containing 14
NM_001565	CXCL 10	+91.25	Chemokine (C-X-C motif) ligand 10
NM_005532	IFI27	+74.97	
NM_003865	HESX1	+71.55	Homeobox, ES cell expressed 1
NM_052884	SIGLEC11	+66.11	Sialic acid–binding Ig-like lectin 11
NM_172369	CIQG	+51.85	Complement component 1, q subcomponent, gamma polypeptide
NM_176870	MT1K	+48.84	Metallothionein 1M
NM_194323	OTOF	+37.7	Otoferlin
NM_033220	TRIM14	+36.9	Tripartite motif containing 14
NM_016135	ETV7	+32.84	ets variant gene 7 (TEL2 oncogene)
NM_002933	RNASE1	+31.65	Ribonuclease, RNase A family, 1 (pancreatic)
NM_001699	AXL	+26.13	AXL receptor tyrosine kinase
NM_145060	MGC10200	+22	Chromosome 18 open reading frame 24
NM_017414	USP18	+21.14	Ubiquitin-specific peptidase 18
NM_004972	JAK2	+19.79	Janus kinase 2 (a protein tyrosine kinase)
NM_015341	BRRN1	+18.99	Barren homolog 1 (Drosophila)
NM_006547	IMP-3	+18.92	IGF-II mRNA-binding protein 3
NM_000491	C1QB	+18.03	Complement component 1, q subcomponent, beta polypeptide
NM_014736	KIAA0101	+15.66	
NM_000063	C2	+15.56	Complement component 2
NM_144590	MGC22805	+14.43	Ankyrin repeat domain 22
NM_020954	KIAA1618	+14.16	KIAA1618
NM_021991	JUP	+14.03	Junction plakoglobin
NM_015535	DNAPTP6	+13.41	DNA polymerase-transactivated protein 6
NM_015714	G0S2	+13.28	G0/G1 switch 2
NM_006281	STK3	+12.97	Serine/threonine kinase 3 (STE20 homolog, yeast)
NM_003571	BFSP2	+12.81	Beaded filament structural protein 2, phakinin
NM_003543	HIST1H4H	+12.2	Histone 1, H4h
NM_014398	LAMP3	+12.14	Lysosomal-associated membrane protein 3
NM_015149	RGL1	+11.93	Ral guanine nucleotide dissociation stimulator-like 1
NM_005082	ZNF147	+11.75	Tripartite motif containing 25
NM_012297	G3BP2	+11.41	

GenBank	Symbol	Fold change [*]	Full name
NM_025193	HSD3B7	+11.23	Hydroxy delta 5-steroid dehydrogenase, 3 beta- and steroid delta-isomerase 7
NM_033023	PDGFA	+11.18	Platelet-derived growth factor alpha polypeptide
NM_006101	KNTC2	+11.13	Kinetochore associated 2
NM_080416	PNUTL2	+10.52	Septin 4
NM_181791	GPR141	+10.36	G protein-coupled receptor 141
NM_004336	BUB1	+10.12	BUB1 budding uninhibited by benzimidazoles 1 homolog (yeast)
NM_000355	TCN2	+9.911	Transcobalamin II, macrocytic anemia
NM_003965	CCRL2	+9.651	
NM_000359	TGM1	+9.519	Transglutaminase 1 (K polypeptide epidermal type I, protein-glutamine-gamma-glutamyftransferase)
NM_002053	GBP1	+9.327	Guanylate binding protein 1, interferon inducible, 67 kDa
NM_145918	CTSL	+9.251	Cathepsin L
NM_152899	IL411	+9.109	Interleukin 4 induced 1
NM_176797	P2RY6	+8.92	Pyrimidinergic receptor P2Y, G-protein coupled, 6
NM_015589	SAMD4	+8.824	Sterile alpha motif domain containing 4
NM_001775	CD38	+8.729	CD38 antigen (p45)
NM_002692	POLE2	+8.686	Potymorase (DNA directed), epsilon 2 (p59 subunit)
NM_021105	PLSCR1	+8.353	Phospholipid scramblase 1
NM_030928	CDT1	+8.299	DNA replication factor
NM_000062	SERPING1	+8.229	Serpin peptidase inhibitor, clade G (C1 inhibitor), member 1, (angioedema, hereditary)
NM_001735	C5	+8.171	Complement component 5
NM_001827	CKS2	+8.033	CDC28 protein kinase regulatory subunit 2
NM_002164	INDO	+8.011	Indoleamine-pyrrole 2,3 dioxygenase
NM_020367	C12orf6	+7.946	Poly (ADP-ribose) polymerase family, member 11
NM_147150	AKAP2	+7.799	PALM2-AKAP2 protein
NM_174938	FRMD3	+7.765	FERM domain containing 3
NM_002189	IL 15RA	+7.651	Interleukin 15 receptor, alpha
NM_021063	HIST1H2BD	+7.559	Histone 1, H2bd
NM_003745	SOCS1	+7.499	Suppressor of cytokine signaling 1
NM_005101	G1P2	+7.325	Interferon, alpha-inducible protein (clone IFI-15K)
NM_005502	ABCA1	+7.309	ATP-binding cassette, subfamily A (ABC1), member 1
NM_080657	cig5	+7.278	Radical S-adenosyl methionine domain containing 2
NM_012456	TIMM10	+7.146	Translocase of inner mitochondrial membrane 10 homolog (yeast)
NM_001444	FABP5	+7.141	Fatty acid-binding protein 5 (psoriasis associated)
NM_022147	IFRG28	+6.954	28-kDa interferon responsive protein
NM_181782	NCOA7	+6.927	
NM_005953	MT2A	+6.896	Metallothionein 2A
NM_003283	TNNT1	+6.857	Troponin T type 1 (skeletal, slow)
NM_012081	ELL2	+6.764	Elongation factor, RNA polymorase II, 2
NM_032804	C10orf22	+6.66	Chromosome 10 open reading frame 22

GenBank	Symbol	Fold change*	Full name
NM_003878	GGH	+6.465	Gamma glutamyl hydrolase (conjugase, folylpolygammaglutamyl hydrolase)
NM_021170	Hes4	+6.46	Hairy and enhancer of split 4 (Drosophila)
NM_152792	FLJ25084	+6.448	Skin aspartic protease
NM_004419	DUSP5	+6.423	Dual specificity phosphatase 5
NM_138720	HIST1H2BD	+6.318	Histone 1, H2bd
NM_138801	GALM	+6.316	Galactose mutarotase (aldose 1 epimerase)
NM_144573	NEXN	+6.227	Nexilin (F actin-binding protein)
NM_004030	IRF7	+6.219	Interferon regulatory factor 7
NM_006634	VAMP5	+6.21	Vesicle-associated membrane protein 5 (myobrevin)
NM_003504	CDC45L	+6.202	CDC45 cell division cycle 45–like (S. cerevisiae)
XM_209643	LOC285510	+6.184	
NM_006820	Clorf29	+6.129	Interferon induced protein 44-like
NM_175622	MT1J	+6.104	Metallothionein 1J
NM_004856	KIF23	+5.95	Kinesin family member 23
NM_018438	FBXO6	+5.95	F-box protein 6
NM_016817	OAS2	+5.887	2'-5'-oligoadenylate synthetase 2, 69/71 kDa
NM_002638	PI3	-5.917	Peptidase inhibitor 3, skin derived (SKALP)
NM_000478	ALPL	-16.52	Alkaline phosphatase, liver/bone/kidney
NM_002001	FCER1A	-8.06	Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide
NM_177417	KLC2L	-8.06	Kinesin light chain 3
NM_003944	SELENBP1	-7.63	Selonium binding protein 1
NM_000347	SPTB	-7.29	Spectrin, beta, erythrocytic (includes spherocytosis, dmical type I)
NM_005332	HBZ	-7.09	Hemoglobin, zeta
NM_030758	OSBP2	-6.99	Oxysterol binding protein 2
NM_024748	FLJ11539	-6.06	
NM_004778	GPR44	-5.98	G protein-coupled receptor 44

* Fold charges reflect greater (positive fold change) or lesser (negative fold change) abundance in samples from patients with acute uncomplicated dengue

Table 3

Top 100 differentially abundant transcripts in samples from patients with dengue shock syndrome (DSS) collected on day 4 relative to autologous convalescent samples collected on day 30

GenBank	Symbol	Fold change ^a	Full name
NM_002417	MKI67	+185.30	Antigen identified by monoclonal antibody Ki-67
NM_012112	TPX2	+161.90	
NM_024032	MGC3130	+156.50	Chromosome 17 open reading frame 53
NM_002933	RNASE1	+103.70	Ribonuclease, RNase a family, 1 (pancreatic)
NM_152562	CDCA2	+64.90	Cell division cycle associated 2
NM_004181	UCHL 1	+60.71	Ubiquitin carboxyl-terminal esterase I1 (ubiquitin thiolesterase)
NM_002997	SDC1	+59.92	Syndecan 1
NM_005480	TROAP	+59.35	Trophinin associated protein (tastin)
NM_052884	SIGLEC11	+41.31	Sialic acid-binding Ig-like lectin 11
NM_030928	CDT1	+39.79	DNA replication factor
NM_003088	FSCN1	+39.29	Fascin homolog 1, actin-bundling protein (Strongylocentrotus purpuratus)
NM_015341	BRRN1	+37.47	Barren homolog 1 (Drosophila)
NM_023930	KCTD14	+34.03	Potassium channel tetramerization domain containing 14
NM_001505	GPR30	+29.95	G protein-coupled receptor 30
NM_005532	IF127	+29.76	
NM_016354	SLCO4A1	+28.6	
NM_003504	CDC45L	+25.63	CDC45 cell division cycle 45–like (S. cerevisiae)
NM_021000	PTTG3	+25.56	
NM_004237	TRIP13	+25.06	Thyroid hormone receptor interactor 13
NM_004336	BUB1	+24.53	Bub1 budding uninhibited by benzimidazoles 1 homolog (yeast)
NM_080668	CDCA5	+23.13	Cell division cycle associated 5
NM_145060	MGC10200	+22.91	Chromosome 18 open reading frame 24
NM_001905	CTPS	+21.54	CTP synthase
NM_002466	MYBL2	+21.18	v-myb myeloblastosis viral oncogene homoiog (avian)-like 2
NM_003173	SUV39H1	+2.05	Suppressor of variegation 3-9 homolog 1 (Drosophila)
NM_000170	GLDC	+19.57	Glycine dehydrogenase
NM_194323	OTOF	+19.28	Otoferlin
NM_015671	DKFZP434J046	+18.88	Synonyms c19orf14, flj33298, dkfzp434j046, dkfzp686g1024; chromosome 19 open reading frame 14
NM_003500	ACOX2	+18.86	Acyl-coenzyme a oxidase 2, branched chain
NM_031299	CDCA3	+18.63	Cell division cycle associated 3
NM_020804	PACSIN1	+17.22	Protein kinase C and casein kinase substrate in neurons 1
XM_377087	LOC401627	+16.93	
NM_018101	CDCA8	+15.81	Cell division cycle associated 8
NM_017636	TRPM4	+15.41	Transient receptor potential cation channel, subfamily M, member 4

Long et al.

GenBank	Symbol	Fold change ^a	Full name
NM_172369	C1QG	+14.97	Complement component 1, q subcomponent, gamma polypeptide
NM_014900	COBLL1	+14.83	
NM_018410	DKFZp762E1312	+14.82	Hypothetical protein dkfzp762e1312
NM_182513	Spc24	+14.66	Spindle pole body component 24 homolog (S. cerevisiae)
NM_003579	RAD54L	+14.63	Rad54-like (S. cerevisiae)
NM_007268	Z39IG	+14.62	V-set and immunoglobulin domain containing 4
NM_012447	STAG3	+14.54	
NM_001255	CDC20	+13.57	Cell division cycle 20 homolog (S. cerevisiae)
NM_001067	TOP2A	+13.4	Topoisomerase (DNA) II alpha 170 kDa
NM_001237	CCNA2	+13.39	Cyclin a2
NM_006623	PHGDH	+13.28	Phosphoglycerate dehydrogenase
XM_352965	KIFC1	+13.04	
NM_003258	TK1	+12.94	Thymidine kinase 1, soluble
NM_004925	AQP3	+12.04	Aquaporin 3
NM_144988	MGC19780	+11.66	
NM_014152	HSPC054	+11.63	
NM_001168	BIRC5	+11.44	Baculoviral iap repeat-containing 5 (survivin)
NM_005879	TRIP	+11.35	
NM_015714	G0S2	+11.27	G0/g1 switch 2
NM_004260	RECQL4	+11.24	RecQ protein-like 4
NM_006845	KIF2C	+11.15	Kinesin family member 2c
NM_145249	FAM14B	+10.67	Family with sequence similarity 14, member b
NM_004701	CCNB2	+10.62	Cydin b2
NM_014488	RAB30	+10.59	Rab30, member ras oncogene family
NM_024111	MGC4504	+10.56	ChaC, cation transport regulator-like (E. coli)
NM_012140	SLC25A10	+10.23	Solute earner family 25, member 10
NM_021953	FOXM1	+10.1	
NM_024053	C22orf18	+9.548	Chromosome 22 open reading frame 18
NM_001775	CD38	+9.417	CD38 antigen (p45)
NM_016459	PACAP	+9.21	Proapoptotic caspase adaptor protein
NM_003686	EXO1	+9.13	
NM_020120	UGCGL 1	+9.06	UDP-glucose ceramide glucosyltransferase–like 1
NM_006461	SPAG5	+9.03	Sperm-associated antigen 5
NM_005693	NR1H3	+8.98	Nuclear receptor subfamily 1, group H, member 3
NM_000491	CIQB	+8.95	Complement component 1, q subcomponent, beta poly peptide
NM_001192	TNFRSF17	+8.94	Tumor necrosis factor receptor superfamily, member 17
NM_001151	SLC25A4	+8.92	Solute earner family 25
NM_022346	NCAPG	+8.90	Non-SMC condensin I complex, subunit G
NM_003486	SLC7A5	+8.88	Solute carrier family 7 (cationic amino acid transporter, y+ system), member 5

GenBank	Symbol	Fold change ^a	Full name
NM_014736	KIAA0101	+8.82	
NM_014383	TZFP	+8.807	Zinc finger and BTB domain containing 32
NM_015949	C7orf20	+8.74	
NM_003571	BFSP2	+8.71	Beaded filament structural protein 2, phakinin
NM_152227	SNX5	+8.54	Sorting nexin 5
NM_004217	AURKB	+8.44	Aurora kinase B
NM_015426	DKFZP434C245	+8.43	WD repeat domain 51a
NM_016359	NUSAP1	+8.43	Nucleolar and spindle associated protein 1
NM_002885	RAP1GAI	-38.46	RAP1, GTPase activating protein 1
NM_000347	SPTB	-26.17	Spectrin, beta, erythrocytic (includes spherocytosis, clinical type 1)
NM_000345	SNCA	-22.17	Synuclein, alpha (non-A4 component of amyloid precursor)
NM_144665	SESN3	-17.88	Sestrin 3
NM_002638	PI3	-17.45	Peptidase inhibitor 3, skin derived (SKALP)
NM_004667	SDPR	-17.36	Serum deprivation response (phosphatidylserine binding protein)
XM_353706	LOC378204	-16.05	
NM_024748	FLJ11539	-14.53	
NM_005629	SLC6A8	-14.32	Solute carrier family 6 (neurotransmitter transporter, creatine), member 8
NM_003944	SELENBP1	-12.22	Selenium binding protein 1
XM_291438	LOC343171	-11.38	Olfactory receptor, family 2, subfamily W, member 3 (OR2W3), mRNA
NM_182973	LOC360200	-10.40	Transmembrane protease, serine 9
NM,007308	SNCA	-9.80	Synuclein, alpha (non-A4 component of amyloid precursor)
NM_004778	GPR44	-9.43	G protein-coupled receptor 44
NM_006887	ZFP36L2	-9.34	Zinc finger protein 36, C3H type–like 2
NM_000342	SLC4A1	-9.25	Solute earner family 4, anion exchanger
NM_006121	KRT1	-9.25	Keratin 1 (epidermolytic hyperkeratosis)
NM_000559	HBG1	-8.84	Hemoglobin, gamma A
NM 000184	HBG2	-8.54	Hemoglobin, gamma G

 a Fold changes reflect greater (positive fold change) or lesser (negative fold change) abundance in acute samples from patients with DSS

Table 4

Top 100 differentially abundant transcripts in samples from patients with uncomplicated dengue collected on day 4 relative to samples from patients with dengue shock syndrome collected on day 4

GenBank	Symbol	Fold change ^a	Function
NM_005623	CCL8	+170.64	Chemokino (C-C motil) ligand 8
NM_002982	CCL2	+86.95	Chemokine (C-C motif) ligand 2
NM_199204	DHRS9	+32.46	Dehydrogenase/reductase (SDR family) member 9
NM_004972	JAK2	+21.92	Janus kinase 2 (a protein tyrosine kinase)
NM_002164	INDO	+17.36	Indoleamine-pyrrole 2,3 dioxygenase
NM_000067	CA2	+16.66	Carbonic anhydrase II
NM_001565	CXCL 10	+16.26	Chemokine (C-X-C motif) ligand 10
NM_003865	HESX1	+12.45	HESX homeobox 1
NM_004657	SDPR	+11.5	Serum deprivation response (phosphatidylserine-binding protein)
NM_002053	GBP1	+10.68	Guanylate binding protein 1, interferon inducible, 67 kDa
NM_002024	FMR1	+10.27	Fragile X mental retardation 1
NM_033238	PML	+9.61	Promyelocytic leukemia
XM_038864	KIAA1632	+8.13	Homo sapiens KIAA1632 (KIAA1632), mRNA
XM_293276	LOC347348	+8.13	
NM_002729	HHEX	+8.06	Homeobox, hematopoietically expressed
NM_006079	CITED2	+7.87	Cbp/p300-interacting transactivator with Glu/Asp rich carboxy-terminal domain, 2
NM_014398	LAMP3	+7.57	Lysosomal-associated membrane protein 3
NM_030881	DOX17	+6.84	DEAD (Asp-Glu-Ala-Asp) box polypeptide 17
NM_012329	MMD	+6.71	Monocyte to macrophage differentiation associated
NM_014016	SACM1L	+6.62	
NM_001547	IFIT2	+6.62	Interferon-induced protein with tetratricopeptide repeats 2
XM_209643	LOC285510	+6.49	
NM_018682	MLL5	+6.02	Myeloid/lymphoid or mixed-lineage leukemia 5 (trithorax homolog, Drosophila)
NM_181291	WDR20	+5.88	Wd repeat domain 20
NM_144590	MGC22805	+5.78	Ankyrin repeat domain 22
NM_006887	ZFP36L2	+5.71	Zinc finger protein 36, C3H type–like 2
NM_017719	SNRK	+5.64	SNF-related kinase
NM_174938	FRMD3	+5.61	Ferm domain containing 3
NM_000161	GCH1	+5.61	GTP cyclohydrolase 1 (dopa-responsive dystonia)
NM_032860	C6orf93	+5.55	Chromosome 6 open reading frame 93
NM_003489	NRIP1	+5.37	Nuclear receptor-interacting protein 1
XM_059368	LOC129607	+5.23	
NM_021170	Hes4	+5.2	Hairy and enhancer of split 4 (Drosophila)
NM_175862	CD86	+5.12	CD86 antigen (CD28 antigen ligand 2, B7-2 antigen)

GenBank	Symbol	Fold change ^a	Function
NM_014857	HHL	+4.97	RAB GTPase activating protein 1-like
NM_017631	FLJ20035	+4.97	Hypothetical protein FLJ20035
NM_006276	SFRS7	+4.95	
NM_016135	ETV7	+4.92	ets variant gene 7 (TEL2 oncogene)
NM_000584	IL8	+4.9	Interleukin 8
NM_006022	TSC22	+4.73	TSC22 domain family, member 1
NM_003473	STAM	+4.65	Signal transducing adaptor molecule (SH3 domain and ITAM motif) 1
MM_153045	C9orf91	+4.62	Chromosome 9 open reading frame 91
NM_004099	STOM	+4.58	Stomatin
NM_147128	LOC223082	+4.52	
NM_021105	PLSCR1	+4.48	Phospholipid scramblase 1
NM_033220	TRIM14	+4.46	Tripartite motif containing 14
NM_000689	ALDH1A1	+4.42	Aldehyde dehydrogenase 1 family, member Al
NM_145804	ABTB2	+4.42	Ankyrin repeat and BTB (POZ) domain containing 2
NM_018847	KIAA1354	+4.38	Kelch-like 9 (Drosophila)
NM_178237	SEC3L1	+4.36	
NM_181782	NCOA7	+4.31	
NM_037817	FLJ31033	+4.31	Hypothetical protein FLJ31033
NM_000076	CDKN1C	+4.31	Cyclin dependent kinase inhibitor 1C (p57, Kip2)
NM_004842	AKAP7	+4.27	A kinase (PRKA) anchor protein 7
NM_003745	SOCS1	+4.25	Suppressor of cytokine signaling 1
NM_017837	FLJ20477	+4.21	Phosphatidylinositol glycan, class V
NM_002835	PTPN12	+4.21	Protein tyrosine phosphatase, nonreceptor type 12
NM_173842	IL 1RN	+4.2	Interleukin 1 receptor antagonist
NM_022168	MDA5	+4.16	Interferon induced with helicase C domain 1
MM_199324	HSHIN1	+4.14	OTU domain containing 4
NM_001981	EPS15	+4.14	Epidermal growth factor receptor pathway substrate 15
NM_001735	C5	+4.13	Complement component 5
NM_002145	HOXB2	+4.11	Homeobox 82
NM_014314	RIG-1	+4.08	Dead (AspGIu-Ala-Asp) box polypeptide 58
NM_001186	BACH1	+4.04	BTB and CNC homology 1, basic leucine zipper transcription factor 1
NM_052941	GBP4	+4.03	Guanylate binding protein 4
NM_014358	CLECSF9	+4.03	C-type lectin domain family 4, member E
NM_001712	CEACAM1	+3.92	Carcinoembryonic antigen-related cell adhesion molecule 1 (biliary glycoprotein)
NM_006074	TRIM22	+3.92	Tripartite motif-containing 22
NM_153341	IBRDC3	+3.9	IBR domain containing 3
NM_006415	SPTLC1	+3.87	Serine palmitoyltransferase, long chain base subunit 1
NM_001548	IFIT1	+3.83	Interferon-induced protein with tetratnucleopeptide repeats 1
NM_152522	MGC33864	+3.83	ADP-ribosylation–like factor 6 interacting protein 6

GenBank	Symbol	Fold change ^a	Function
NM_020423	PACE-1	+3.81	
NM_013352	SART2	+3.81	Squamous cell carcinoma antigen recognized by T cells 2
NM_006018	HM74	+3.78	G protein-coupled receptor 109B
NM_018993	RIN2	+3.77	Ras and Rab interactor 2
XM_353706	LOC378204	+3.74	
NM_017414	USP18	+3.74	Ubiquitin-specific peptidase 18
NM_015589	SAMD4	+3.71	Sterile alpha motil domain containing 4
NM_004241	TRIP8	+3.67	Jumonji domain containing 1C
NM_006667	PGRMC1	+3.64	Progesterone receptor membrane component 1
NM_052942	GBP5	+3.63	Guanylate binding protein 5
NM_004863	SPTLC2	+3.63	Serine palmitoyltransferase, long chain base subunit 2
NM_153374	MGC35274	+3.62	LysM, putative peptidoglycan binding, domain containing 2
NM_021127	PMAIP1	+3.61	Phorbol-12-myristate-13-acetate-induced protein 1
NM_007268	Z391G	-15.82	V-set and immunoglobulin domain containing 4
NM_002417	MKI67	-9.91	Antigen identified by monoclonal antibody Ki-67
NM_005480	TROAP	-8.27	Trophinin associated protein (tastin)
NM_003088	FSCN1	-6.93	Fascin homolog 1, actin-bundling protein (Strongylocentrotus purpuratus)
NM_000478	ALPL	-5.4	Alkaline phosphatase, liver/bone/kidney
NM_002343	LTF	-5.37	Lactotransferrin
NM_015671	DKFZP434J046	-5.17	Chromosome 19 open reading frame 14, homo sapiens WD repeat domain 62 (WDR62), mRNA
NM_005091	PGLYRP1	-4.79	Peptidoglycan recognition protein 1
NM_001925	DEFA4	-4.48	Defensin, alpha 4, corticostatin
NM_005217	DEFA3	-4.28	Defensin, alpha 3, neutrophil-specific
NM_004260	RECQL4	-4.04	RecQ protein-like 4
NM_021953	FOXM1	-3.77	
NM_002466	MYBL2	-3.73	v-myb myeloblastosis viral oncogene homolog (avian)-like 2
NM_002997	SDC1	-3.61	Syndecan 1

 a Fold changes reflect greater (positive fold change) or lesser (negative fold change) abundance in acute samples from uncomplicated dengue patients.