


INTRODUCTION

When we think of epigenetics, we mean those changes 
in the DNA molecule that alter the expression of genes, but 
keep intact the DNA nucleotide sequence. Th e term was 
introduced by Conrad Waddington when describing inher-
ited changes in cellular phenotype independent of DNA bases 
alterations [1]. Th ree epigenetic mechanisms whereby a cell 
regulates its basic processes of transcription, translation, rep-
lication and DNA repair include DNA methylation, histone 
methylation and acetylation (known as histone code) and the 
action of small interfering RNA molecules that disrupt pro-
tein synthesis [2]. Epigenetic changes may be inherited and 
can occur during embryonal development or after birth. Once 
the change in DNA methylation takes place, following cell 
division the altered pattern is transferred into daughter cells by 
the action DNA methyltransferase enzyme, which recognizes 
hemimethylated sites and methylates newly synthesized DNA 
formed during replication [3].

Since these mechanisms are utilized by all our cells to 
conduct their predetermined functions, it is likely that they 

become altered in malignant cells, and possibly even initiate 
malignant transformation [4]. In the case of DNA methyla-
tion, the most extensively studied mechanism of epigenetic 
control of gene expression it is global hypomethylation in 
tumor cells that leads to chromosomal (genome) instability, 
which is central to carcinogenesis [5]. At the same time, hyper-
methylation of promoter regions has been detected in a vast 
majority of tumor suppressor genes, which are strongly associ-
ated with tumor development as well [6]. Besides DNA meth-
ylation, tumor cells are also characterized by modifi cation in 
their chromatin structure, termed “histone code” by Jenuwein 
and Allis in 2001, which was established after years of compar-
ing histone acetylation and methylation between normal and 
neoplastic tissues [6,7].

One of the main benefi ts of epigenetic regulation dis-
coveries is that epigenetic changes are reversible and that 
they can be chemically controlled by drugs. Such “epigenetic 
drugs” fall largely into two broad groups: DNA methyl-
transferase inhibitors and histone deacetylase inhibitors [8]. 
Some of them have already been approved for clinical use 
in the treatment of certain malignant diseases (e.g.  azaciti-
dine, decitabine, vorinostat, romidepsine and ruxolitinib), 
whereas other drugs are still under investigation, in diff erent 
phases of preclinical and clinical studies [e.g.  histone lysine 
acetyltransferase, histone lysine methyltransferase, histone 
arginine methyltransferase, poly(ADP-ribose) polymerase 
inhibitors] [9]. In addition to therapeutic potential, epigenetic 
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changes can also be employed in early tumor detection, prog-
nosis and evaluation of ongoing anti-cancer therapy. For 
example, detection of septin 9 (SEPT9) gene hypermeth-
ylation in the blood has been used in colorectal carcinoma 
screening whereas detection of glutathione S-transferase pi 
(GSTP1) gene hypermethylation in urine has been utilized 
as a prostate cancer biomarker [10-12]. Most of the signaling 
pathways that aff ect cellular proliferation, migration and dif-
ferentiation play important roles in both embryonal devel-
opment and in tumor initiation and progression. One of the 
most important such signaling pathways is the evolutionary 
conserved Wnt pathway whose member components are 
epigenetically controlled [13].

Epigenetic modifi cation of the Wnt signaling 
pathway members

The evolutionarily conserved Wnt-signaling pathway 
has pivotal roles during the development of many organ 
systems. Central to this pathway is a multiprotein scaffold 
composed of adenomatous polyposis coli (APC), glycogen 
synthase kinase (GSK)–3β, axin and the transcriptional 
cofactor β-catenin (encoded by CTNNB1 gene). In the 
absence of Wnt ligands, β-catenin levels retain low through 
constitutive phosphorylation by GSK-3β, which leads 
to the ubiquitination and degradation of β-catenin [14]. 
Binding of the Wnt ligands to their receptors, Frizzled (Fz), 
leads to activation of the adaptor protein, Disheveled (Dvl), 
and the inhibition of GSK-3 activity, reducing phosphory-
lation and subsequent degradation of β-catenin (Figure 1). 
Thus, β  -catenin is stabilized and translocates to the 
nucleus where it binds members of the T-cell factor (Tcf )/
lymphoid-enhancing factor (Lef ) family of transcription 
factors and induces the expression of target genes such as 
CMYC and CCND1 [15].

Notably, a range of human cancers shows elevated levels 
of nuclear β-catenin, a hallmark of active WNT/β-catenin 
signaling while mutations of APC, AXIN or CTNNB1 
genes are substantially less frequent. Aberrant activa-
tion of WNT/β-catenin signaling can also be achieved by 
overexpression of pathway components including some 
oncogenic WNT ligands (WNT1, WNT2, WNT2B2 and 
WNT3A), Fzd receptors (Fzd7 and Fzd10) and Dvl family 
members [16-18].

For a variety of human malignancies, there is growing 
evidence that an epigenetic inactivation of the WNT/β-
catenin pathway inhibitors is associated with a tumor-fa-
vorable phenotypic outcome. Abnormal Wnt signaling has 
become a hallmark of some types of solid tumors, most nota-
bly colorectal and hepatocellular carcinomas [19]. Functional 

loss of negative Wnt regulators by epigenetic gene silencing, 
through both DNA methylation and histone modifi cation of 
the tumor suppressor gene-associated promoters, has been 
frequently reported to contribute to the activation of aber-
rant WNT/β-catenin signaling in tumors [20]. Recent stud-
ies have shown that impaired regulation of Wnt-antagonists 
such as SFRP, WIF1, HDPR1 and DKK3 by promoter hyper-
methylation is present in several human malignancies [21-23]. 
For examples, some Wnt proteins like Wnt1, Wnt2, Wnt3A 
and Wnt5A have been found to be overexpressed in cancers 
of breast, colon, lung and prostate, acting as oncogenic acti-
vators for canonical Wnt signaling [24-26]. In some other 
solid tumors and hematological malignancies, WNT5A acts 
as a tumor suppressor that inhibits tumor cell proliferation 
through antagonizing the WNT/β-catenin signaling and is 
frequently silenced by tumor-specifi c methylation [27,28]. In 
parallel, epigenetic inactivation of WNT7A and WNT9A, 
through promoter methylation, has recently been reported 
in pancreatic and colorectal cancer and acute lymphoid leu-
kemia [29,30].

As epigenetic dysregulation of WNT/β-catenin signaling 
frequently contributes to tumor pathogenesis, identifi cation 
of aberrant epigenetic events that activate WNT/β-catenin 
signaling may provide useful biomarkers for cancer detection 
and prognosis prediction. Veeck et al. reported that aberrant 
promoter methylation of SFRP1 was associated with an overall 

FIGURE 1. Wnt signaling pathway members: Central to this path-
way is a multiprotein scaff old composed of adenomatous polyp-
osis coli (APC), glycogen synthase kinase (GSK)–3β, axin and the 
transcriptional cofactor β-catenin. Fz – Frizzled receptor.
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shorter survival of patients with breast cancer [31]. SFRP2 meth-
ylation was also shown to be a tumor-specifi c biomarker for 
early breast cancer, while WIF1 methylation was a poor prog-
nostic factor for acute promyelocytic leukemia [32,33]. Yu et al. 
also reported that Dickkopf-related protein (DKK3) methyla-
tion was an independent prognostic marker for gastric cancer 
and strongly associated with poor survival of patients [34].

Hypermethylation of the gene promoters of Wnt inhib-
itors was observed in various cell lines and tissues and 
was associated with down-regulation of gene expression. 
Th e epithelial adhesion molecule E-cadherin (encoded by 
CDH1) also acts as a negative regulator of WNT/β-catenin 
signaling by aff ecting the intracellular localization of β-cat-
enin. Epigenetic silencing of CDH1, the gene encoding 
E-cadherin, by promoter methylation has been observed in 
various cancers, leading to aberrant activation of WNT/β-
catenin signaling [35]. Th e growing list of epigenetically 
silenced WNT antagonists involved in human cancers indi-
cates an important role for epigenetic inactivation events in 
tumor initiation and progression (see Table  1). Epigenetic 
changes (promoter methylation or histone methylation/
deacetylation) are pharmacologically reversible, using epi-
genetic agents including DNA methyltransferase inhibitors 
(5-aza-2’-deoxycytidine, Zebularine) and histone deacetyl-
ase inhibitors (TSA, SAHA and PXD101) [36,37].

CONCLUSIONS

Epigenetic mechanisms play a crucial role in normal and 
neoplastic development. Growing evidence indicates that the 
Wnt signaling pathway components are epigenetically regu-
lated and are actively involved in the pathogenesis of various 
human malignancies. Further investigations are necessary to 
translate the current epigenetic discoveries into useful diag-
nostic and therapeutic tools.
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