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Abstract Although over a hundred thermal indices can be used
for assessing thermal health hazards, many ignore the human
heat budget, physiology and clothing. The Universal Thermal
Climate Index (UTCI) addresses these shortcomings by using an
advanced thermo-physiological model. This paper assesses the
potential of using the UTCI for forecasting thermal health
hazards. Traditionally, such hazard forecasting has had two
further limitations: it has been narrowly focused on a particular
region or nation and has relied on the use of single ‘determin-
istic’ forecasts. Here, the UTCI is computed on a global scale,
which is essential for international health-hazard warnings and
disaster preparedness, and it is provided as a probabilistic fore-
cast. It is shown that probabilistic UTCI forecasts are superior in
skill to deterministic forecasts and that despite global variations,
the UTCI forecast is skilful for lead times up to 10 days. The
paper also demonstrates the utility of probabilistic UTCI fore-
casts on the example of the 2010 heat wave in Russia.
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Introduction

The extreme heat wave that affected Russia in June 2010
killed over 55,000 people. In China, extreme winter

conditions in January 2008 affected 77million people, leading
to costs of over 21 billion USD (Em-Dat 2014). During the hot
summer of 2003 in western and southern parts of Europe,
55,000 deaths were attributed as heat related (Koppe et al.
2004), 35,000 of which were during the hottest period in early
August. An early understanding of the thermal health hazards
associated with extreme heat or cold can serve to minimize the
impact by increasing preparedness in the affected region. For
this reason forecasting of thermal indices is routinely carried
out by national weather services (Staiger et al. 1997) usually
based on high-resolution numerical weather prediction
(NWP) forecasts.

In order to determine thermal stress, several factors, includ-
ing air temperature, wind velocity, water vapour pressure,
short- and long-wave radiant fluxes, physiological strain, be-
haviour and the autonomous human thermoregulatory system,
need to be considered (Havenith 2001; Jendritzky et al. 2009;
Parsons 2003). There are more than 100 indices used to assess
thermal health hazards. The first indices to be widely used
were based on a simple two-parameter combination of air
temperature and humidity for ‘warm’ indices and air temper-
ature and wind speed (wind chill) for ‘cold’ indices
(Blazejczyk et al. 2012). Over the last 30–40 years, a second
generation of still relatively simple human heat budget models
have been developed which consider the core and the shell of
the human body known as 2-node (core/shell of the human
body), and these have improved the assessment of the thermal
environment. Examples are the ‘physiological equivalent tem-
perature PET’ (Hoeppe 1999; VDI 2008), and OUT-SET*
(Pickup and de Dear 2000), with further examples described
in Blazejczyk et al. (2012). One of the earliest simple heat
budget models was the Klima-Michel model developed by the
German national weather service, Deutscher Wetterdienst
(DWD) (Jendritzky et al. 1979), which translated Fanger’s
(1970) predicted mean vote (PMV) equation to outdoor con-
ditions. This was mainly achieved by writing a radiation
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scheme in order to calculate the mean radiant temperature Tmrt
(by which short- and long-wave radiant fluxes refer to an
upright standing human being) and was based on easily avail-
able meteorological data. The outcome is ‘perceived temper-
ature PT’ that relates in its development to an improved
radiation scheme and the 2-node thermo-physiology outside
of the PMV comfort region (Staiger et al. 1997; VDI 2008;
Staiger et al. 2012). The radiation scheme for calculating Tmrt
based on NWP meteorological data in our paper is currently
used by the DWD.

To calculate the entire heat exchange between the human
body and its environment, 2-m air temperature (Ta), wind
velocity at body height derived from 10-m wind speed (v),
2-m water vapour pressure (e) and Tmrt are needed as meteo-
rological input variables. The limitations of the two-parameter
indices are obvious because they do not consider the human
heat budget and hence ignore issues such as physiology and
clothing. Although the 2-node heat budget models represent
an improvement over the simple indices, they still make
several simplifications considering thermo-physiology and
heat exchange theory (for example, the effects of clothing).
To exploit more recent scientific developments and to mini-
mize the various shortcomings of the former assessment pro-
cedures (Jendritzky et al. 2012), the Universal Thermal Cli-
mate Index (UTCI) was developed using one of the most
advanced and comprehensively validated (Psikuta et al.
2012) multi-node models of human heat transfer and
thermo-regulation (Fiala et al. 2012; Fiala et al. 2001). The
UTCI development was performed by a multidisciplinary
expert team in the framework of a commission of the Interna-
tional Society of Biometeorology (ISB) and of COSTAction
730 (Jendritzky et al. 2009) under the ‘umbrella’ of the World
Meteorological Organisation Commission for Climatology
(WMO-CCl). The UTCI can be applied to key applications
in human biometeorology, such as daily forecasting and warn-
ings, urban and regional planning, environmental epidemiol-
ogy and climate impact research; it is applicable for all
climates.

Forecasts of thermal indices have to rely on NWP models
to provide the required meteorological input at future times.
The quality of the thermal index forecast will be dependent on
the quality of the meteorological forcing as well as on the
definition of the index itself. Forecasts of thermal indices are
usually made using single (deterministic) runs of NWP
models. However, recent advances in NWP indicate that
ensemble prediction systems (EPS) have higher skill than
deterministic forecasts in forecasting meteorological variables
over the medium term of 3 to 10 days (Bartholmes et al. 2009;
Pappenberger et al. 2011b; Richardson 2000; Roulin 2007).
Ensembles account for the unavoidable uncertainties in
weather forecasting by providing multiple future weather
scenarios, allowing the forecast to be expressed in terms of
probabilities. This probabilistic information allows

assessment of the most likely and extreme scenarios, facilitat-
ing better preparedness for any stakeholders involved (Pitt
2008). In addition, the potential costs and losses of precau-
tionary actions, such as early warning provision to fuel sup-
pliers, water resources and health care providers can be care-
fully assessed (Richardson 2000).

The UTCI was designed to be applicable in all climate
regions, and global NWP ensembles can be used to forecast
the UTCI anywhere in the world. However, before such
forecasts can be used, it is essential to assess their skill over
the area of interest. For a comprehensive evaluation, observa-
tions must be available on a global scale and be comparable in
terms of error structure to the forecasts. Whilst direct obser-
vational measurements are inhomogeneously distributed glob-
ally (very sparse in some regions) and need careful quality
control, recently developed reanalyses provide consistent,
quality-controlled historical analysis of the state-of-the-global
atmosphere based on a wealth of ground, atmospheric and
satellite observational data. Here, the ERA-Interim reanalysis
(Dee et al. 2011) is used as a global observation proxy.

Global ensemble forecasts from the integrated forecasting
system (IFS) of the European Centre for Medium-Range
Weather Forecasts (ECMWF) are used to provide the meteo-
rological input required for the UTCI. The skill of the UTCI
forecasts will depend on the quality of this meteorological
forcing. The meteorological performance of the ECMWF
ensemble forecasts is evaluated in detail elsewhere
(Hagedorn et al. 2008, 2012; Hamill et al. 2008; Pinson and
Hagedorn 2012; Richardson et al. 2013), and only a brief
discussion is included here.

This paper provides an assessment of the UTCI using
probabilistic NWP forcing on a global scale, demonstrating
that the UTCI can be readily combined with forecast data. The
objectives of this paper are to analyze the global behaviour of
the UTCI using ECMWF reanalysis data and to assess the
predictability of the UTCI using medium-range (10-day)
probabilistic forecasts. The added value of these global prob-
abilistic UTCI predictions will be assessed. This evaluation,
using ECMWF ensembles as the meteorological forcing, pro-
vides a benchmark against which other forecasting systems
can be compared.

Methodology

The UTCI is calculated globally using meteorological input
from ECMWFs high-resolution and ensemble forecasts. The
quality of these forecasts is assessed by comparing the pre-
dicted UTCI against analyzed values computed using reanal-
ysis data (as a proxy for the truth, in the absence of global
observational data). Both deterministic and probabilistic eval-
uation scores are used.
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The Universal Thermal Climate Index (UTCI)

The UTCI is the result of an approach which developed more
than a decade ago in the International Society of Biometeo-
rology (ISB) Commission 6 and was later reinforced byCOST
Action 730 (Jendritzky et al. 2009). The various aspects of
UTCI are comprehensively described in the final report of
COSTAction 730 (Jendritzky et al. 2009) and by 10 papers in
a UTCI special issue on of Int J Biometeorol (56; 2012). The
development pooled the resources of multidisciplinary experts
in the fields of thermo-physiology, biology, mathematical
modelling, occupational and environmental medicine, cloth-
ing research and meteorological data handling.

The UTCI is based on Fiala et al.’s (2012, 2001) advanced
multi-node model of thermo-regulation. Thermo-regulation is
the ability of an organism to keep its body temperature within
certain boundaries, even when the surrounding temperature is
very different (Eq. 1).

UTCI∼ f Ta; Tmrt; v; eð Þ ð1Þ

Fiala’s model is coupled with a state-of-the-art clothing
model (Havenith et al. 2012) that takes into consideration
Ta-driven behavioural adaptation of clothing insulation of
the general public (see Fig. 1). The UTCI has been derived
conceptually as an equivalent temperature. Thus, for any
combination of Ta, Tmrt, v, and e v, i.e. the thermal stress of
the actual environment, UTCI is defined as that air tempera-
ture that would elicit the same dynamic physiological re-
sponse (strain) under a set of reference conditions. The refer-
ence conditions are defined as follows: walking at a speed of
4 km/h (which is equivalent to a metabolic rate of 2.3 METor
135W/m2), Tmrt equal to UTCI, a 10-mwind speed of 0.5 m/s
and relative humidity of 50 % that is capped at a water vapour
pressure of 20 hPa for Ta > 29 °C. The thermal stress
assessment scale (see Table 1) has been derived from the

modelled physiological and psychological response (Broede
et al. 2012).

A state-of-the-art adaptive clothing model is integrated into
the UTCI. This takes account of behavioural adaptation of
clothing insulation for the general urban population and re-
duction of thermal and evaporative clothing resistance by
wind and limb movements of the wearer. However, due to
the lack of a reliable global database, the clothing model
currently focuses on Western-style clothing. Hence, an im-
provement on the regional scale could be imagined by using
data derived for local (traditional) clothes. Whilst the basic
thermo-regulation of human beings is the same all over the
world, there are differences in the sensitivity of local
populations to thermal stress due to behavioural and
physiological acclimatization. For indoor comfort, De Dear
and Brager (2002) presented an ‘adaptive model of thermal
comfort’. Unfortunately, for outdoor conditions, there is no
generally accepted objective procedure available which ex-
plains all factors determining the level of adaptation on the
population or individual level in all regions and scales. With
respect to this issue, a meaningful interpretation of the stan-
dard thresholds to be tailored to the local experience is re-
quired when using UTCI (as is also true for any other indices).
However, Koppe and Jendritzky (2005) suggested a possibly
suitable approach which adjusts the thresholds of the thermal
stress categories with respect to the thermal conditions that
happened in the past couple of days to weeks.

Calculating the UTCI equivalent temperature by repeatedly
running the original Fiala multi-node model is computation-
ally intensive and thus too slow to be used for operational
numerical weather forecasts and climate simulations. There-
fore, a fast calculation using a polynomial approximation
procedure has been developed and made available for open
access (Broede et al. 2012). The numerical code to calculate
Tmrt with NWP data was developed by Staiger (pers. comm.)
and is provided to the authors courtesy of the DWD.

The ECMWF forecasting system

ECMWF forecasts

Here, ECMWF’s 10-day high-resolution forecasts (HRES)
and 15-day ensemble forecasts (ENS) (Richardson et al.
2013) are used to provide the meteorological input to the
UTCI predictions. The ENS takes into account the forecast
uncertainty and consists of a control run and 50 perturbed
simulations. These ensemble members are generated by a
combination of perturbations in the initial conditions of the
forecast and perturbations during the model integration to
account for uncertainties in the model equations. The spread
among the ensemble members is a measure of the confidence
in the prediction. The first 10 days of the ENS are performed

Fig. 1 Concept of the UTCI derived from the dynamic multivariate
response of the thermo physical UTCI-Fiala model (Fiala et al. 2012),
which was coupled with a clothing model (Havenith et al. 2012). Tre
rectal temperature, Tskm mean skin temperature, Mskdot sweat produc-
tion, Shiv heat generated by shivering. Figure after Błażejczyk et al. 2013
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at a spatial resolution of approximately 32 km×32 km forced
by persisted sea surface temperature (SST) anomalies (up-
dated every 24 h). After day 10, the model is coupled to the
ocean model and has a spatial resolution of roughly 64×
64 km. The 10-day high-resolution forecast uses the same
model version as the ENS system, but runs are performed at
a much higher horizontal (roughly 16×16 km) and vertical
resolution.

ECMWF reanalysis: observation proxy

Reanalysis involves reprocessing observational data
spanning an extended historical period, incorporating a
very large number of ground-based, ocean-, atmosphere-
and satellite-based observations. A data assimilation sys-
tem is used to transform these millions of observations
into the model space to produce a dataset that can be
regarded as a proxy for observations but with the ad-
vantage of providing spatio-temporal resolution unob-
tainable with a normal observational network. It should
be noted that reanalyses, although constrained by the
observations and data assimilation system, may suffer
from effects of model errors; these impacts are discussed in the
documentation of the reanalysis datasets (Dee et al. 2011). The
latest global atmospheric reanalysis produced by ECMWF is
ERA-Interim (ERA-I), which extends from 1 January 1979 to
the present date (Dee et al. 2011). Gridded data products
include a large variety of 3-hourly surface parameters,
describing weather as well as ocean-wave and land-
surface conditions, and 6-hourly upper-air parameters
covering the troposphere and stratosphere. In this study,
we use ERA-Interim as a proxy for global observations
to generate an analysis of UTCI which will be used as a
benchmark for forecast skill calculations.

To evaluate the skill of UTCI forecasts, 4 years of data were
processed. A UTCI forecast was computed every day (with a
lead time of 10 days) from 1 January 2009 to 31 December
2012 using both the high-resolution and 51-member ENS
forecast.

Evaluation scores

A set of well-established skill scores is used to assess the skill
of the UTCI predictions. Deterministic forecasts from both

HRES and ENS were evaluated using the anomaly correlation
coefficient (ACC). The Brier skill score (BSS) and the con-
tinuous rank probability skill score (CRPSS) were used to
evaluate the ENS probabilistic forecasts.

Anomaly correlation coefficient (ACC)

The anomaly correlation coefficient is a measure of the sim-
ilarity between two signals or patterns (ignoring any potential
offsets or biases). Both forecasts and observations are first
expressed as anomalies from climatology before computing
the correlation between them. This minimizes the seasonal
effect (Stevenson 2006).

ACC ¼
∑m

i¼1
bx0
i− bx0−Þðx0

i−x0̄
� �

Msbx 0sxi
ð2Þ

xi
' and bx0

i are the observed and forecast anomalies, respec-
tively. sbx0 and sxi are the standard deviations of the anomalies.

M being the number of cells and the overbar expressing the
mean.

The higher the anomaly correlation, the better is the
performance of a forecast system. The ACC, whilst a
good measure of forecast skill, is not sensitive to bias,
and hence, a good correlation should not be used in
isolation to assess a forecast if bias is important. The
ACC is used to assess deterministic forecast skill. How-
ever, it does not provide information on the range of
possibilities or uncertainty in the forecast, which is
provided by an ensemble of forecasts. Two probabilistic
scores are therefore also used; the continuous rank
probability skill score (CRPSS) (Hersbach 2000) and
the Brier skill score (BSS) (Murphy 1973).

Brier skill score (BSS)

The Brier score measures the mean squared probability error
for binary events (e.g. UTCI greater than 32 °C, see Eq. 3).
The climatological probability of the event can be considered
as a no-skill reference forecast. The Brier skill score measures
the improvement of the ECMWF forecasts with respect to this
reference. The Brier skill score has a maximum of 1
(indicating a perfect deterministic forecast; Murphy 1973),

Table 1 UTCI equivalent temperature and stress category (Broede et al. 2012)

UTCI (C) range >46 38–46 32–38 26–32 9–26 0–9 0 to −13 −13 to −27 −27 to −40 <−40

Stress
category

Extreme
heat
stress

Very strong
heat stress

Strong
heat
stress

Moderate
heat
stress

No thermal
stressa

Slight cold
stress

Moderate
cold stress

Strong cold
stress

Very strong
cold stress

Extreme
cold stress

a Thermal comfort zone, which provides a subjective satisfaction with the thermal environment defined for UTCI values between 18 and 26 °C
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whilst positive values indicate higher skill than the climate
benchmark.

BSS ¼ 1−

1

n

Xn

t¼1
bpt−yt

� �2

1

n

Xn

t¼1
c−ytð Þ2

ð3Þ

BSS Brier skill score
bpt Probability assigned to the event by the tth forecast
yt Equals 1 if the tth observation corresponds to an event,

0 otherwise
c Climatological probability of the event (here, based on

a 30-year record)
n Number of cases

Continuous rank probability skill score (CRPSS)

The continuous rank probability score (CRPS) is calculated as
the square differences in the cumulative probability space
between a probabilistic forecast and observation (see Eq. 4).
It is transformed into a skill score (CRPSS) by comparing it to
a climatological forecast based on a 30-year record. Seasonal
means derived from the reanalysis data are used to provide the
reference climate. The higher the CRPSS, the better the fore-
cast, with a maximum value of 1 and positive values indicat-
ing skill with respect to the climate benchmark.

CRPS ¼ ∫∞−∞ P xð Þ−H x−xað Þ½ �dx ð4Þ

where x is the forecast variable, xa is the observed value, P(x)
is the cumulative distribution function of x and H(x−xα) is the

Heaviside function which is 0 when (x−xα)<0 and 1
otherwise.

Results

Performance of ECMWF NWP forecasts

Before considering the skill of the UTCI predictions, we briefly
consider the forecast skill of the meteorological parameters used
as input to the UTCI calculations. The performance of the
ECMWF forecasting system is published in annual reports
(Richardson et al. 2013) and regularly updated in the ECMWF
Newsletters and on the ECMWF web site (http://www.ecmwf.
int). As an example, Fig. 2 shows the CRPSS for 2011–2012 at
12UTC in Europe as a function of lead time for ENS forecasts of
precipitation, 2-m temperature and 10-m wind speed (three of
the key variables used in the UTCI calculation, verification
against ground observations, SYNOP stations). The CRPSS
decreases with increasing lead time indicating that skill de-
creases relative to the climate reference. The skill is clearly
positive for temperature and precipitation and negative for wind
speed. The low CRPSS for 10-m wind speed compared to 2-m
temperature or precipitation is due to systematic errors in the
wind speed forecast, towhich the CRPS is sensitive; for a further
discussion on wind forecast performance, see Pinson and
Hagedorn (2012). This negative skill indicates that the perfor-
mance of the wind forecast could negatively affect the perfor-
mance of the UTCI forecast. However, the UTCI is a non-linear
combination of all these variables, and the effect of the wind
error on the skill of the final UTCI product cannot be predicted
in advance.

Fig. 2 CRPSS for 2011–2012 at
12UTC in Europe as a function of
lead time for precipitation, 2-m
temperature and 10-m wind speed
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Statistical post-processing of the ensemble forecast can, in
principle, correct systematic errors in the meteorological pa-
rameters used by the UTCI. Indeed, studies have demonstrat-
ed substantial improvements in ECMWF probabilistic fore-
casts for 10-m wind (Courtney et al. 2013) as well as for 2-m
temperature (Hagedorn et al. 2008, 2012) and precipitation
(Hamill et al. 2008). However, in the present study, the
ECMWF forecast data is used directly with no attempt to
account for systematic errors in the model. The skill of the
resulting UTCI forecasts can therefore be considered as a
lower bound to what may be achievable with appropriate
calibration.

Global UTCI climatology

The benchmark used for the evaluation of the UTCI forecasts
is a 30-year climatology of heat stress and cold stress across
the globe derived using the ERA-I reanalysis. For 30 years of
data, Fig. 3a, b shows the percentage of days in which the
daily maximum UTCI exceeds 32 °C for January and July,
respectively. This UTCI value marks the boundary for strong
heat stress (see Table 1). A UTCI of −13 °C indicates the
boundary for strong cold stress (see Table 1), and the percent-
age of days with UTCI below this threshold are displayed in
Fig. 3c, d. Figure 3a, b uses the daily maximum UTCI,

Fig. 3 a Fraction of days of the
UTCI (daily maximum) greater
than 32 °C in July; b fraction of
days of the UTCI (daily
maximum) greater than 32 °C in
January; c percentage of days of
the UTCI (daily minimum) lower
than −13 °C in July; d percentage
of days of the UTCI (daily
minimum) lower than −13 °C in
January

Fig. 4 Plot of meteorological
inputs against UTCI to illustrate
the associated dependencies
based on all grid points and all
reanalysis data
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whereas Fig. 3c, d is calculated using the daily minimum
UTCI. As expected, the index shows a clear seasonal
pattern. Strong heat stress affects almost all southern
hemisphere land areas in January, northern hemisphere
(especially equatorwards of 40 N) in July and tropical
regions in both months. In addition, there are significant

regional variations, mainly related to orography. Strong
cold stress mainly affects the winter-time northern hemi-
sphere (Fig. 3c, d), with notable longitudinal gradients
across Europe and western North America, consistent
with the climatological temperature patterns. However,
it should be noted that there is not a 1:1 correspondence
with temperature: as expected, the UTCI is providing
additional information (as discussed in the next section).
Some regions are subject to stress over 90 % of days in
these months, for example, large parts of Australia are
under permanent strong heat stress in January, whereas
large parts of Asia and North America are under almost
constant strong cold stress in January.

Sensitivity to NWP forecast variables

In order to understand the relationship between the NWP
forecast variables used to generate the UTCI and the UTCI
values themselves, sensitivity plots were constructed
(Fig. 4). These show the relationship between computed
UTCI values and each meteorological input variable for the
entire reanalysis period and all grid points. Although the
UTCI has some linear dependencies on air temperature, a
given temperature can lead to a wide range of UTCI
values. This underlines the value of calculating the UTCI
rather than relying only on temperature forecasts as an
indicator of potential heat stress. The UTCI also shows
sensitivity to wind, which shows a distinct lower boundary.
The UTCI is more sensitive to wind than previous indices
because it accounts for changes in clothing insulation and
vapour resistance caused by wind and body movement
(Havenith et al. 2012). Figure 4a shows a distinctive tailing
behaviour at wind speeds of over 17 m/s; this is because of
the polynomial approximation for the UTCI used in this

Fig. 5 Maximum lead time at
which anomaly correlation
reaches 60 %. Each area is sub-
divided into three boxes (a, b, c)
as labelled on figure. The left-
hand box represents the high-
resolution forecast, the middle
box the control forecast and the
right-hand box the ensemble
mean

Table 2 List of regions used in this study adapted from Giorgi and
Francisco (2000)

Name Acronym Latitude (°) Longitude (°)

Australia AUS 45 S–11 S 110 E–155 E

Amazon Basin AMZ 20 S–12 N 82 W–34 W

Southern South America SSA 56 S–20 S 76 W–40 W

Central America CAM 10 N–30 N 116 W–83 W

Western North America WNA 30 N–60 N 130 W–103 W

Central North America CAN 30 N–50 N 103 W–85 W

Eastern North America ENA 25 N–50 N 85 W–60 W

Alaska ALA 60 N–72 N 170 W–103 W

Greenland GRL 50 N–85 N 77 W–10 W

Mediterranean Basin MED 30 N–48 N 10 W–40 E

Northern Europe NEU 48 N–75 N 10 W–40 E

Western Africa WAF 12 S–18 N 20 W–22 E

East Africa EAF 12 S–18 N 22 E–52 E

Sahara SAH 18 N–30 N 20 W–65 E

Southern Africa SAF 35 S–12 S 10 W–52 E

Southeast Asia SEA 11 S–20 N 95 E–155 E

East Asia EAS 20 N–50 N 100 E–145 E

South Asia SAS 5 N–30 N 65 E–100 E

Central Asia CAS 30 N–50 N 40 E–75 E

Tibet TIB 30 N–50 N 75 E–100 E

North Asia NAS 50 N–70 N 40 E–180 E
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study which has not been optimized beyond this range. A
limit of a maximum wind speed of 17 m/s should thus be
considered in the future. This is responsible for the ex-
tremely low UTCI values. The solar elevation angle clearly
influences the lower bound for the UTCI, as do the solar
and thermal radiation. These input variables are themselves
correlated. This makes a full interpretation more difficult as
higher order dependencies (dependencies on more than one
input variable) cannot be determined from this one-
dimensional analysis (Cloke et al. 2008).

UTCI forecast

A UTCI forecast was calculated every day (with a lead time of
10 days) from 1 January 2009 to 31 December 2012 using

both the HRES and 51-member ENS inputs. The skill is
assessed for these 4 years of data using ACC, BSS and
CRPSS.

Similarity between forecast and observed UTCI

The deterministic high-resolution, control and ensemble mean
forecasts of UTCI are compared with observations using the
ACC. In Fig. 5, the maximum lead time for which ACC is
above 60 % is shown for a list of regions across the globe (see
Table 2). The skill is shown for each of the three available
forecasts: the left-hand box of each box indicates the skill of
the high-resolution forecast, the middle box the skill of the
control forecast and the right-hand box the skill of the ensem-
ble mean. For example, the colour green indicates that the

Fig. 6 Anomaly correlation for
ensemble mean forecasts of UTCI
for different regions for lead times
of 1 day (a) and 10 days (b) . The
box plots show the uncertainty
derived through bootstrapping.
The white circle illustrates the
mean whilst the box indicates the
25th and 75th percentile. The
whiskers of the box plot extend to
the 95th and 5th percentile. Blue
circles indicate outliers
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ACC drops below 60 % at a lead time of 4–6 days. The
maximum predictability according to thismeasure is 6–8 days,

with most regions achieving values of 4–6 days. In general,
the ensemble mean displays higher predictability than the

Fig. 7 Anomaly correlation for
the Northern European area and
the three different UTCI forecasts.
The box plots show the
uncertainty derived through
bootstrapping. The circle
illustrates the mean whilst the box
indicates the 25th and 75th
percentile. The whiskers of the
box plot extend to the 95th and
5th percentile. Coloured circles
indicate outliers

Fig. 8 Maximum predictability
until Brier skill score reaches zero
(equivalent to no skill) a for the
control forecast being above
32 °C, b for the control forecast
being above 32 °C, c for the
ensemble forecast being below
−13 °C, d for ensemble forecast
being above 32 °C, e for the high-
resolution forecast being below
−13 °C, f for the high-resolution
forecast being above 32 °C. The
colour scale indicates the
maximum predictability meaning
dark red stands for skilful
predictability of 10 days
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other two forecasts. The results in Fig. 5 are very
encouraging in terms of forecast skill but give little
indication about the uncertainty and spread of the
ACC. The uncertainty is shown using box plots of the
anomaly correlation for the different regions for lead
times of 1 day (Fig. 6a) and 10 days (Fig. 6b) for the
ensemble mean. The uncertainty is derived by
bootstrapping the sample using 80 % of available data
points. Uncertainty increases with lead time, and the
different regions exhibit varying spread. For example,

the Mediterranean Basin, Sahara and Northern Europe
show comparatively small variation compared to Central
America for day 1, which reflects the distribution also
found through the verification of the meteorological
forecasts (not shown). At the lead time of 10 days,
none of the distributions for the different regions are
significantly different. In Fig. 7, the ACC for the high-
resolution, control and ensemble mean forecasts are
plotted for the Northern European area for all lead times
from 1 to 10 days. There is a clear drop of ACC with

Fig. 9 Maximum predictability:
forecast lead time at which the
CRPSS reaches zero (equivalent
to no skill) for the ensemble
forecast. The colour scale
indicates the maximum
predictability meaning dark red
stands for skill full predictability
of 10 days

Fig. 10 UTCI forecasts for Moscow during the Russian heat wave of
summer 2010. The top line represents the observations. Red indicates
days where the UTCI exceeds 32 °C. All other lines show forecasts issued
on particular days. For example, the second line shows a forecast issued
on the 16th of July. Each forecast is sub-divided into three sub-boxes. The

top sub-box shows the high resolution (red when the forecast UTCI
exceeds 32 °C). The middle sub-box shows the control (red when the
forecast UTCI exceeds 32 °C). The bottom sub-box shows the ensemble,
and here, the percentage of ensemble members with UTCI exceeding
32 °C is colour coded
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lead time, whilst the ensemble mean shows higher skill
overall (although it is only a statistically significant
difference in the lead times of day 1 and 2—not
shown).

Skill in probabilistic prediction of cold and warm stress

The previous analysis considered deterministic predictions of
the UTCI in general. This section assesses the probabilistic
information in the full ensemble distribution and focuses on
the important ‘strong’ UTCI categories. The BSS for the
thresholds given by strong heat stress (>32 °C) and strong
cold stress (<−13 °C) are analyzed. When the Brier skill score
drops below zero, there is no skill compared to using climate
information. Figure 8 displays the lead time at which the zero
skill threshold is crossed. For example, the BSS for the control
forecast of the cold stress is shown in Fig. 8a. Large parts of
the globe exhibit a predictability of 9 days, although the
predictability is lower in central Europe, America, parts
of China and South America. For the UTCI threshold of
<−13 °C, particular mountainous areas (such as the Alps
or Andes) have low skill values, probably due to the
slightly different underlying topography of reanalysis,
high resolution and control. This may be addressed through
height correction but should be performed on a regional scale.
The ensemble predictions have a higher skill than the control
or high-resolution forecast for both strong cold and strong heat
stress, confirming the benefit of using the probabilistic infor-
mation in the ensemble. Overall predictability is lower for
strong heat stress than for strong cold stress, but otherwise,
spatial patterns are very similar between the two thresholds.

Skill in predicting the forecast distribution

The BSS only evaluates the prediction of exceeding a chosen
threshold and not the performance of the forecast over the entire
UTCI distribution. This can be achieved using the continuous
rank probability skill score (CRPSS). Values of the CRPSS
below zero mean that the forecast has no skill. In Fig. 9, the day
at which the CRPSS for the ENS probabilistic forecast of UTCI
drops to zero is plotted. For example, dark red means that the
CRPSS is above zero for the entire forecast range up to 10 days.
A predictability of 9 days is achieved for almost all areas of the
globe, with the main exception being parts of central Africa,
where predictability is slightly lower at 8 days (Fig. 9).

Case study: Russian heat wave of summer 2010

In Summer 2010, a blocking anticyclone dominated the weather
over Europe andwestern Russia. This drove cold air towards the
Indian Ocean and caused severe flooding in Pakistan as it
interacted with warm and humid air. At the same time, warm
air from Africa was drawn into western Russia leading to a heat

wave with temperatures rising to unprecedented levels (Ghelli
et al. 2010). The ECMWF forecasting system demonstrated
good predictability for this event. Figure 10 shows a sequence
of UTCI forecasts for Moscow where the heat wave started in
the last week of July (Ghelli et al. 2010; Katsafados et al. 2013).
The top line represents the observations: red indicates days of
strong heat stress (UTCI higher than 32 °C). The second row
shows the forecasts issued on 16 July; rows below show subse-
quent forecasts, with the last row showing the forecasts from 27
July. Each forecast row is sub-divided into three sub-boxes. The
top sub-box shows the high-resolution forecast (red when the
forecast UTCI exceeds 32 °C). The middle sub-box shows the
control (red when the forecast UTCI exceeds 32 °C). The
bottom sub-box shows the ensemble forecast, and here, the
percentage of ensemble members forecasting UTCI to exceed
32 °C is colour coded. From 10 days before the event, the
ensemble forecast shows a significant probability for strong heat
(for example, the forecast issued on 16 of July is green for the 23
July meaning that up to 25 % of the ensemble members had a
UTCI exceeding 32 °C, and yellow for the following days,
showing an increase probability of up to 50 %). The signal for
the event becomes stronger in the later forecasts: the probabili-
ties for the strong heat stress become progressively higher. The
high resolution and control also indicate a possible event, al-
though at the longer range, the timing of this is not consistent
from day to day (the signal flip-flops, or changes) (Pappenberger
et al. 2011a). These results indicate that a UTCI forecast could
have been used to provide an early warning of the onset of this
heat wave.

Conclusion

The skill in forecasting the UTCI has been analyzed for up to
10 days lead time using high-resolution and ensemble NWP
forecasts as input. All forecasts have skill in the medium range
(up to 10 days); however, the probabilistic UTCI forecasts
were the most skilful. The UTCI skill was analyzed globally
by comparing the forecast values to UTCI calculated with
reanalysis data as a proxy for observation. Although there is
a loss in predictability due to the coarse resolution of the
global model, the skill demonstrated is very encouraging. It
suggests that global probabilistic UTCI predictions can pro-
vide a useful global overview of thermal health hazards. The
skill of the UTCI predictions shows some regional variations,
for example, it is lower in some high altitude areas, and has a
strong sensitivity to wind, in particular in coastal regions,
which may be related to a maximum wind speed limit under
which the UTCI is applicable in this study. Overall, predict-
ability is slightly lower for heat stress than for cold stress. This
may be explained by forecast model errors in forecasting of
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the short- and long-wave radiant fluxes which play a much
less important role in the cold.

The skill of the UTCI forecasts depends on the quality of
the meteorological input as well as on the construction of the
index itself. Here, ECMWF forecasts were used to demon-
strate the capability of a current operational global NWP
system to predict heat and cold stress using the UTCI. No
calibration was applied to the meteorological data to account
for model errors, and the resulting UTCI forecast skill can be
considered as a benchmark for what may be achieved with
calibration or with other models.

The global overviews are not designed to replace higher
resolution national forecasts of thermal indices. However, in
locations where only simple indices are employed (which do
not possess the same degree of thermo-physiological sophis-
tication as the UTCI), this global overview could be of great
utility. The evidence provided in this paper suggests that in
data sparse regions or when seeking a globally coherent
overview of thermal stress risk, the UTCI can be used for
disaster preparedness. Considering the global movement of
people, the application of a common reference thermal assess-
ment procedure is recommended.

Currently, many countries have implemented Heat Health
Warning Systems which have been promoted by the World
Meteorological Organization and World Health Organization.
These are usually based on simplified thermal assessment
procedures, and typically, the national weather services are
responsible for the associated warnings. This study shows that
UTCI can be applied in daily forecasts and early warnings of
extreme weather required for disaster preparedness plans. It
also suggests that the use of UTCI may bring added value to
current local forecasts in many regions of the world.
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