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Abstract 

Efficiently mining multiple drug interactions and 

reactions from Adverse Event Reporting System 

(AERS) is a challenging problem which has not been 

sufficiently addressed by existing methods. To tackle 

this challenge, we propose a FCI-fliter approach 

which leverages the efforts of UMLS mapping, 

frequent closed itemset mining, and uninformative 

association identification and removal. By applying 

our method on AERS, we identified a large number of 

multiple drug interactions with reactions. By 

statistical analysis, we found most of the identified 

associations have very small p-values which suggest 

that they are statistically significant. Further analysis 

on the results shows that many multiple drug 

interactions and reactions are clinically interesting, 

and suggests that our method may be further 

improved with the combination of external 

knowledge.  

Introduction 

It is well understood that adverse drug reactions may 

pose serious health concerns on patients. The 

situation becomes more complicated when two or 

more drugs are taken together. Interactions between 

multiple drugs may yield additional reactions than 

taking them separately. To monitor the adverse drug 

reactions, the US Food and Drug Administration built 

an Adverse Event Reporting System (AERS), a post- 

marketing drug safety surveillance database which 

contains adverse reports from various sources.  

However, AERS is essentially a large collection of 

drug reaction reports. A report involving multiple 

drugs and reactions does not necessarily indicate a 

causal relationship between them. In fact, records in 

AERS come from multiple sources coded as 

"Foreign", "Study", "Literature", "Consumer", 

"Health Professional", etc. It is not clear whether all 

sources produce similar accurate reports to AERS. 

Thus, mining such a large data for causative adverse 

drug reactions poses a major challenge in drug safety 

studies. 

The existing work on AERS data mining and analysis 

mainly focuses on using statistic approaches. Some 

studies identify the reactions caused by one drug, or 

the drug-drug interactions between two drugs, using 

statistical approaches such as Bayesian methods [1] 

[2] and propensity score matching [3]. Some studies 

focus on the analysis of a few specific adverse 

reactions [4] or a few drug-drug interaction pairs [5]. 

In [2], the authors also extend the self-controlled case 

series (SCCS) to analyze multiple drug interactions. 

However, these methods did not answer the question 

of how to efficiently discover multiple drug 

interactions, i.e., drug-drug interactions that involve 

two or more drugs. There are many reports in AERS 

involving more than 2 drugs.  

To tackle this challenge, Harpaz et al. [6] used 

association rules mining technique to find frequent 

patterns. A frequent pattern (a.k.a., frequent itemset) 

in AERS is a set of drugs and reactions that appear in 

at least k reports, where k is an adjustable parameter 

that is known as minimum support. The lower k is, 

the more patterns will be found and thus more 

computational time is needed.  However, using 

frequent pattern mining has two major limitations. 

First, it is computationally very costly. If a pattern is 

frequent, then all its sub patterns are frequent and 

should be outputted under the same support level k. A 

pattern with length x will have 2
x
 sub patterns 

(including the empty pattern and itself). This implies 

that it is computationally intractable to find a lengthy 

pattern because the number of sub patterns is 

exponential to its length. The counter measurement is 

to increase k or limit the output pattern size. But by 

doing this, we will miss a large volume of lengthy 

patterns and low support patterns. In [6], authors use 
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50, a quite high support level for mining AERS, and 

obtained only 2603 itemsets. 

Second, the association rules suggested by frequent 

patterns are not sufficient to support the causative 

relationships between drug interactions and reactions. 

For example, if (drugA, drugB, reactionA, reactionB) is 

a frequent itemset, we cannot conclude that it is  

supportive evidence that the interaction of drugA and 

drugB leads to the reactionA and reactionB . It may be 

caused by the facts that  (1) drugA causes reactionA; 

drugB causes reactionB, drugA and drugB are often 

taken together.  

Given the above challenging background, in this 

work we propose a very efficient mining method 

based on UMLS mapping, Frequent Closed Itemset 

Mining and filtering (FCI-filter) for mining multiple 

drug interactions from AERS. Our method efficiently 

finds a large number of multiple drug interactions 

and effectively prunes out uninformative patterns. It 

is important to point out that in this work we do not 

target on finding causative relationships between 

drug interactions and reactions, but on finding 

informative associations by eliminating associations 

that are not sufficient to support causative 

relationships.  

Methods 

UMLS Mapping 

A drug or a reaction may have different names in the 

AERS, for example: Alpha Lipoic Acid is also 

known as ALA or Lipoic Acid. In many cases a drug 

name in AERS not only includes the drug but also its 

dosage. Therefore, it is not accurate to build a 

transactional database based on the drug or reaction 

names in AERS. To tackle this issue, we map each 

drug or reaction name to a UMLS concept, by 

LDPMap [7]. The UMLS is a very comprehensive 

collection of medical terms from various sources, 

such as HUGO, SNOMED CT, RxNorm, ICD9, 

MedDRA, etc. The RxNorm contains a large 

collection of drug names and has been successfully 

used in [6] for mapping drug names. The MedDRA 

was used for coding reactions in AERS. In the 

UMLS, a medical term may have various synonyms 

and may appear in more than one source, but it has 

only one unique identifier known as a CUI. In [7], we 

designed a layered dynamic programming mapping 

method (LDPMap) to effectively find a best matching 

UMLS CUI for any input of medical term. We have 

known that LDPMap is much more accurate in 

mapping medical terms to the UMLS than the UMLS 

Metathesaurus Browser [8] and MetaMap [9]. Here, 

we utilize LDPMap to map each drug and reaction to 

a UMLS CUI. In order to increase the accuracy, 

dosage related characters such as “oz”, “ml” and 

“mg” in drug names were removed before applying 

LDPMap. After applying LDPMap on the AERS data 

of 2012q3, we obtained 10297 unique drugs and 6838 

unique reactions, and built a transactional database 

AERS_tdb containing 134508 records. 

Frequent Closed Itemset Mining 

In data mining, a closed itemset is defined as an 

itemset which does not have a superset that has the 

same support as this itemset, and a frequent closed 

itemset is an itemset that is both closed and frequent. 

By using the concept of closed itemset, we will be 

able to eliminate the problem of enumerating 

exponential numbers of subsets. For example, if 

drugA, drugB, reactionA, reactionB is a frequent closed 

itemset, then we do not need to output any of its 

subsets (such as drugA, reactionA) unless such a 

subset appears in a record that does not contain all 

items of drugA, drugB, reactionA, reactionB. Thus, we 

can see that by using the concept of frequent closed 

itemset, it is possible to significantly reduce the 

computational cost and eliminate the output of 

redundant information.  

In this study, we use MAFIA [10], an efficient 

frequent closed itemset mining tool, to mine frequent 

closed itemset in AERS_tdb, with support level set to 

be 0.00005, which implies that any closed itemset 

appearing in 6.7254 or more records in AERS_tdb 

will be outputted. As a result, we obtained 4811379 

frequent closed itemsets. Since we are interested in 

drug reaction relationships, we removed any itemset 

that contains only drugs or only reactions, and finally 

we got 1903630 itemsets containing both drugs and 

reactions. This is several orders of magnitude larger 

than the 2603 items obtained in [6]. In addition, we 

observed that the maximum number of drugs 

contained in one itemset is 20. This suggests that 

these 20 drugs are often taken together and with 

common reactions. 

Uninformative Association Identification and 

Removal 

As mentioned above, the association rules suggested 

by frequent closed itemsets are not equivalent to the 

causative relationships between drug interactions and 

reactions. An itemset is not sufficient to support a 

causative relationship if its items and supporting 

transactions (i.e., transactions containing these items) 

can be obtained from the interaction of other itemsets 

and their supporting transactions. In this case, this 

itemset is considered uninformative. Formally, Let I 

denote an itemset, and T denote the complete set of 

transactions containing this itemset. We have the 

following rule: 
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Rule 1: I is not sufficient to support causative 

relationships if there exist a list of itemset- 

transaction pairs I1×T1, I2×T2, … In×Tn , I   I1   I2… 

  In and T = T1   T2…   Tn such that none of T1 , 

T2…,Tn is equal to T.  

In other words, if we view an itemset and its 

supporting transactions as a block, the above 

interaction can be described as a "block horizontal 

union" [11]. Thus, an itemset is not sufficient to 

support causative relationships if its block can be 

obtained by a block horizontal union on other blocks 

with different transaction sets. Here is an example: 

drugA, reactionA, appears in and only in  

records 1, 3, 5 

drugB, reactionB, appears in and only in  

records 1, 2, 5 

drugA, drugB, reactionA, reactionB appears in and only 

in records 1, 5. 

Then drugA, drugB, reactionA, reactionB is not 

sufficient to support a causative relationship such that 

the interaction of drugA and drugB causes reactionA 

and reactionB, because this relationship is a logical 

result of taking both drugs together.  

However, if in the above, drugA, reactionA appears in 

and only in records 1, 5, then we cannot judge drugA, 

drugB, reactionA, reactionB as "not sufficient to 

support a causative relationship".  

In the following, we will use the above rule to 

eliminate frequent closed itemsets that are not 

sufficient to establish a causative relationship. 

Interestingly, we find that block interaction is not 

necessary for frequent closed itemsets and rule 1 can 

be simplified as: 

Rule 2: A frequent closed itemset I is not sufficient to 

support causative relationships if there exist a list of 

frequent closed itemsets I1, I2, … In where I   I1   

I2…   In. 

This is because for frequent closed itemsets, if I   I1 

  I2…   In, we can conclude that for T = T1   T2…  
 Tn, none of T1 , T2…, Tn is equal to T. Othewise, if 

one of the transaction set, say Tk, is equal to T, then it 

is a contradiction to the assumption that Ik is a closed 

itemset, because in this case Ik    would be a 

superset of Ik with the same support as Ik.  

Next we will design an efficient filtering algorithm 

based on Rule 2. For an itemset I with p drugs, if I   

I1   I2…   In, we can observe that for any Ik 

(1 k n), it must not contain more than p drugs. 

Thus, the filtering algorithm does not need to 

consider all itemsets in order to decide whether an 

itemset needs to be filtered out. We organize itemsets 

into groups by the number of drugs they contains. Let 

ISk denote the itemset with k drugs, our filtering 

algorithm can be summarized by the following 

pseudo code: 

 

 

Algorithm FCI-filter (IS1, IS2,…, ISm) 

1:  for i=1:m 

2: for each itemset X in IS1 … ISi 

3: for each itemset Y in ISi 

  if X  Y 

     mark covered items in Y;  

  endif 

 endfor 

4: endfor 

 for each itemset Y in ISi 

     if all items in Y are marked 

  remove Y; 

    endif 

 endfor   

5:  endfor 

9:  return IS1, IS2,…, ISm 

 

 

By applying FCI-Filter to the 20 frequent closed 

itemsets mined from AERS_tdb, we filtered out 

654484 frequent closed itemsets and kept 1249146 

frequent closed itemsets as the candidate associate 

rules. 

Statistical validation 

We use the following statistical method to validate 

the filtered itemsets. Assume the counts for taking 

drug(s) and have reaction(s) follows a Poisson 

distribution. For any drug(s) and reaction(s), we will 

have the following frequency: 

Total cases:   

Taking drug(s):   

Have reaction(s):   

If the drug(s) will not affect the rate of having 

reaction(s), the expected counts of taking drug(s) and 

having reaction(s) would be     
 

 
, as 

 

 
 is the 

portion of people taking drug. 

The P-value is based on the observed counts of taking 

drug(s) and having reaction(s) denoted by   and its 

expectation  , which is                  . 

Results 

 

By applying UMLS mapping and Frequent Closed 

Itemset Mining, we obtained a large number of 
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itemsets of drug interactions and reactions (Table 1). 

After applying algorithm FCI-Filter, we removed a 

significant amount of itemsets that are insufficient to 

support causative relationships (Table 1). 

 

Number of 

drugs 

Itemsets before 

filtering 

Itemsets after 

filtering 

1 1246948 48033 

2 543037 1320 

3 99755 144 

4 11238 33 

5 1231 14 

6 267 12 

7 155 9 

8 100 3 

9 83 3 

10 57 2 

11 42 1 

12 43 1 

13 57 0 

14 96 0 

15 139 1 

16 159 0 

17 135 1 

18 70 2 

19 17 0 

20 1 0 

Table 1. Summary of results of Frequent closed 

mining and frequent closed itemset filtering on 

AERS_tdb.  

 

We subjected the itemsets (i.e., drug interactions and 

reactions) after filtering in Table 1 to statistical 

validation, and found that most itemsets have very 

significant low p-values (Figure 1). In addition, for 

drug counts greater than 10, p-value histogram 

(Figure 2) is similar to Figure 1, which further 

confirms the effectiveness of our drug interaction 

mining approach. 

 

Figure 1. P-value histogram for all itemsets after 

filtering 
 

 

Figure 2. P-value histogram for drug counts greater 

than 10 

 

Discussions 

 

A clinical evaluation of the data mining results 

reveals some interesting findings as listed in Table 2. 
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Case Drugs Adverse Event 

1 ARIPIPRAZOLE 

|CITALOPRAM 

HYDROBROMIDE 

|MIRTAZAPINE 

CARDIAC 

FAILURE 

CONGESTIVE 

|CONGESTIVE 

CARDIOMYOPATH

Y 

2 DULOXETINE 

HYDROCHLORID

E |MIRTAZAPINE 

|RISPERIDONE 

LIVER FUNCTION 

TEST ABNORMAL 

3 ASPIRIN 

|BISOPROLOL 

FUMARATE 

|GLYBURIDE 

|MIGLITOL|ONON 

|PLAVIX 

HYPOGLYCAEMIA 

4 AMARYL 

|SITAGLIPTIN 

PHOSPHATE 

HYPOGLYCAEMIA 

5 BROMOCRIPTINE 

MESYLATE 

|CLARITHROMYC

IN 

|KETOCONAZOLE 

HYPOTENSION 

Table 2. Interesting drug drug interactions and 

reactions. 

 

For instance, Aripiprazole, Citalopram hydrobromide 

and Mirtazapine, the three antidepressants sometimes 

used in combination therapies, were found to be in 

association with adverse cardiovascular events (Case 

1 of Table 2). This result is highly interesting, since 

the potential cardiovascular side effects of 

antidepressants and antipsychotics have long been 

under debate [12] [13]. Recently in 2011, the US 

Food and Drug Administration (FDA) announced 

that “Citalopram causes dose-dependent QT interval 

prolongation. Citalopram should no longer be 

prescribed at doses greater than 40 mg per day.” 

Further clinical study of Aripiprazole, Citalopram 

hydrobromide and Mirtazapine is required to explore 

their association with adverse cardiovascular events.  

 

In addition to the above findings, we also observed 

interesting interactions involving a good number of 

drugs. For example, the following interaction 

contains 7 drugs and many reactions: 

 

 

 

 

Drugs: 

AMINOPYRIDINE|DANTRIUM|GILENYA|LEVO

CARNIL|PIROXICAM|TROSPIUM 

CHLORIDE|VESICARE| 
 

Reactions: 

ALANINE AMINOTRANSFERASE INCREASED | 

ASPARTATE AMINOTRANSFERASE 

INCREASED | BLOOD CREATININE 

INCREASED |BLOOD GLUCOSE 

INCREASED|BLOOD LACTATE 

DEHYDROGENASE INCREASED|BLOOD UREA 

INCREASED|BLOOD URIC ACID DECREASED| 

|HAEMOGLOBIN DECREASED 

|…(18 other reactions) 
 

The actions of this combination of drugs along with 

the reported biochemical effects is interesting. Many 

of these drugs act on ion channels or receptors, and 

the diverse array of biochemical effects that they 

result in is overwhelming. They result in increased 

activities of alanine aminotransferase, aspartate 

aminotransferase and blood lactate dehydrogenase. 

They also result in increased concentrations of blood 

creatinine, glucose and urea, as well as decreased 

concentrations in hemoglobin and blood uric acid. 

Many of these outcomes can be partly accredited to 

abnormal kidney or liver function, but they along 

with the other associated symptoms make analyzing 

their overall effects quite complex. However, this 

type of data analysis can provide valuable pieces of 

information that can act as a starting point in order to 

investigate why this combination of drugs has the 

resulting effects. 

Future work 

We have demonstrated in the above that FCI-filter is 

very effective in identifying important multiple drug 

interactions and reactions. However, the clinical 

evaluation also suggests some future improvements 

of our data mining strategy. An integration of clinical 

knowledge outside of the AERS database can be 

helpful (Case 3, 4, and 5 of Table 2). For instance, in 

Case 5 of Table 2, the hypotension side effect of 

Bromocriptine (single drug) is not statistically 

revealed from the AERS data set, although it is well 

known clinically to cause potential hypotension. As 

such, external knowledge can make the filtering of 

the Frequent Closed Itemset Mining more effective.  
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