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Autologous tissue-engineered blood vessels (TEBVs) generated using adult stem cells have shown promising
results, but many preclinical evaluations do not test the efficacy of stem cells from patient populations likely to
need therapy (i.e., elderly and diabetic humans). Two critical functions of these cells will be (i) secreting factors
that induce the migration of host cells into the graft and (ii) differentiating into functional vascular cells them-
selves. The purpose of this study was to analyze whether adipose-derived mesenchymal stem cells (AD-MSCs)
sourced from diabetic and elderly patients have a reduced ability to promote human smooth muscle cell (SMC)
migration and differentiation potential toward SMCs, two important processes in stem cell-based tissue engi-
neering of vascular grafts. SMC monolayers were disrupted in vitro by a scratch wound and were induced to close
the wound by exposure to media conditioned by AD-MSCs from healthy, elderly, and diabetic patients. Media
conditioned by AD-MSCs from healthy patients promoted the migration of SMCs and did so in a dose-dependent
manner; heating the media to 56�C eliminated the media’s potency. AD-MSCs from diabetic and elderly patients
had a decreased ability to differentiate into SMCs under angiotensin II stimulation; however, only AD-MSCs from
elderly donors were unable to promote SMC migration. Gender and body–mass index of the patients showed no
effect on either critical function of AD-MSCs. In conclusion, AD-MSCs from elderly patients may not be suitable
for autologous TEBVs due to inadequate promotion of SMC migration and differentiation.

Introduction

Utilizing adult mesenchymal stem cells (MSCs)
represents a critical step in the clinical translation of

many autologous tissue-engineered technologies. MSCs
offer several advantages over primary cells such as their
ease of isolation, self-renewal capacity, differentiation po-
tential, and ability to secrete a wide spectrum of factors with
varying functional effects.1–7 Indeed, MSCs have seen a
wide-spread use in developing tissue-engineered cardiovas-
cular8–11 and musculoskeletal constructs.12,13 In many tissue-
engineered designs, these cells are coaxed to differentiate
during culture into a desired cell phenotype, so that the con-
struct will directly mimic native tissue.14–17 Alternatively,
MSCs can be utilized in a paracrine nature for their secreted

factors. In vascular tissue engineering, this paracrine signaling
appears to be an important mechanism18–22 by which tissue-
engineered blood vessels (TEBVs) remodel. Recent studies
have shown they possess a dynamic environment that is re-
populated with host cells,18–32 such as by the inward migration
of vascular smooth muscle cells (SMCs).

Despite the success of autologous vascular tissue engi-
neering in reducing intimal hyperplasia and thrombosis,8

translatability to the clinic has been limited by improper testing
of cell sources. Many preclinical investigations do not test
the efficacy of cells from clinically realistic patient popula-
tions who would routinely see this type of therapy, opting
for healthy human or animal cells instead.18–22,24,25,33–63 In
addition, many of these healthy human cells are purchased
from companies as opposed to being taken from an array of
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individuals, representative of a realistic patient population.
While taken together, these studies have shown that cellular-
izing tissue-engineered grafts significantly improves the pa-
tency and regeneration over their acellular counterparts; these
models hold limited relevance for clinical translation since in
practice, cells would need to be harvested from patients at high
cardiovascular risk such as diabetics64,65 and the elderly.66–68

In addition, these high-risk groups possess pathologic condi-
tions such as a hyperglycemic environment69–72 and age-
associated senescence,73–85 respectively, which can decrease
the ability of their stem cells to proliferate, differentiate into
specific mesenchymal cell types, and promote angiogenesis.
Whereas bone marrow has been shown to be a source of
stem cells, it is particularly important to consider the use of
adipose-derived mesenchymal stem cells (AD-MSCs) due
to their ease of isolation and abundance. Whereas there have
been studies noting various changes in AD-MSC properties
with aging74–76,78,79,82,83,85 and diabetes,71 it is unclear how
donor demographics affect functions related to vascular
engineering such as the ability to secrete factors to induce
SMC migration and their potential to differentiate into
SMCs. Also, investigating if donor demographics alter the
factors secreted by AD-MSCs will have a broad impact as
the AD-MSC secretome has been used for a variety of ap-
plications.82,85–89

In this study, we use human AD-MSCs to test the hy-
pothesis that cells sourced from high-risk populations (i.e.,
diabetic, elderly) will have a decreased efficacy to promote
the migration of SMCs and ability to differentiate into
SMCs themselves. We test this in vitro using a scratch
wound assay and angiotensin II (AngII)-induced differenti-
ation, respectively. Understanding the effect of donor de-
mographics on the ability of human MSCs to produce SMC
promigratory factors and differentiate into SMC is critical to
the design of functional TEBVs and could have a wide
impact of the stem cell therapy field.

Materials and Methods

Conditioned media from AD-MSCs

AD-MSCs were harvested from the adipose tissue of
human patients using previously described methods.76,90

Only information on patient age, gender, body–mass index
(BMI), and diabetic status was linked to the harvested cells
to protect patient confidentiality, in accordance with an
approved Institutional Review Board exempt protocol.
Briefly, adipose tissue was isolated from patients, which was
minced and digested in a collagenase solution (1 mg/mL,
type II) for 30 min. The solution was then filtered through a
gauze, centrifuged, resuspended in an NH4Cl erythrocyte
lysis buffer (154 mM), and centrifuged again to obtain a cell
pellet. The cell pellet was plated and cultured to obtain AD-
MSCs. AD-MSCs were then classified into groups that re-
presented a healthy status ( < 45 years of age, nondiabetic), a
diabetic status ( < 45 years of age, diabetic), or an elderly
status ( > 60 years of age, nondiabetic). To avoid confounding
variables when comparing between groups, the age or dia-
betic condition was held constant and only female donors
were used. However, to compare on the basis of gender, cells
from different healthy male donors were also analyzed.

All AD-MSCs were cultured in 75-cm2 tissue culture
flasks (Corning) with defined culture media [1:1 Dulbecco’s

modified Eagle’s medium (DMEM, #11965; Gibco) to
DMEM/F12 (#113300; Gibco) with 10% fetal bovine serum
(#S11550; Atlanta Biologics), antibiotics (1% Pen/Strep,
0.5% Fungizone, 0.1% Gentamycin), and 10 mL dexameth-
asone] mixed with 25% Preadipocyte Growth Medium
(#C-27410, #C-39425; PromoCell). To obtain conditioned
media, culture media were replenished when flasks were
near confluence and termed conditioned after 2 days when
collected. Upon collection, the conditioned media were
centrifuged to remove any cells or fragments and stored at
- 80�C until use. For most experiments, conditioned media
were diluted with culture media to 100,000 conditioning
cells/mL; however, for dose dependence studies, media
were diluted from 500,000 conditioning cells/mL (dose 1:0)
at dilutions of 1:2, 1:4, 1:9, and 1:19. To heat inactivate, the
conditioned media were raised to a temperature of 56�C for
30 min. For all experiments, AD-MSCs between passage
number 2 and 6 were used.

Culture of SMCs

Human SMCs were purchased from ATCC (#PCS-100-
012) and grown in 75-cm2 culture flasks with SMC Growth
Media (#311-500, #311-GS; Cell Applications). SMCs were
removed from culture flasks with 0.25% trypsin-EDTA
(#25200; Gibco) and placed in 24-well plates (TPP) at 10,000
cells/cm2 to achieve confluent monolayers 1 day before
experimentation.

Scratch wound assay

Confluent layers of SMCs within each well had their
culture media removed and were scratched with a single
stroke of a 200-mL pipette tip to make a wound [scratch
wound length: 682 – 105mm (avg – SD, n = 48)]. SMCs were
then washed in a 1 · Hanks’ balanced salt solution to re-
move any cellular debris. SMCs were then incubated with
SMC media containing 1 mL/mL of Cell Tracker Red
(#C34552; Invitrogen) for 30 min to load cells for fluores-
cent visualization. The media were then replaced with AD-
MSC conditioned media and SMCs were then allowed to
migrate over 24 h (experimental schematic: Fig. 1). Non-
conditioned AD-MSC media were used as a control to show
the effect of AD-MSC secreted factors in the conditioned
media to promote migration.

Cells were placed in a closed thermo-controlled (37�C)
stage-top incubator (Tokai Hit Co.) atop the motorized stage
of an inverted Nikon TiE fluorescent microscope (Nikon,
Inc.) equipped with a 10 · , 0.5NA plan apochromat lens
(Nikon, Inc.). Cell Tracker Red was excited using a Lu-
mencor diode-pumped light engine (SpectraX, Lumencor,
Inc.) and detected using a DsRed longpass filter set (Chroma
Technology Corp.) and ORCA-Flash4.0 sCMOS camera
(Hamamatsu Corporation). NIS Elements software (version
4.0) was used to automatically image cell migration every
2 h while typical cell culture conditions were maintained
(20% O2, 5% CO2, and 37�C). The resulting images were
analyzed by measuring the area of the wound normalized to
the area at the initial time point for each well. The migration
rate was calculated by averaging the difference in normal-
ized area between the first four time points (equivalent to
8 h) and was normalized to nonconditioned controls. In
addition, images of healthy, diabetic, elderly, and control
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conditions were acquired every 15 min and joined sequen-
tially as a time-lapse video to show migration of each side-
by-side (Supplementary Video SV1; Supplementary Data
are available online at www.liebertpub.com/tea).

ELISA on AD-MSC conditioned media

An enzyme-linked immunosorbent assay (ELISA) kit was
utilized to detect the levels of vascular endothelial growth
factor (VEGF) within the conditioned media of AD-MSC
donors (#DVE00; R&D Systems). All protocols were fol-
lowed according to the manufacturer’s instructions. To get a
greater sense of the population variability of VEGF present
within conditioned media, a higher number of donors
(n = 12) were utilized for this assay. All donors investigated
remained in the healthy AD-MSC group (i.e., < 45 years of
age, nondiabetic) and spanned a wide range of BMI (avg –
SD: 27.3 – 4.3, range: 21.3–34.7).

AD-MSC differentiation into SMCs

To induce differentiation of AD-MSCs into SMCs, AD-
MSCs were plated on PLL-coated coverslips (GG-22-pll;
Neuvitro) at a density of 10,000 cells per coverslip. They
were cultured in media (MEMa, #12561-056; Life Tech-
nologies) containing AngII (1mM, #A9525; Sigma) with
10% serum.91 After 4 days of culture, AD-MSCs were fixed
in 4% paraformaldehyde and evaluated using a standard
immunofluorescent chemistry protocol to detect calponin
(1:250, #ab46794; Abcam), myosin heavy chain (1:250,
#ab77967; Abcam), and smoothelin (1:250, #ab8969), to
quantify percent expressing cells. F-actin was fluorescently
labeled with FITC-phalloidin (1:250, #P5282; Sigma) to
assess the cell shape (approaching a spindle-like SMC
morphology). Calponin is expressed in aortic SMCs across
their phenotype diversity, whereas myosin heavy chain and
smoothelin are selective for mature contractile SMCs.92–94

All staining intensities were quantified using NIS Elements
software. Primary human aortic SMCs (#PCS-100-102;
ATCC) were used as positive controls for SMC staining.

Statistical analyses

All statistical analyses were done utilizing Minitab soft-
ware (version 16) to perform a t-test, ANOVA, or linear
regression. Statistical significance was accepted at p < 0.05.

Results

AD-MSC secreted factors can promote SMC migration

To investigate the ability of AD-MSCs to exert a para-
crine promigratory effect on SMCs, we harvested human
AD-MSCs from a variety of patients to obtain their condi-
tioned media and employed a scratch wound assay with a
confluent monolayer of human SMCs. Upon stimulation
with AD-MSC conditioned media from healthy donors,
SMCs showed an increased wound closure rate when
compared with nonconditioned AD-MSC media (Fig. 2A
and Supplementary Video SV1). These data were also ex-
pressed as the migration rate per hour over the first 8 h, and
conditioned media displayed a significant increase in rate
over nonconditioned controls (Fig. 2B). In addition, the
factors promoting SMC migration were heat labile, as
heating of conditioned media to 56�C removed the promi-
gratory effect (Fig. 2B). Upon dilution of AD-MSC condi-
tioned media to varying levels of conditioning cells/mL, a
dose-dependent effect was observed (Fig. 2C). A dose of
1:19 (20-fold dilution) showed a similar effect to non-
conditioned media.

To identify one factor that could be responsible for this
paracrine effect on migration, we quantified VEGF levels in
the conditioned media. VEGF was shown to be present at
4091 – 1903 pg/106 AD-MSCs.

FIG. 1. Scratch wound assay. Smooth
muscle cells (SMCs) are induced to migrate
through a scratch wound assay while being
stimulated with adipose-derived mesenchy-
mal stem cell (AD-MSC) conditioned media
over the course of 24 h. Top: Schematic of
migration assay. Bottom: Images of fluores-
cently labeled SMCs directly after scratch
wound (left), and after migrating into wound
area (right). Color images available online at
www.liebertpub.com/tea

428 KRAWIEC ET AL.



AD-MSCs from diabetic donors can promote
the migration of SMCs but have a decreased
ability to differentiate into SMCs

Determining if AD-MSCs from clinically realistic patient
groups can perform two main functions utilized in vascular
tissue engineering—inducing SMC migration and differen-
tiating directly into SMCs—is critical to the development of
a stem cell-based vascular graft. To first assess if AD-MSCs
from diabetic patients (i.e., a cohort of patients at high
cardiovascular risk) would have a reduced ability to produce
SMC promigratory secreted factors, we stimulated SMCs
with conditioned media from the AD-MSCs of this patient
population. Media conditioned by diabetic AD-MSCs in-
duced faster wound closure than nonconditioned media (Fig.
3A, B and Supplementary Video SV1) in a similar manner
to healthy AD-MSCs. This shows that a diabetic origin does
not affect the functionality of these cells. Also, it is note-
worthy that all AD-MSCs (healthy, diabetic, and elderly)
were cultured in high glucose growth media (*17 mM that
is equivalent to 306 mg/dL, which is above the diabetic
threshold), which suggests that the diabetic hyperglycemic
environment does not limit the ability of AD-MSCs to
produce SMC promigratory factors.

To assess if AD-MSCs from diabetic patients had a re-
duced ability to differentiate into SMCs, they were stimu-

lated with AngII. Diabetic cells displayed a less efficacious
differentiation compared to controls indicated by a signifi-
cantly lower expression of the SMC marker calponin (Fig.
4A, B) and a failure to adopt an SMC spindle-like mor-
phology (Fig. 4C, D). Unstimulated AD-MSCs do not ex-
press calponin (data not shown) and maintain a flat
morphology (Fig. 4C, D), whereas SMCs ubiquitously ex-
press calponin and a spindle-like morphology (Fig. 4E). In
addition, no positive staining was seen with myosin heavy
chain or smoothelin with healthy or diabetic donor AD-
MSCs in either stimulated or unstimulated states, although
SMCs stained positively in the same assay (data not shown).

AD-MSCs from elderly donors have both
a decreased ability to promote the migration
of SMCs and differentiate into SMCs

Utilizing a scratch wound assay, AD-MSC secreted fac-
tors from elderly donors (i.e., another cohort of patients at
high cardiovascular risk) were unable to promote the mi-
gration of SMCs (Fig. 5A, B and Supplementary Video
SV1). The differentiation potential of elderly donor AD-
MSCs toward SMCs was also found to be reduced based on
the expression of calponin (Fig. 6A, B) and maintainance of
a flat morphology (Fig. 6C, D) under AngII stimulation.
AD-MSCs from elderly donors did not stain positively for

FIG. 2. AD-MSC secreted factors can promote SMC migration. SMCs are induced to migrate through a scratch wound
assay while being stimulated with AD-MSC conditioned media over the course of 24 h. AD-MSCs promote the migration of
SMCs compared to nonconditioned controls (A). These data were quantified by measuring the normalized wound area over
time. These data were converted to migration rate per hour relative to controls, expressing a significant difference between
AD-MSC conditioned media and nonconditioned controls (B). In addition, heat inactivating conditioned media caused a
significant loss in functionality, indicating that SMC promigratory effects happen at least, in part, on a protein level.
Diluting AD-MSC conditioned media to varying levels of conditioning cells/mL produced a dose-dependent effect (dose
1:0 = 500,000 conditioning cells/mL) (C). Data are presented as mean – SEM with *, significant difference at p < 0.05. n = 4
was used per group in all experiments.
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FIG. 3. AD-MSCs from
diabetic patients produce
SMC promigratory secreted
factors. Investigating dia-
betic patient AD-MSCs for
the ability of their secreted
factors to promote SMC mi-
gration, showed an increased
migration compared to non-
conditioned media [(A)
wound closure over time; (B)
wound closure rate per hour].
This increased migration rate
was similar to that seen with
healthy AD-MSCs. Data are
presented as mean – SEM
with *, significant difference
at p < 0.05. n = 4 was used
per group in all experiments.

FIG. 4. AD-MSC differen-
tiation into SMC is decreased
for diabetic patients. Diabetic
AD-MSCs displayed a less
efficacious SMC differentia-
tion compared to healthy
AD-MSCs in terms of the
expression of calponin [(A)
immunofluorescence for
calponin (green) with coun-
terstained nuclei (blue)]. This
was quantified by percentage
of calponin expressing cells
(B). In addition, upon differ-
entiation, AD-MSCs did not
acquire an SMC spindle mor-
phology [(C) immunofluores-
cence for F-actin (green) with
counterstained nuclei (blue)].
This was quantified by mea-
suring the shape factor of the
cells (4p· area/perimeter2,
*0 = ellipsoid, 1 = circular)
(D). SMCs inherently express
calponin (green) and have a
spindle-like morphology (E).
Data are presented as mean –
SEM with *, significant
difference at p < 0.05. n = 4
was used per group for shape
factor experiments. For
calponin expression, n = 7 was
used for the healthy group and
n = 4 for the diabetic group.
All scale bars = 100mm. Color
images available online at
www.liebertpub.com/tea
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FIG. 5. AD-MSCs from
elderly patients do not pro-
duce SMC promigratory se-
creted factors. When
comparing between healthy
and elderly patient AD-
MSCs, those from elderly
patients displayed an inabil-
ity of their secreted factors to
produce SMC promigratory
effects [(A) wound closure
over time; (B) wound closure
rate per hour]. Data are pre-
sented as mean – SEM with
no significant differences
found at p < 0.05. n = 4
was used per group in all
experiments.

FIG. 6. AD-MSC differentiation into SMC is decreased for elderly patients. Elderly AD-MSCs displayed a reduced ability to
differentiate into SMCs under angiotensin II (AngII) stimulation for 4 days. AngII-stimulated AD-MSCs showed a significantly
lower expression of calponin [(A) immunofluorescence for calponin (green) with counterstained nuclei (blue)]. This was
quantified by number of calponin expressing cells (B). In addition, they did not acquire an SMC spindle morphology [(C)
immunofluorescence for F-actin (green) with counterstained nuclei (blue)]. This was quantified by measuring the cell shape
factor (4p· area/perimeter2, *0 = ellipsoid, 1 = circular) (D). Data are presented as mean – SEM with *, significant difference at
p < 0.05. n = 4 was used per group for shape factor experiments. For calponin expression, n = 7 was used for the healthy group and
n = 5 for the elderly group. All scale bars = 100mm. Color images available online at www.liebertpub.com/tea
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myosin heavy chain or smoothelin in either stimulated or
unstimulated states (data not shown).

Gender and BMI do not affect the ability of AD-MSCs
to promote the migration of SMCs or the ability
to differentiate into SMCs

As all the donors utilized for the scratch wound assay were
females, male donors from the healthy demographic were
acquired and compared directly to the healthy female group
to assess potential gender differences. The ability to produce
SMC promigratory factors did not appear to be gender spe-
cific (Fig. 7A), as there was no difference in the migration
rate observed between the groups. In addition, the gender did
not affect the ability of AD-MSCs to differentiate into SMCs
as both male and female donors displayed equivalent results
in terms of expression of calponin postdifferentiation (Fig.
7B) and change to a SMC-like morphology in the presence of
AngII (Fig. 7C). The BMI was also investigated in both as-
says by performing a regression analysis on the migration rate
(Fig. 7D) and calponin expression (Fig. 7E) postdifferentia-
tion, respectively. No significant trend was seen between ei-
ther set of data (migration rate: R2 = 0.05, p = 0.4; calponin
expression: R2 = 0.001, p = 0.96). Also, we correlated the

concentration of VEGF (pg/106 cells) with BMI and showed
no significant trend (data not shown, R2 = 0.01, p = 0.74).
From these data, altered abilities in AD-MSC function appear
to be dependent on diabetes and age, but not gender or BMI.

Discussion

The ability of an implanted scaffold to become populated
with functional cellular constituents is a critical factor for
success in tissue engineering applications. For example, not
only does a TEBV with more SMCs indicate a higher degree
of vascular maturity,50 including medial cellularity, myosin
heavy chain expression, and contractility, but SMC content
also correlates with desirable mechanical properties such as
tensile strength and stiffness.39,41 These mechanical prop-
erties are critical for the long-term success of a TEBV as
they can be predictive of failure by aneurysmal dilation/
rupture and intimal hyperplasia.95 As one of the main design
strategies in tissue engineering is to utilize a biodegradable
scaffold that is replaced with host tissue, if sufficient vas-
cular cells and matrices are not recruited and produced to
compensate the mechanical loss due to scaffold degradation,
the TEBV could fail in the long term. Including MSCs that
can guide this process is critical to avoiding failure.

FIG. 7. Gender and body–
mass index (BMI) do not af-
fect AD-MSC secreted SMC
promigratory factors or AD-
MSC differentiation into
SMCs. Comparing gender of
AD-MSCs from both healthy
male and female donors
produced equivalent SMC
promigratory responses (A).
In addition, gender produced
equivalent results when AD-
MSCs were stimulated to
differentiate into SMCs with
AngII based on calponin ex-
pression (B) and change in
cell morphology (C). Per-
forming a regression analysis
utilizing BMI from all donors
produced no correlation for
either migration rate (D) or
percentage of cells expres-
sing calponin (E). Data for
bar graphs are represented as
mean – SEM with *, sign-
ficant difference at p < 0.05.
n = 4 was used per group for
migration and shape factor
experiments. For calponin
expression, n = 7 was used
for the female group and
n = 5 for the male group.
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Many recent studies have begun to investigate the mech-
anisms by which TEBVs remodel to achieve a mature native-
like vessel. Studies utilizing cell tracking have shown that
seeded cells are eventually replaced with migrating host
SMCs, with the seeded cells being necessary for providing
initial antithrombogenicty and initiating the remodeling pro-
cess.18–22 Providing further evidence for this phemonmenon,
implanted scaffolds with low porosity28,30,32 and even TEBVs
with already intact SMC layers24 have been shown to be
repopulated with host vessel wall cells. In addition, vascular
engineering methods have begun to take advantage of host
recellularization by creating acellular approaches, utilizing
bound growth factors or drug delivery methods,19,23,96 or
designing porous scaffolds to facilitate this cellular infiltra-
tion.31,46,97,98 In all of these cases, establishing a mature
TEBV populated by SMCs requires recruitment of host cells.

In this study, we show that donor demographics in human
AD-MSCs can play a role in their ability to produce secreted
factors that are responsible for SMC migration and for them
to differentiate into SMCs, both of which are important for
remodeling and maturation of TEBVs. Age is critically
important to both the abilities of AD-MSCs to produce se-
creted factors and differentiate into SMCs, whereas a dia-
betic condition only affected the ability of AD-MSCs to
differentiate. However, gender and BMI did not seem to
play a role in either stem cell function, which is surprising
since female AD-MSCs proliferate at a higher rate than male
ones99,100 and BMI is negatively correlated with the AD-
MSC differentiation capacity.101

One area of interest that was not yet investigated in the
migration experiments is the effects of each AD-MSC de-
mographic on their respective SMC demographic, such as
the effect of diabetic AD-MSC conditioned media on dia-
betic SMCs. However, SMCs sourced from diabetic and
elderly humans have been previously shown to have in-
creased102 and decreased103 migration, respectively. This
parallels the above conclusions that the combination of AD-
MSC and SMC of diabetic patients is promigratory, whereas
the combination of the elderly is not.

As we have utilized human cells in this study, particularly
those from clinically realistic groups, and shown functional
differences in a mechanism of action by which TEBVs re-
model and the ability of AD-MSCs to form SMCs, this rep-
resents a critical step in the clinical translation of TEBVs. We
have shown that elderly AD-MSCs may cause poor TEBV
remodeling in terms of their ability to recruit SMCs. While
these cells may have auxiliary functions such as providing
resistance against thrombosis,20 this clearly could reduce the
effectiveness of an autologous TEBV therapy. This an im-
portant concern as more than 4 million people in the United
States are over 65 years old104 and these represent one of the
highest cardiovascular risk groups.67 In addition, as many
TEBV approaches utilize AD-MSCs to differentiate into
SMCs,14–17 those utilizing elderly and diabetic cells could be
heavily affected due to the reduced differentiation potential
for both groups. One point worth noting in this regard is that
with 1mM AngII stimulation for 4 days, AD-MSCs do not
achieve complete differentation into SMCs, as evidenced by
the absence of staining for myosin heavy chain or smoothelin
(both late differentiation markers).

We have also shown that the ability of AD-MSCs to in-
duce SMC migration is decreased upon heat inactivation

indicating that these secreted factors likely operate on a
protein level. One likely explanation could be that growth
factors secreted by MSCs are responsible for this promi-
gratory function. Indeed, we have shown that one known
factor to promote SMC migration, VEGF, is present in our
conditioned media. However, many growth factors produced
by AD-MSCs are promigratory for SMCs105 and can also
induce other mitogenic, proteolytic, extracellular matrix
producing, inflammatory, and angiogenic effects.5 This is
concerning for studies that target elderly patients, as the
same growth factors that lead to the deficiency in promoting
SMC migration may also affect other applications beyond
TEBVs. Also, with AD-MSC secreted factors showing a
dose-dependent response, the need to optimize the number
of cells utilized in cell therapy approaches is clear.

In conclusion, by utilizing conditioned media from AD-
MSCs to induce SMC migration, we have shown that age
and not diabetes, gender, or BMI results in an inability. In
addition, this effect is dose dependent and functions on a
protein level. Also, we have shown that differentiation of
AD-MSCs from diabetic and elderly patients is decreased
but no effect was seen due to gender or BMI. With respect to
TEBVs, AD-MSCs from elderly patients may be suboptimal
in autologous TEBVs, as they lack the ability to induce host
recellularization.
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Auger, F.A. A completely biological tissue-engineered
human blood vessel. FASEB J 12, 47, 1998.

55. L’Heureux, N., Dusserre, N., Konig, G., Victor, B., Keire,
P., Wight, T.N., Chronos, N. A., Kyles, A. E., Gregory, C.
R., and Hoyt, G. Human tissue-engineered blood vessels for
adult arterial revascularization. Nat Med 12, 361, 2006.

56. Nelson, G.N., Mirensky, T., Brennan, M.P., Roh, J.D., Yi,
T., Wang, Y., and Breuer, C.K. Functional small-diameter
human tissue-engineered arterial grafts in an immunode-
ficient mouse model: preliminary findings. Arch Surg 143,
488, 2008.

57. He, H., and Matsuda, T. Newly designed compliant hier-
archic hybrid vascular graft wrapped with microprocessed
elastomeric film-ii: morphogenesis and compliance
change upon implantation. Cell Transplant 11, 75, 2002.

58. Quint, C., Arief, M., Muto, A., Dardik, A., and Niklason,
L.E. Allogeneic human tissue-engineered blood vessel. J
Vasc Surg 55, 790, 2012.

59. Niklason, L., Gao, J., Abbott, W., Hirschi, K., Houser, S.,
Marini, R., and Langer, R. Functional arteries grown
in vitro. Science 284, 489, 1999.

60. Zhao, J., Liu, L., Wei, J., Ma, D., Geng, W., Yan, X., Zhu,
J., Du, H., Liu, Y., and Li, L. A novel strategy to engineer
small-diameter vascular grafts from marrow-derived
mesenchymal stem cells. Artif Organs 36, 93, 2012.

61. He, W., Nieponice, A., Hong, Y., Wagner, W.R., and
Vorp, D.A. Rapid engineered small diameter vascular
grafts from smooth muscle cells. Cardiovasc Eng Technol
2, 149, 2011.

62. Hoerstrup, S.P., Cummings, I., Lachat, M., Schoen, F.J.,
Jenni, R., Leschka, S., Neuenschwander, S., Schmidt, D.,
Mol, A., and Günter, C. Functional growth in tissue-en-
gineered living, vascular grafts follow-up at 100 weeks in
a large animal model. Circulation 114, 1159, 2006.

63. Watanabe, M., Shin’oka, T., Tohyama, S., Hibino, N.,
Konuma, T., Matsumura, G., Kosaka, Y., Ishida, T., Imai,
Y., and Yamakawa, M. Tissue-engineered vascular auto-
graft: inferior vena cava replacement in a dog model.
Tissue Eng 7, 429, 2001.

64. Dokken, B.B. The pathophysiology of cardiovascular
disease and diabetes: beyond blood pressure and lipids.
Diabetes Spectr 21, 160, 2008.

65. Imazu, M., Sumii, K., Yamamoto, H., Toyofuku, M.,
Tadehara, F., Okubo, M., Yamakido, M., Kohno, N., and

HUMAN DONOR EFFECTS ON MESENCHYMAL STEM CELLS 435



Onaka, A.T. Influence of type 2 diabetes mellitus on
cardiovascular disease mortality: findings from the ha-
waii-los angeles-hiroshima study. Diabetes Res Clin Pract
57, 61, 2002.

66. Fuster, J.J., and Andrés, V. Telomere biology and car-
diovascular disease. Circ Res 99, 1167, 2006.
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