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Salmonellae initiate disease through the invasion of host cells within the intestine. This ability to invade requires the coordi-
nated action of numerous genes, many of which are found within Salmonella pathogenicity island 1 (SPI-1). The key to this pro-
cess is the ability of the bacteria to respond to the environment, thereby upregulating the necessary genes under optimal condi-
tions. Central to the control of SPI-1 is the transcriptional activator hilA. Work has identified at least 10 different activators and
8 different repressors responsible for the control of hilA. We have previously shown that hilE is a Salmonella-specific negative
regulator that is able to repress hilA expression and invasion. Additionally, fimZ, a transcriptional activator responsible for the
expression of type I fimbriae as well as flagellar genes, has also been implicated in this process. fimZ is homologous to response
regulators from other two-component regulatory systems, although a sensor for the system has not been identified. The phoPQ
and phoBR regulons are both two-component systems that negatively affect hilA expression, although the mechanism of action
has not been determined. Our results show that PhoBR is capable of inducing fimZ expression, whereas PhoPQ does not affect
fimZ expression but does upregulate hilE in an FimZ-dependent manner. Therefore, phosphate (sensed by PhoBR) and magne-
sium (sensed by PhoPQ) levels are important in controlling hilA expression levels when Salmonella is in the intestinal
environment.

Salmonellae have caused disease for many years. These Gram-
negative bacteria can be transmitted through meat, dairy

products, or eggs, from animals through the fecal-oral route, and
indirectly via fecally contaminated water (1). The CDC tracks two
forms of the disease, salmonellosis and typhoid fever. Salmonel-
losis is a mild form of disease that is typically confined to the
gastrointestinal tract. It produces symptoms of fever, abdominal
cramps, nausea, and diarrhea (2). A common feature of gastroen-
teritis or typhoid fever is the ability of Salmonella to invade host
cells.

Salmonella contains an island known as pathogenicity island 1
(SPI-1). This island is responsible for encoding both the structural
proteins necessary for creating a type III secretion needle complex
as well as some of the secreted effectors responsible for the manip-
ulation of host cells (3, 4). Central to the control of this island is
the transcriptional activator hilA, which needs to be upregulated
for invasion to occur. This upregulation leads to the increased
expression of all the other genes contained within SPI-1 (5, 6).
Many different activators and repressors of hilA have been iden-
tified. These activators respond to a myriad of environmental sig-
nals, specifically, osmolarity, oxygen, pH, growth state, short-
chain fatty acids, bile, and temperature (6–12), leading to precise
control of hilA expression. The transcriptional activators HilD
and HilC play an important role in controlling hilA expression.
Work has shown that both genes are encoded within SPI-1 (13–
15), bind directly to promoter sequences upstream of hilA, and are
required for hilA induction even in the absence of multiple repres-
sors (16–19). In addition, RtsA, a transcriptional activator en-
coded outside SPI-1, works in conjunction with HilD and HilC in
a feed-forward loop (20, 21). The interactions of these three acti-
vators lead to the upregulation of hilA. Many other transcriptional
activators have also been identified as being involved in this pro-

cess. These include the genes csrAB, sirA-barA, fis, fliZ, fadD, fur,
mlc, dsbA, and ompR-envZ (22–31).

Studies of hilA regulation have also identified many different
repressors of hilA expression. Some of these genes include hha,
lon, hilE, ams, rtsB, and pag (21, 32–34). In addition, two-compo-
nent regulators have been shown to impact hilA expression as well.
These regulators are typically composed of a histidine kinase that
responds to specific extracellular signals by being autophosphory-
lated. The phosphorylation of the sensor initiates a phosphorelay
in which phosphate is transferred to its cognate response regula-
tor. This phosphorylation causes the response regulator to activate
multiple genes (35).

The phoPQ two-component system is an important regulator
of hilA expression (36, 37). The sensor protein PhoQ resides in the
membrane of the bacterial cell and stops dephosphorylating the
response regulator PhoP when magnesium levels drop to micro-
molar levels. When PhoP is constitutively expressed and phos-
phorylated, hilA expression is reduced by 9-fold, which correlated
to a 63-fold decrease in HEp-2 cell invasion (36, 37). The molec-
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ular mechanism for hilA repression by PhoPQ has not been char-
acterized.

The phoBR two-component system also represses hilA expres-
sion. This system detects the levels of phosphate in the extracellu-
lar environment. When phosphate levels are low, the system is
activated by the autophosphorylation of the sensor PhoR followed
by the activation of the response regulator PhoB. The activation of
PhoB leads to the induction of more than 21 genes within Salmo-
nella enterica serovar Typhimurium. Many of these genes are in-
volved in transporting phosphate from the environment into the
bacterial cell (38). PstS is a protein that represses the PhoR sensor
under conditions of high environmental phosphate. When pstS
was mutated, it led to a 5-fold decrease in hilA expression, which
subsequently reduced HEp-2 cell invasion by 5-fold (29). As is the
case with phoPQ, the nature of how the PhoB signal leads to hilA
repression is not understood.

Previous work by our research group has shown that HilE
interacts with HilD, which prevents the activation of hilA by
HilD (39). Due to the importance of HilE in mediating repres-
sion of Salmonella invasion genes, we undertook a search for
genes that activate hilE expression. This search identified the
transcriptional activator fimZ, which has been shown to be
responsible for the activation of type I fimbriae and whether
bacteria adhere to a surface or are motile (40–42). In our stud-
ies, we showed that FimZ upregulates hilE expression, thereby
playing a significant role in whether hilA is expressed or not.
The fimZ gene is homologous to other response regulators
found within two-component systems, yet a specific sensor has
not been identified (43). We therefore hypothesized that the
signals from the PhoPQ and PhoBR two-component regulators
are processed through FimZ, leading to the repression of hilA.
The following studies show that PhoPQ and PhoBR regulate
hilE expression via the fimZ gene.

MATERIALS AND METHODS
Bacterial strains and growth conditions. The bacterial strains and plas-
mids used in this study are shown in Table 1. Bacteria were routinely
grown in Lennox broth (LB; Gibco-BRL) containing the appropriate an-
tibiotics added at the following concentrations: ampicillin at 100 �g/ml,
tetracycline at 25 �g/ml, kanamycin at 25 �g/ml, and chloramphenicol at
25 �g/ml. For the �-galactosidase analysis, S. enterica serovar Typhimu-
rium strains were grown in LB overnight shaken at 225 rpm at 37°C. For
conditions in which the levels of magnesium were manipulated, the bac-
terial cultures were grown in an N-salts minimal medium following a
previously established protocol, except for the changes indicated by Hmiel
et al. and Nelson and Kennedy (44, 45). For bacterial growth in medium
that induces hilA expression via the increase in acetate, we followed the
protocol outlined by Lawhon et al. (9). Plasmid purifications were
performed utilizing Qiagen DNA purification kits, and all other mo-
lecular manipulations were conducted using previously established
protocols (46).

Creation of defined chromosomal mutations within the hilE and
fimZ genes. In an effort to create defined chromosomal mutations within
the S. enterica serovar Typhimurium LT2 phoQc strain TA2367, we uti-
lized the linear transformation procedure (47). Briefly, PCR primers were
synthesized with 50 bp of homology to the 5= and 3= ends of the hilE gene.
In addition, the hilE5W= primer (5=-TTATAGCAGATTGTCGGTATTT
AATCTGGTATACAGAGACACCAACGAACATATGAATATCCTC
CTTA-3=) was synthesized so that it carried priming site 2 of pKD3 (47),
and the hilE3W= primer (5=-ATTTCGCTATACAGCATCGCCCACTGC
GAGTCCGCAAGCTTGTTTTGTCCGTGTAGGCTGGAGCTG
CTTC-3=) was synthesized so that it carried priming site 1 of pKD3. PCR
amplification was performed with these primers using plasmid pKD3 as
the template, and the expected 1.1-kb fragment was obtained. The linear
PCR fragment was purified and electroporated into SL1344 carrying
pKD46, and mutants were selected on L-CAM plates at 37°C. Several
Camr Amps colonies were purified and found by PCR to have the trans-
formed fragment recombined into the hilE gene on the chromosome. The
procedure for creating the defined fimZ::cam mutations followed the
above-described protocol utilizing the primers fimZ5W (5=-

TABLE 1 Strains and plasmids used in this study

Strain or plasmid Genotype or phenotypea Reference

Salmonella enterica serovar Typhimurium strains
BJ644 SL1344 phoP mutant Tetr 70
BJ704 SL1344 phoP mutant This work
BJ2462 SL1344 hilE-cam Camr 39
BJ3100 SL1344 pstS55::Tn5 hilE-cam pLS31 (hilA::lacZY) Kanr Camr Tetr This work
BJ3106 LT2 pho-24 hilE-cam pLS31 (hilA::lacZY) Camr Tetr This work
BJ3179 LT2 pho-24 fimZ-cam pMAB69 (hilE::lacZY) Camr Tetr This work
BJ3184 SL1344 pstS55::Tn5 �fimZ Kanr This work
BJ3185 LT2 pho-24 fimZ::cam Camr This work
BJ3371 SL1344 phoB::cam Camr This work
BJ3372 SL1344 phoP mutant phoB::cam Camr This work
EE251 Invasive LT2 derivative, �rpsL 55
RL291 SL1344 pstS55::Tn5 Kanr 29
SL1344 Wild-type virulent strain 71
SL1344 fimZ::kan Kanr 50
TA2367 LT2 pho-24 72
TBW19812 LT2 phoB1::cat Camr 73

Plasmids
pISF239 pMC1403 vector containing an fimZ::lacZY reporter, Ampr 43
pLS31 Low-copy-number vector pRW50 containing an hilA::lacZY reporter, Tetr 15
pMAB69 Low-copy-number vector pRW50 containing an hilE::lacZY reporter, Tetr 50

a Tetr, tetracycline resistance; Ampr, ampicillin resistance; Camr, chloramphenicol resistance; Kanr, kanamycin resistance.
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TGACGCTTATTATAAAACGAAGGACGCATAACAGTCTGAGG
CATACAACACATATGAATATCCTCCTTA-3=) and fimZ3W (5=-AT
TAGTGTCCGTTATTGTGGCTCCCGAACGATAATTCGCC
GGGAGTACATGTGTAGGCTGGAGCTGCTTC-3=).

�-Galactosidase assays. �-Galactosidase assays were conducted on
bacterial cultures using the standard method described by Miller (48).

P22-mediated transductions. The P22 HT int phage was used to
move mutations marked by antibiotic-resistant genes between strains as
described previously (49). Transductants were selected on LB agar con-
taining the necessary antibiotic and 10 mM EGTA to prevent P22 reinfec-
tion. Transductants were purified twice on LB EGTA agar prior to use of
the colonies.

RESULTS
The effects of a phoQc mutation on hilA can be alleviated by the
deletion of hilE. The phoPQ regulon has been demonstrated to
exert a powerful influence on the expression of hilA (37). How-
ever, the means by which phoPQ exerts its effect on hilA have not
been characterized. In our previous studies, we identified hilE as a
Salmonella-specific repressor of hilA (39). To determine the ef-
fects of HilE on the regulation of hilA via PhoPQ, we conducted a
�-galactosidase assay examining the effect of an hilE mutation on
hilA::lacZY expression when phoQ is constitutively expressed. As
seen in Fig. 1, normal expression of hilA::lacZY from pLS31 within
the S. Typhimurium EE251 strain was at 577.9 � 19.0 Miller units.
When the constitutive phoQ mutation is introduced, hilA::lacZY
expression is reduced 7.5-fold to 76.4 � 3.5 Miller units. The
introduction of a defined hilE::cam mutation within the chromo-
some to the constitutive phoQ mutation increased hilA::lacZY ex-
pression by 4-fold to 305.7 � 12.4 Miller units. Although repres-
sion of hilA::lacZY within the phoQc strain was not completely
eliminated, most of the hilA expression could be restored by dele-
tion of hilE. This indicates that HilE mediates a substantial portion
of the repressing activity that a phoQc mutation has on hilA ex-
pression.

The signal from the phoPQ regulon is transmitted through
the transcriptional activator fimZ. We have previously shown
that hilE is regulated by the transcriptional activator FimZ (50).
FimZ is a transcriptional activator of type 1 fimbriae genes (41, 43)
and also exerts regulatory effects on motility (40), invasion gene

expression, and biofilm formation (50). Analysis of the FimZ
amino acid sequences reveals that this activator has substantial
similarity to response regulators from two-component signaling
systems, yet a sensor partner for FimZ has not been identified (43).
In this work, we hypothesize that FimZ is responsible for respond-
ing to signals from the PhoPQ regulon, which causes an increase
in hilE expression. We conducted �-galactosidase assays measur-
ing the levels of hilE::lacZY and hilA::lacZY expression in the pres-
ence or absence of a functional fimZ gene. As shown in Fig. 2, the
hilE::lacZY reporter expressed at 197.3 � 5.9 Miller units. When
phoQ is constitutively expressed, hilE::lacZY expression increased
by 4.4-fold to 873.2 � 28.8 Miller units. When an fimZ::cam mu-
tation was present in this strain and tested under the same condi-
tions, hilE::lacZY expression was reduced 7.4-fold to 117.3 � 3.9
Miller units. This indicated that the effect of a phoQc mutation on
an hilE::lacZY reporter was being mediated by FimZ. This result
was confirmed by measuring the effects an fimZ mutation has on
hilA::lacZY expression when the phoQc mutation is also present.
Control levels of hilA::lacZY were at 1,017.1 � 20.8 Miller units.
Upon introduction of a phoQc mutation, hilA::lacZY expression
was reduced 23-fold to 44.2 � 3.5 Miller units. When the fimZ::
cam mutation was introduced, hilA::lacZY expression increased by
11.8-fold to 522.3 � 19.7 Miller units. These results confirmed our
hypothesis that the effect of PhoPQ on hilA follows a signaling
pathway through FimZ and HilE. Since complete alleviation of
hilA::lacZY repression by the phoQc mutation did not occur with
deletion of fimZ, it seems likely that the signal from the phoQc

mutation is also being processed by other pathways.
Expression of fimZ is not affected by phoPQ. Since the PhoPQ

signal processes through fimZ to regulate hilA, we wanted to de-
termine whether PhoPQ regulates fimZ transcription. To do so,
we measured the expression of an fimZ::lacZY reporter in the wild-
type S. Typhimurium LT2 strain and in an LT2 strain in which the
phoQc mutation was introduced. Wild-type S. Typhimurium ex-
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FIG 1 The effects of constitutive phoQ expression on hilA are reduced by
deletion of the Salmonella hilE gene. Strains were grown with shaking in LB
broth to late stationary phase. The wild-type strain is S. enterica serovar Ty-
phimurium LT2 strain EE251 carrying the hilA::lacZY plasmid reporter pLS31.
The TA2367 strain contains the phoQc mutation and the hilA::lacZY reporter
plasmid pLS31. BJ3106 is the TA2367 strain containing a defined hilE::cam
mutation and the hilA::lacZY reporter plasmid pLS31. Expression levels were
determined by lacZ output as measured by �-galactosidase activity. The exper-
iment is representative of an assay which was repeated in triplicate on three
separate days.

FIG 2 The effect of constitutive phoQ expression on hilE and hilA expression
is mediated through fimZ. Strains were grown with shaking in LB broth to late
stationary phase. The wild-type strain is S. enterica serovar Typhimurium LT2
strain EE251 carrying either the hilA::lacZY plasmid reporter pLS31 or the
hilE::lacZY plasmid reporter pMAB69. The strain TA2367 contains the phoQc

mutation and either the hilA::lacZY reporter plasmid pLS31 or the hilE::lacZY
plasmid reporter pMAB69. BJ3179 is the TA2367 strain containing a defined
fimZ::cam mutation and carries the hilE::lacZY reporter pMAB69. BJ3185 is
the TA2367 strain containing a defined fimZ::cam mutation and carries the
hilA::lacZY reporter pLS31. Expression levels were determined by lacZ output
as measured by �-galactosidase activity. The experiment is representative of an
assay which was repeated in triplicate on three separate days.
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pressed fimZ::lacZY at 334.8 � 8.0 Miller units, whereas a phoQc

strain expressed the fimZ::lacZY reporter at 297.8 � 6.9 Miller
units. Examination of the FimZ primary sequence indicates that
the protein contains motifs that are homologous to proteins that
are phosphorylated, although phosphorylation of specific residues
has not been demonstrated for FimZ (43). From these results, we
hypothesize that FimZ is activated in response to the PhoPQ signal
(likely by phosphorylation), which leads to induction of hilE ex-
pression.

hilA::lacZY expression can be altered by various magnesium
concentrations. As our work has demonstrated that the overex-
pression of phoQ strongly represses hilA using a signaling pathway
that includes FimZ and HilE, we next determined whether hilA::
lacZY expression could be altered within S. Typhimurium solely
by altering magnesium levels, the primary signal for the PhoPQ
two-component regulator. This was done by measuring hilA::
lacZY expression in N-salts minimal medium that was either in-
ducing for PhoPQ signaling (8 �M magnesium) or repressing for
PhoPQ signaling (10 mM magnesium). Analysis of wild-type S.
Typhimurium strain SL1344 with the hilA::lacZY plasmid re-
porter pLS31 showed that inducing levels of magnesium for
phoPQ expression reduced hilA::lacZY expression 28.2-fold from
1,139.7 � 20.1 to 40.4 � 0.8 Miller units (Fig. 3). Next, the effects
of an hilE::cam mutation on hilA::lacZY expression when magne-
sium was either inducing or repressing for PhoPQ were measured.
Even in the absence of hilE, hilA::lacZY plasmid reporter levels still
showed a 25.9-fold reduction (4,098.7 � 173.4 to 158.3 � 5.6
Miller units) when the PhoPQ regulators were activated by mag-
nesium (Fig. 3). These results suggest that the effects of magne-
sium on hilA are not solely mediated through the FimZ/HilE sig-
naling pathway. It is possible that another regulatory system
within Salmonella responds to magnesium levels and that these
secondary pathways affect hilA expression levels, independent of

hilE, under other conditions that do not induce invasion-associ-
ated genes.

hilE::lacZY expression can be induced upon the induction of
phoB. A mutation in the pstS gene was previously identified as
causing a reduction in hilA expression (29). Previous work has
shown that PstS is responsible for the repression of the two-com-
ponent regulator PhoBR, which is responsible for the activation of
scavenger genes that move phosphate into the cell under low
phosphate conditions (38). Since our studies indicated that
PhoPQ plays a role in inducing hilE expression, we examined
whether the phoBR regulon also regulates hilA via HilE. A �-ga-
lactosidase assay was conducted measuring the amount of hilE::
lacZY expression in wild-type S. Typhimurium SL1344 and the
mutant strain RL291 (an SL1344 derivative with a pstS mutation).
Utilizing the hilE::lacZY plasmid reporter pMAB69, we measured
wild-type hilE expression at 56.6 � 0.2 Miller units (Fig. 4). When
the pstS gene was disrupted, increasing PhoB activation, expres-
sion of hilE::lacZY increased to 169.1 � 1.0 Miller units. This
3-fold increase in hilE expression indicated that hilE responds to
signals from both PhoPQ and PhoBR.

The effects of a pstS mutation on hilA are alleviated by the
deletion of hilE. Since the deletion of hilE partially reverses the
effects of a phoQc mutation on hilA, we also examined the effect an
hilE deletion has on hilA expression when PhoBR is activated by
the pstS mutation. Utilizing the hilA::lacZY plasmid reporter
pLS31, hilA expression levels were measured in wild-type S. Ty-
phimurium SL1344, the pstS mutant RL291, and BJ3100, a pstS
mutant containing a defined hilE::cam insertion. Wild-type
SL1344 expressed hilA::lacZY at 711.4 � 25.2 Miller units (Fig. 5).
Deletion of pstS decreased hilA expression by 5.6-fold to 127.2 �
8.6 Miller units. When BJ3100 (�pstS hilE::cam) was assayed, hi-
lA::lacZY expression increased 6.2-fold to 793 � 24.0 Miller units.
The deletion of hilE completely reversed the effects of a pstS mu-
tation on hilA expression, indicating that the pstS mutation, which
activates PhoBR signaling, exerts its effect via hilE, to regulate hilA
transcription.

The activation of phoB increases fimZ expression. Since the
PhoBR signal regulates hilA via hilE, it was logical to examine

FIG 3 Various magnesium concentrations will alter the levels of hilA expres-
sion independently of hilE. Strains were grown with shaking in LB broth to late
stationary phase. The wild-type S. enterica serovar Typhimurium strain
SL1344 containing the hilA::lacZY reporter plasmid pLS31 was compared to
the BJ2462 strain, which is an SL1344 strain containing an hilE::cam deletion
and carries the same reporter plasmid. Expression levels were determined by
lacZ output as measured by �-galactosidase activity. The experiment is repre-
sentative of an assay which was repeated in triplicate on three separate days.
High magnesium was at a concentration of 10 mM, whereas low magnesium
was at 8 �M.

FIG 4 Overexpression of phoB leads to the activation of hilE. The wild-type
strain is S. enterica serovar Typhimurium SL1344. The mutant tested is the
SL1344 strain RL291, which contains a pstS deletion leading to the constitutive
activation of phoB. Each strain contained the hilE::lacZY reporter plasmid
pMAB69. The strains were grown in LB overnight with shaking, and expres-
sion levels were determined by measuring lacZ output as measured by �-ga-
lactosidase activity. The experiment is representative of an assay which was
repeated in triplicate on three separate days.
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whether the regulatory signal was transmitted through fimZ sim-
ilar to that seen with PhoPQ. Utilizing the fimZ::lacZY reporter
pISF239, fimZ expression levels were measured in wild-type S.
Typhimurium SL1344 and in a pstS mutant. In wild-type SL1344,
fimZ expressed at 208.8 � 0.8 Miller units (Fig. 6). A pstS mutation
increased fimZ expression 4-fold to 853.2 � 25.4 Miller units. One
possible explanation of this finding is that the pstS mutation in-
creases protein levels of FimZ, potentially activating transcription
of its own gene, consistent with previous work by Yeh et al. (43).
Therefore, to rule out the possibility that the induction of fimZ
transcription was solely due to the self-induction of the transcrip-
tional activator, we constructed strain BJ3184, which is an SL1344
derivative containing the pstS mutation and a defined fimZ::cam
insertion. Within this strain that lacks functional FimZ protein,
fimZ::lacZY expression was 555.1 � 10.6 Miller units, which is still
a 2.7-fold increase in fimZ expression compared to that of the wild
type (Fig. 6). These results demonstrate that the activation of the
PhoB response regulator leads to increased fimZ expression, in the
absence of functional FimZ, although the presence of FimZ fur-
ther increases fimZ expression due to autoactivation. This increase
in FimZ activates hilE expression, leading to the repression of hilA.

DISCUSSION

The process of invasion in Salmonella requires the coordinated
control of many different genes responding to a myriad of envi-
ronmental signals. For invasion to occur, the bacteria must induce
the expression of genes within SPI-1 as well as genes encoding the
effectors that are secreted by the SPI-1 type III secretion system.
The combined functions of these gene products cause the mam-
malian host cell cytoskeleton to ruffle outward around the invad-
ing organism so that it is internalized into the host cells via mac-
ropinocytosis (3, 4, 26, 51). Salmonella species have developed a
complex regulatory network that determines whether the bacte-
rium has entered an environment that is conducive for invasion. If
conditions are not optimal, invasion gene expression is repressed,
whereas entry into a more conducive environment leads to acti-
vation of the invasion genes. Currently, many different environ-
mental signals have been identified that impact invasion gene
expression. These activating signals include oxygen-limiting con-
ditions, high osmolarity, temperature, and growth in a near neu-

tral pH (6–8, 11). In addition, the bacteria downregulate invasion
gene expression as the organisms reaches the stationary phase of
growth (52). Additional signals, such as the concentrations of
short-chain fatty acids (i.e., acetate, propionate, and butyrate), as
well as the presence of bile salts, impact gene expression (9, 12, 53),
with recent evidence showing that propionyl coenzyme A (propi-
onyl-CoA) specifically regulates HilD posttranslationally, possibly
by propionylation of the HilD protein (54).

Induction of SPI-1 requires the expression of hilA and invF,
two transcriptional activators found within SPI-1. In the absence
of these regulators, the proteins required for formation of the type
III secretion system and the secreted effectors will not be produced
(5, 55). Work in many different laboratories has identified addi-
tional genes that regulate expression of hilA and invF. Currently,
csrAB, sirA-barA, fis, fliZ, fadD, ompR-envZ, fur, mlc, dsbA, rtsA,
hilC, and hilD have all been shown to positively upregulate hilA
expression (13–15, 22–31, 56). In addition, a number of repressors
have also been identified that are important in controlling hilA
expression. These repressors include lon, hha, ams, pag, phoQc,
phoB, rtsB, and hilE (21, 29, 32–35, 37, 39). Our group has char-
acterized the negative regulatory hilE gene and its impact on hilA
expression. We have shown by two-hybrid analysis that HilE in-
teracts with HilD to repress hilA transcription (39). Other work
has shown that hilE is a Salmonella-specific gene that is not ex-
pressed by Escherichia coli (39). Work from several groups has
identified factors that regulate Salmonella invasion gene expres-
sion through the HilE repressor. The Mlc global regulator has
been shown to downregulate an hilE promoter (27). The small
noncoding RNA isrM targets the hilE transcript to reduce the
repressing activity of hilE (57). The LysR-type regulator LeuO
has been shown to activate hilE transcription to repress HilD
activity (58).

In an effort to contribute to our understanding of Salmonella
SPI-1 virulence gene regulation, we conducted a search for genes
that induce hilE::lacZY expression. This search identified fimZ, an
important transcriptional activator of type 1 fimbriae (42). FimZ

FIG 6 Overexpression of phoB increases the level of fimZ expression. The
strains were shaken overnight in LB growing at 37°C. The wild-type bacterium
is S. enterica serovar Typhimurium strain SL1344. RL291 is an SL1344 deriv-
ative that contains a pstS mutation that causes the overexpression of phoB. The
BJ3184 strain is the RL291 strain containing a defined fimZ::cam mutation.
Each strain tested contained the fimZ::lacZY reporter plasmid pISF239. The
strains were grown in LB overnight with shaking, and expression levels were
determined by measuring lacZ output as measured by �-galactosidase activity.
The experiment is representative of an assay which was repeated in triplicate
on three separate days.

FIG 5 The deletion of hilE reverses the repression of hilA in a constitutive
phoB-expressing strain. The wild-type strain is S. enterica serovar Typhimu-
rium SL1344. RL291 is an SL1344 derivative that contains a pstS mutation.
BJ3100 is an RL291 strain containing a defined hilE::cam mutation within the
chromosome. Each strain contained the hilA::lacZY reporter pLS31. The
strains were grown in LB overnight with shaking, and expression levels were
determined by measuring lacZ output as measured by �-galactosidase activity.
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has been implicated in the control of other regulatory systems in
Salmonella. Prior to our demonstration of the involvement of
fimZ in Salmonella invasion gene regulation, work was published
showing that the overexpression or deletion of fimZ inversely con-
trolled motility and fimbrial gene expression (40). Recent work
has shown that these three Salmonella properties (i.e., adherence
[type 1 fimbriae], motility [flagella], and invasion [SPI-1 gene
expression]) are all dynamically regulated via a cross talk mecha-
nism utilizing posttranscriptionally modified FliZ, which is pro-
posed to monitor the bacterial growth state (28, 59–61). Addi-
tional work has demonstrated that the flhDC genes, the master
operon of the flagellar hierarchy, activate transcription of the hilD
gene at early stages of growth, while the HilD regulator activates
promoter 5 of the flhDC genes at later stages of growth (62). FimZ
is of interest, as it has homology to response regulators (highest
homology to bvgA of Bordetella), yet no sensor kinase has been
identified as its partner (43). Analysis of mutations that resulted in
repression of hilA showed that two of these regulators were either
part of a two-component regulatory system (phoQc) or involved in
the function of a two-component system (pstS and phoBR). In this
work, we have explored how these mutations impact hilA expres-
sion by examining their interactions with FimZ and HilE.

In this work, we have studied how PhoPQ, HilE, and FimZ
function together to regulate the S. Typhimurium SPI-1 transcrip-
tional activator hilA. We have employed strains with mutations in
genes of interest as well as manipulation of magnesium concen-
trations in the growth medium to ask experimental questions. We
have found that most, but not all, of the PhoPQ effects are medi-
ated by FimZ and HilE. The exception was that deletion of hilE did
not completely reverse the effects of phoQc on hilA expression.
Consistent with our data, recent work has shown that the positive
hilA activator DsbA reduces phoPQ expression (63). Our results
contribute to the evolving story that multiple environmental sig-
nals are processed by various Salmonella two-component regula-
tors to increase or decrease invasion gene expression. Since phoPQ
seems to exert its effect at FimZ posttranscriptionally, a likely
mechanism is via a phosphorelay mechanism from PhoPQ to
FimZ, which would fit the established mechanism of activation of
two-component regulatory systems. The likelihood that FimZ
functions by receiving phosphorylation signals from multiple
two-component signals provides a model to understand how this
gene can regulate genes involved in motility, biofilm formation,
invasion gene repression, and type I fimbrial gene expression (64).
Recent work by Golubeva et al. suggests that PhoPQ is a class III
regulator and exerts its regulatory influence by acting directly on
hilA (65, 66). This is possible, since the hilE deletion does not
completely eliminate repression of hilA by the phoQc mutation.
Future efforts will be required to resolve these points.

Additionally, we investigated the effects of the PhoBR regulon
on fimZ and hilE expression. Unlike what was observed with
PhoPQ, we found that PhoBR directly effects fimZ expression but
that its ability to control hilA expression is mediated entirely by
HilE. Accordingly, these two-component regulators (PhoPQ and
PhoBR) alter hilE and hilA expression by different mechanisms in
that one is via a posttranscriptional mechanism and the other is via
transcriptional control of hilE.

The concept that multiple two-component regulatory systems
interact in an overlapping fashion to control a biological pathway
is not new. Previous work has shown that Salmonella has three
different two-component regulators that control the synthesis of

the ugd gene, which is involved in both polymyxin B resistance
and capsule biosynthesis (67). An overlapping regulatory network
has also been described for the pho regulon of Bacillus subtilis (68).
A study analyzing the regulons of known two-component systems
in E. coli concluded that there are three possible regulatory
schemes that can occur. One, a single sensor can directly interact
with a single response regulator. Two, a single sensor can interact
with or activate multiple response regulators of DNA-binding ac-
tivators. Three, multiple sensor proteins can converge onto a sin-
gle response regulator and the genes that it controls (69). We have
contributed data here that we believe help to further define the
regulatory hierarchy of regulation of the Salmonella invasion
genes and have shown how two different two-component sensing
systems interact with other activators and repressors to control
expression of Salmonella virulence (Fig. 7). The involvement of
fimZ in this process demonstrates that Salmonella has evolved to
coordinate the expression or repression of the invasion phenotype

FIG 7 Model of the regulatory cascade that transfers environmental signals
into changes in Salmonella gene expression. Environmental signals such as
magnesium or phosphate concentration increase or decrease fimZ expression.
Under conditions of low magnesium concentration, the PhoPQ regulon is
activated, leading to the phosphorylation of FimZ with the subsequent in-
crease in hilE expression. Under conditions of low phosphate, PhoBR is acti-
vated, which increases fimZ expression, which upregulates hilE expression. A
FimZ-activating signal additionally leads to increased type 1 fimbrial expres-
sion by direct binding of the FimZ activator to the type 1 fimbrial gene operon.
Increased fimZ expression also decreases expression of the flhDC master reg-
ulatory proteins for the flagellar regulon by an unknown mechanism. Other
regulatory signals generated from the cross talk between the flagellar system or
other environmental signals may further influence the expression of fimZ. The
increase in FimZ leads to the subsequent increase in HilE protein levels, which
limits the availability of HilD to activate the hilA promoter due to HilE-HilD
binding. A FimZ-deactivating signal would have the opposite effects. Collec-
tively, these regulatory pathways control hilA expression and downstream ex-
pression of SPI-1 (22). In addition, it is likely that there are FimZ-independent
signals that affect the expression and cross talk between all the systems de-
scribed (motility, adherence, and invasion), which allows Salmonella to dy-
namically control when these various systems respond (60).
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with expression of type 1 fimbriae and motility. Future efforts will
be aimed at determining the molecular details of this highly coor-
dinated network of gene expression in this important bacterial
pathogen.
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