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Abstract Computational and mathematical modelling

approaches are increasingly being adopted in attempts to

further our understanding of complex biological systems.

This approach can be subjected to strong criticism as

substantial aspects of the biological system being captured

are not currently known, meaning assumptions need to be

made that could have a critical impact on simulation

response. We have utilised the CoSMoS process in the

development of an agent-based simulation of the formation

of Peyer’s patches (PP), gut-associated lymphoid organs

that have a key role in the initiation of adaptive immune

responses to infection. Although the use of genetic tools,

imaging technologies and ex vivo culture systems has

provided significant insight into the cellular components

and associated pathways involved in PP development,

interesting questions remain that cannot be addressed using

these approaches, and as such well justified assumptions

have been introduced into our model to counter this. Here

we focus not on the development of the model itself, but

instead demonstrate how the resultant simulation can be

used to assess how these assumptions impact the simulation

response. For example, we consider the impact of our

assumption that the migration rate of lymphoid tissue cells

into the gut remains constant throughout PP development.

We demonstrate that an analysis of the assumptions made

in the construction of the domain model may either

increase confidence in the model as a representation of the

biological system it captures, or may suggest areas where

further biological experimentation is required.
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Abbreviations

SLO Secondary lymphoid organs

PP Peyer’s patches

CoSMoS Complex systems modelling and simulation

ABM Agent-based model

LTi Lymphoid tissue inducer cell

LTin Lymphoid tissue initiator cell

LTo Lymphoid tissue organiser cell

Spartan Simulation Parameter Analysis R Toolkit

Application

1 Introduction

Despite great advances in laboratory technologies, a large

number of interesting biological questions remain that are

difficult to address using currently available experimental

K. Alden (&) � P. S. Andrews � J. Timmis � M. Coles

York Computational Immunology Lab, University of York,

York, UK

e-mail: kieran.alden@york.ac.uk

J. Timmis

e-mail: jon.timmis@york.ac.uk

M. Coles

e-mail: mark.coles@york.ac.uk

K. Alden � M. Coles

Centre for Immunology and Infection, University of York and

Hull York Medical School, York, UK

P. S. Andrews

Department of Computer Science, University of York, York, UK

H. Veiga-Fernandes

Instituto de Medicina Molecular, Faculdade de Medicina de

Lisboa, Lisbon, Portugal

J. Timmis

Department of Electronics, University of York, York, UK

123

Nat Comput (2015) 14:99–107

DOI 10.1007/s11047-014-9428-7



techniques. The use of mathematical and computational

prediction methods that complement traditional studies has

become increasingly prevalent: permitting in silico exper-

imentation under which experimental conditions are con-

trolled, and the ethical, financial, and technological

constraints associated with laboratory investigations are

avoided (Germain et al. 2011; Andrews et al. 2008).

Computational prediction tools, or simulations, can

provide an interpretation of underlying biological data

upon which the tool is constructed (Guo and Tay 2005).

Yet it may be intractable to capture the complete biological

system within the simulation, and in the majority of

applications the biological system is not fully understood.

This necessitates the introduction of biological assump-

tions into the model, adding a layer of abstraction between

the simulator and the real-world system the tool is to rep-

resent. Where the tool is used to make predictions that will

inform further study, it is vital that the effect these deci-

sions have on the simulation result is fully understood.

The development of secondary lymphoid organs (SLO)

is one case where our current understanding of the biology

is incomplete, and is of key interest in understanding how

the immune system develops. Reductionist experimental

approaches have utilised genetic tools, imaging technolo-

gies and ex vivo culture systems to explore the cellular and

mechanical components involved (Cupedo and Mebius

2003; van de Pavert and Mebius 2010; Randall et al. 2008;

Veiga-Fernandes et al. 2007), but these have yet to address

all open interesting biological questions. These SLO’s,

which include lymph nodes, Peyer’s patches (PP) and the

spleen, are strategically located at lymphatic tissue drain-

age points, ensuring an adaptive immune response to

antigens in peripheral tissue is triggered. Specifically, PP

trigger adaptive immune responses in the gastrointestinal

tract: the largest area of contact between the host and the

exterior environment and thus susceptible to exposure to

pathogens (Reis and Mucida 2012). Although laboratory

investigations have created a generally accepted model of

pre-natal organ development, it remains unclear why PP

development is highly stochastic. Pre-natal observations

suggest that an average of 60 PP develop in the human fetal

gut, yet no two observations are identical (Cornes 1965),

with large variation in the number, location, and size of the

PP. Similar conclusions have been drawn from mouse

observations, where around 8–12 PP develop (Alden et al.

2012). The reason for this variation among individuals, and

the effect this has on the immune response, is yet to be

fully understood.

We have utilised the CoSMoS Process (Andrews et al.

2010) to develop a computational tool that captures the

current biological understanding of PP development (Alden

et al. 2012; Patel et al. 2012). The CoSMoS process

encourages collaboration between the researcher imple-

menting the simulation and experts in the studied biologi-

cal system, and proposes a set of activities that lead to the

production of a series of models. Collaboration is key in

the construction of the first model, the domain model,

which acts as a specification of the biological system being

modelled. As we have noted, it is intractable to capture the

complete biological system under study (both the ‘known’

and the ‘unknown’), and thus assumptions are introduced at

this point. Collaboration with an expert in this particular

biological field ensures that these assumptions are dis-

cussed and agreed before thought turns to tool implemen-

tation. Once the biological model is agreed, a platform

model is generated that specifies how this biological

information will be implemented as a computer simulation,

noting any simplifications that need to be made. From this,

the simulation platform is developed, and routines gener-

ated for understanding how simulation results can be

interpreted in terms of the real-world system the tool rep-

resents (the results model). The models generated in the

development of our PP organogenesis simulation have been

made freely available alongside the resultant simulation

platform (Alden et al. 2012).

The aim of this paper is not to discuss the development

of the simulator itself, but to examine the influence of

decisions that are made in the first stage: the construction

of the domain model. Although we were fortunate that

some biological data was available when the PP organo-

genesis simulation was constructed, key assumptions had

to be made that describe the migration of particular cell

types into the developing gastrointestinal tract. From these

assumptions we developed our platform model, and sub-

sequently our simulation platform, and have published key

results that our tool has generated (Patel et al. 2012; Alden

et al. 2012). Whereas it is becoming increasingly prevalent

to see researchers utilising sensitivity analysis techniques

to explore simulation platform parameters where a value is

unknown (Read 2011; Marino et al. 2008), it is rare to find

an investigation of the effect that necessary biological

assumptions have on the simulation response. These may

have a critical impact when determining what a simulation

result means in terms of the real-world system.

Below we briefly introduce our available PP organo-

genesis simulation, and discuss two key cell migration

assumptions that we have introduced in the domain model.

We then state our methodology for exploring the effect

these assumptions have on simulation behaviour, and

subsequently show results obtained using this strategy.

Finally we discuss the impact assumptions may have on

conclusions drawn through simulation, and note the

importance of making biological assumption decisions

available alongside a computational prediction tool.
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2 PP organogenesis simulation

As noted above, full descriptions of our domain, platform,

simulation platform, and results models are available

elsewhere (Alden et al. 2012), yet it is important for the

context of this paper that we briefly introduce the concepts

behind the simulator here. However the description given

below is high-level and avoids the complete biological

detail that can be found in our published work.

Figure 1 details the biological phenomenon observed in

the development of PP in pre-natal mice, along with cur-

rent hypotheses for the cause of each observation. Three

cell types can be identified from the figure: LTin, or lym-

phoid tissue initiator cell; LTi, or lymphoid tissue inducer

cell; and LTo, or lymphoid tissue organiser cell. Migration

of LTin and LTi cells into the developing gut can be

detected from embryonic day 14.5 (E14.5) (Mebius et al.

2001). Experimental data suggests that LTin cells follow a

random walk motion (Veiga-Fernandes et al. 2007) until

contact is made with LTo cells residing on the epithelium

surface. Contact causes LTo cell differentiation, and the

production of factors that promote adhesion of Ltin/LTi

cells in the vicinity of the LTo cell (Yoshida et al. 2001).

Upon LTi cell contact with a differentiated LTo cell, fur-

ther adhesion factors are produced, as well as chemoat-

tractants that affect the migration of LTi cells in the

vicinity, attracting LTi cells to this growing aggregation of

cells (Cupedo et al. 2004; Luther et al. 2003). Cell aggre-

gation continues for a 72-hour period, after which no fur-

ther cell aggregation is observed (Randall et al. 2008).

It is believed that these interactions lead to the three

observable phenomena seen in Fig. 1. The simulation

platform we have constructed that models this process can

be used to determine how perturbations in modelled bio-

logical pathways affect these three observations. For the

context of this paper, we are interested in the final observed

emergent behaviour in Fig. 1: the development of clusters

of LTin and LTi cells (immature PP) at the end of the

72-hour development period. By perturbing parameters that

model aspects of the biological system, we can hypothesise

Observable 
Phenomena

Hypotheses

Small clustering of 
hematopoietic cells around 

stromal cells after twelve hours

8-12 large Clusters of 
hematopoietic cells visible along the 

gut length at E17.5

Cell velocity and displacement
reduces around forming cluster

<<expected>>
Cellular interactions lead to 

upregulation of adhesion molecules

<<expected>>
Cells recruited to forming PP

through chemotaxis

Chemokines

LTi CellLTin Cell

Adhesion
Molecules

RET-Ligand 
expressing

Stromal Cell

VCAM 
positive

Stromal Cell

interacts
with interacts

with
interaction
promotes

expression of

upregulates 
expression of

originates
with

originates
withmediated

by

aects motility of
aects motility of

aects 
motility of

upregulates 
expression of

affects mobility of
affects mobility of

affects 
mobility of

Fig. 1 Expected behaviour diagram, detailing the phenomena

observed in PP development, the domain being modelled in our

simulation. These observations (above dotted line) emerge from

interations between biological components (below). This diagram

details the interactions that are currently thought to be responsible for

each observation
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the effect a given parameter/biological pathway has on cell

aggregation.

3 Key model assumptions

In the above description we note that LTin cell migration

into the gastrointestinal tract can be detected from E14.5.

Flow cytometry data has allowed us to estimate the number

of LTin cells in the developing tract 24-hours later, at

embryonic day 15.5 (E15.5). The experimental data has

been used to estimate that 0.45 % of the gut surface area

would be occupied by LTin cells at this point. As we know

the surface area of the gut from stereomicroscopy images,

and the size of LTin cells, we can estimate the number of

cells at E15.5. Cell migration and interactions that lead to

PP development are thought to continue for a further 48 h,

yet there is currently no experimental data available that

specifies cell counts after the E15.5 timepoint. In the

absence of this biological data, our model makes two key

assumptions that concern the LTin cell population:

3.1 Cell count at E15.5

There is a direct link between the flow cytometry estimate

and the number of LTin cells in the model. It has been

suggested that LTin cells have a key role in the early ini-

tiation of PP development (Patel et al. 2012; Veiga-Fer-

nandes et al. 2007), with LTi cells mainly responsible for

cell aggregation at a later stage (van de Pavert and Mebius

2010; Randall et al. 2008) If this hypothesis is true, one

could infer that the size of the population of LTin cells in

the gut may have an effect on the size and number of PP

that develop. To date the effect of a perturbation in the

LTin cell population has yet to be established. Our previ-

ously published model results (Patel et al. 2012; Alden

et al., 2012, 2013) assume that this cell count estimate is an

adequate representation of the biological system at that

timepoint.

3.2 LTin cell migration rate

Further to the above, in the absence of additional biological

data, our model extrapolates the flow cytometry estimate

over the 72 h organ development period, producing a linear

LTin cell input rate. However, the assumption that cells

migrate into the gut in such an ordered manner is ques-

tionable. The effect that a perturbation in LTin cell input

rate may have on PP development is not currently under-

stood. Our previous explorations utilise the model to

examine properties of the cell aggregations that emerge in

the gut (immature PP), aggregations that may be affected

by this assumption.

For a detailed list of all the assumptions that have been

made in the implementation of our model, we direct the

reader to our previously published model description (Patel

et al. 2012; Alden et al. 2012).

4 Method: examining key model assumptions

To further understand the influence of these biological

assumptions on predictions made by our PP simulation, we

have adopted the following strategies:

4.1 Simulations

To determine the impact of a decrease in the LTin cell

population, simulations have been run where the LTin cell

number at E15.5 has been calculated from gut surface area

percentages ranging from 0.05 to 0.45 % (baseline figure),

in 0.05 % increments. To determine any impact of an

increase in LTin cell population at E15.5, simulations have

been performed that model a 2, 3, 4, and 5 fold increase in

LTin cell number. This analysis can be conducted by

simply altering parameter values that specify the LTin cell

population at E15.5.

Two alternative LTin cell input rates have been

explored, replacing the assumed linear migration rate

derived from the flow cytometry estimate. The first is an

exponential rate where cell migration is initially slow, but

increases rapidly. The second utilises a square root function

to model the opposite effect: a rapid rate initial rate of

migration that then decreases over time. All three LTin cell

migration rates lead to the migration of the same number of

cells at the E15.5 timepoint. As this is the only timepoint

where the number of cells has been estimated from bio-

logical data, we deemed it important that this link to the

real system remained while the cell migration rate

assumption was being explored. To examine this assump-

tion, we have had to implement a new cell migration

function within the original simulation, and thus this is

more complex than examining the previous assumption

detailed above.

As our PP organogenesis simulation is an agent-based

implementation, simulated cell behaviour is influenced by

pseudo-random number generation. As this has the poten-

tial to produce different results for identical parameter

conditions, a number of replicate runs are required to

ensure the simulation response is representative of the

specified parameter conditions. We utilised the consistency

analysis technique available in the spartan package (Alden

et al. 2013) to determine the minimum number of simu-

lation runs required to mitigate the effect of inherent sto-

chasticity. For each set of conditions, 300 simulation runs

were performed. Median values for PP number and area
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were obtained for each of the 300 runs, producing a dis-

tribution of 300 results for each condition examined.

4.2 Statistical analysis

Indication of a change in simulation response is achieved

by comparing the distribution of simulation results for a

given set of conditions with results from the calibrated

baseline, using the Vargha-Delaney A-Test (Vargha and

Delaney 2000). The A-Test is a non-parametric effect

magnitude test that compares two populations and returns

the probability that a randomly selected sample from

population one will be larger than a randomly selected

sample from population two. Results above 0.71 and below

0.29 indicate a scientifically significant difference between

the two populations, with a result of 0.5 indicating no

difference. The use of an effect magnitude statistic indi-

cates the extent simulation response changes as the dis-

tance between the parameter value and its calibrated value

increases.

5 Results

5.1 Cell count at E15.5

Figure 2a shows the median PP area obtained for each of

the 300 runs, for each experiment where the population

size is decreased. It is apparent that the size of PP decreases

as the number of LTin cells at E15.5 decreases. Yet cellular

aggregations tend to be mainly LTi cells, with LTin cells

key in initiating the process (Veiga-Fernandes et al. 2007).

For each population size, the simulation median distribu-

tions have been compared with the baseline simulation

using the Vargha-Delaney A-Test, to establish the size of

the effect on simulation response caused by a change in

population size (Fig. 2b). It can be noted that the per-

centage of area from which LTin cell number is calculated

can be reduced by 0.10 % before a change in response is

observed that the A-Test classifies as ‘small’. Reductions in

LTin cell population of greater than 0.25 % lead to a

change in patch area response that approaches the effect

categorised as ‘medium’ by the A-Test, yet never meets

this classification. For patch number however, a clear trend

is apparent between the LTin cell population and the

number of patches that form in the population. This sug-

gests that the LTin cells may not be a significant factor in

cell aggregation, but are key to the number of PP that form

in the gastrointestinal tract.

Figure 2c shows the effect of a 2, 3, 4 and 5 fold

increase in LTin cell population on PP area. Inversely to

the effect above, patch area increases as LTin cell number

increases, yet this begins to stabilise after a threefold

increase. Figure 2d shows the A-Test scores when the

median distributions for each LTin cell population are

compared with distributions from the baseline simulation.

These data suggest that doubling the number of LTin cells

has a small effect on PP area, an effect which increases to

‘medium’ on a threefold increase. However the effect size

stabilises after this point, suggesting a further increase in

LTin cell number has no effect on the responses observed.

5.2 LTin cell migration rate

The double line in Fig. 3a shows the LTin cell migration

rate throughout the simulation, based on the cell number

estimate obtained for E15.5, as explained above. Two

alternative rates have been investigated that replace this

linear rate: an exponential input rate (grey line) and a

square-root function input rate (broken black line). Com-

parison of the result distributions (Fig. 3b) reveals that a

change to a square-root input function, modelling an initial

high migration rate that tails off, has no effect on PP area.

In terms of average patch number, the A-Test results sug-

gest that the effect size is ‘small’, with slightly fewer

patches produced. Replacing the linear input rate with an

exponential rate (Fig. 3c) has a ‘medium’ magnitude effect

in both PP area and PP size, with fewer, smaller PP pro-

duced. This could suggest that initial LTin cell migration

could have a key role in controlling PP characteristics (in

terms of size and number).

6 Discussion

Computer simulations are typically constructed from

available biological data and used in the exploration of

hypotheses concerning phenomenon that are yet to be fully

understood. Our PP organogenesis simulation is a good

example of how such an approach can be utilised to pro-

duce results that inform wet-lab experimentation. Through

adopting the principled design approaches described in the

CoSMoS framework (Andrews et al. 2010), the use of

biological information in the design of the simulation is

clear, as are the areas where biological understanding is

incomplete or abstractions are required (Alden et al. 2012).

Where abstractions and assumptions were necessary, we

have examined each one with experimental biologists and

made suitable, well justified implementation decisions. In

this paper we have described how such assumptions have

been made in the absence of cell counts from multiple

time-points in PP development.

Robust simulations of biological processes, usually

underpinned by experimental data, are subject to a pro-

cess of parameter calibration in attempts to replicate a

desired emergent behaviour (Read et al. 2012). With
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replication of behaviour assured, in silico simulations are

performed that perturb parameters for which a value is

as yet unknown, and statistical techniques utilised to

measure the impact of this perturbation (Alden et al.

2013). It is this impact that is commonly reported when

demonstrating the use of simulation to explore a bio-

logical process.

However, it is rare that simulation developers perform

a similar analysis of the assumptions that were necessary

in the design of their model. Such an approach would
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Fig. 2 Using our PP organogenesis simulation to assess the assump-

tion that the number of cells in the simulation at E15.5 should match

the number observed experimentally. Top row: Investigating a

decrease in LTin cell number at E15.5. Upper/lower markers denote

the maximum and minimum value in the distribution respectively.

Bottom row: Investigating an increase in LTin cell number at E15.5.

Simulations were run 300 times for each LTin cell parameter value

and median values calculated as described in the method. The left

column of the figure contains boxplots of the patch area for each value

the parameter has been assigned. The right column contains the result

of a comparison between patch characteristics observed at baseline

values and those observed when the parameter is perturbed, using the

Vargha-Delaney A-Test (Vargha and Delaney 2000) as described in

the method
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have additional benefits to those gained through param-

eter perturbation: the assumption could prove to have no

impact on simulation behaviour and thus not be an area

of interest for experimental biologists, or conversely

could indicate that additional biological experimentation

is required.

We have examined two key assumptions affecting the

migration of LTin cells in the developing gut of the mouse.
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Fig. 3 Investigating LTin cell migration rate using our PP organo-

genesis simulation, by changing the assumed input rate function as

described in the Sect. 3. a Flow cytometry data has been used to

estimate the number of LTin cells present in the gut at E15.5 (small

dotted line). With cell counts at other timepoints unavailable, the

simulator assumes the linear input rate that meets the number of LTin

cells observed experimentally, and continues at the same trajectory

until E17.5 (double line). Alternative migration rates examined here

were (i) Exponential (gray line) and (ii) Square root (black broken

line) functions. These three lines converge at E15.5 to match the

number of cells observed in flow cytometry. 300 simulation runs were

performed for each migration rate function and medians calculated as

described in the method. b A comparison of the median PP area

observed for each input rate function. c A comparison of the median

number of PP for each migration rate function. Results for the

exponential and square root functions have been contrasted to the

linear input rate using the Vargha-Delaney A-Test (Vargha and

Delaney 2000), the result of which is noted on the plot. Error bars:

Minimum and maximum median patch area
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With cell count data only available for one timepoint,

E15.5, this timepoint is a key link between the biological

system and the simulation. With the support of biologists

specialising in SLO development, we have made assump-

tions that stem from this data: that the number of cells in

the simulation at E15.5 should always match that seen

experimentally, and that this figure is reached through a

linear migration of LTin cells from E14.5, a migration rate

that continues for a further 48 h. In our previous work, we

utilised parameter perturbation to explore the effect that

simulated biological factors, all of which cannot currently

be measured experimentally, have on PP development

(Patel et al. 2012; Alden et al. 2012). Here we have taken

this further and examined the impact that the decisions

made in the design of our simulator (in the domain model)

have on simulation response.

As described above, the development of PP is highly

stochastic, for reasons that are not currently understood

(Cornes 1965). In this paper we have undertaken an ana-

lysis of the first assumption: that the number of cells at

E15.5 matches that observed experimentally. We observe

that simulation response is robust when the experimental

figure is perturbed by ±20 %, but significant changes in

response occur either side of this. The impact of this result

is dependent on the strength of the underlying data. If the

collaborating biologists are satisfied that the experimental

figure is representative across the mouse population, then it

would seem that small perturbations would have no sig-

nificant effect on the end result: the number and size of PP

that develop. Conversely, should the number of LTin cells

in the mouse gut at this timepoint be over a wider range,

the number of cells may impact PP development,

explaining some of the variance. This demonstrates why an

analysis of implemented assumptions may prove useful:

the simulation has identified a window of cell numbers

over which the desired behaviour emerges. It is now for the

biologists to determine whether this range is biologically

plausible. If this is the case, the assumption is fit for our

purpose; if not, this would need to be reconsidered.

Our second analysis examines the assumption that LTin

cell migration rate is linear: an assumption introduced due

to lack of available cell count data from additional time-

points. We observe that a change to a migration rate cal-

culated using a square root function has no impact on

simulation response. Viewing this in isolation would sug-

gest that as a change of function would have no impact on

response, experimental biologists do not urgently need to

seek further cell count data to further understand the bio-

logical system. This is a key use of simulation, as this

conclusion informs future experimental strategy. Yet a

change to an exponential rate does have impact on both

simulation responses (PP area and number), suggesting that

cell counts may be of interest in future experimental work.

Results such as these demonstrate that a statistical

analysis of a perturbation of unknown simulation parame-

ters is not enough when attempting to understand simula-

tion behaviour. Simulation developers need to go further

than this and examine how decisions made in the design of

their simulation platform impact the simulation response.

An analysis such as that detailed above is made much

easier with the adoption of a principled approach to sim-

ulator design and implementation, such as the CoSMoS

framework, where each abstraction and assumption is

documented for full scientific scrutiny (Andrews et al.

2010). Collaboration between experimental biologists and

developers ensures these design decisions are well justified.

Yet this collaboration should then extend to an analysis of

these biology-specific decisions, not only for the sake of

ensuring a suitable simulation response, but to also ensure

that collaborating biologists are aware of the impact such

decisions have not only on simulation design but also on

the design of future laboratory studies.
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