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Abstract

Here we review the neurobiology of infant odor learning in rats, and discuss the unique role of the 

stress hormone corticosterone (CORT) in the learning necessary for the developing rat. During the 

first 9 postnatal (PN) days, infants readily learn odor preferences, while aversion and fear learning 

are attenuated. Such restricted learning may ensure that pups only approach their mother. This 

sensitive period of preference learning overlaps with the stress hyporesponsive period (SHRP, 

PN4–14) when pups have a reduced CORT response to most stressors. Neural underpinnings 

responsible for sensitive-period learning include increased activity within the olfactory bulb and 

piriform “olfactory” cortex due to heightened release of norepinephrine from the locus coeruleus. 

After PN10 and with the decline of the SHRP, stress-induced CORT release permits amygdala 

activation and facilitates learned odor aversions and fear. Remarkably, odor preference and 

attenuated fear learning can be reestablished in PN10–15 pups if the mother is present, an effect 

due to her ability to suppress pups’ CORT and amygdala activity. Together, these data indicate 

that functional changes in infant learning are modified by a unique interaction between the 

developing CORT system, the amygdala, and maternal presence, providing a learning system that 

becomes more flexible as pups mature.
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INTRODUCTION

“There is continuity in development, such that the organization at one stage 

provides the basis for organization at the next succeeding stage. This does not 

mean, however, that all processes persist throughout life, nor does it mean that 

behaviors must remain stable across stages. On the contrary, development is 

essentially a dynamic process that promotes reorganization and adaptation across 

time”

(Levine, 1982).

At birth, altricial infant rats are confined to the nest and exquisitely designed to identify, 

learn, and remember experiences with their caregivers. Indeed, infants readily learn an 

attraction to their mother’s odor, which ensures that infants will exhibit approach behaviors 

toward the mother in order to receive the food, protection, and warmth needed for survival. 

Perinatal learning of maternal odor is required for pups to approach the mother and attach to 

her nipples for nursing (Pedersen & Blass, 1982), though somatosensory cues from the 

nipple are also required for these behaviors (Polan & Hofer, 1999; Stern, 1997). The 

maternal odor continues to be learned throughout the postnatal period (Cheslock, 

Varlinskaya, Petrov, & Spear, 2000; Pedersen, Williams, & Blass, 1982), presumably since 

the mother’s odor can be altered with her diet (Leon, 1992). Overall, infant behavior is 

centered on maintaining contact with the mother (Galef & Kaner, 1980; Leon, 1992), and, as 

will be discussed here, this early attachment process is facilitated by infants’ enhanced 

ability to learn preferences and their decreased ability to learn aversions or fear. Presumably, 

this constrains infants to form only preferences to caretakers.

Such attachment learning has a wide phylogenetic representation and appears to enable 

altricial animals to easily form a repertoire of proximity-seeking behaviors toward the 

primary caregiver, regardless of the quality of care they receive. For example, in avian 

imprinting, a chick will continue to follow its caregiver even while being shocked (Hess, 

1962; Salzen, 1970). A similar experiment in dogs has shown that puppies will display 

strong attachment to a handler who provides rough treatment or neglect (Rajecki, Lamb, & 

Obmascher, 1978). Additionally, nonhuman primates and human children will also 

demonstrate strong attachment to an abusive caregiver (Harlow & Harlow, 1965; Helfer, 

Kempe, & Krugman, 1997; Maestripieri, Tomaszycki, & Carroll, 1999; Sanchez, Ladd, & 

Plotsky, 2001).

We have hypothesized that the infant rat learning system is designed to ensure that pups will 

learn an approach response towards and preference for the mother, regardless of whether she 

is associated with pain or pleasure (Hofer & Sullivan, 2001). We refer to this period of 

attachment learning as the “sensitive period.” Furthermore, it is worthwhile to note that 

postpartum mothers of various mammalian species also display a sensitive period for 

learning about offspring (Brennan & Keverne, 1997; Insel & Young, 2001; Keverne & de la 

Riva, 1982; Marlier, Schaal, & Soussignan, 1998; Moffat, Suh, & Fleming, 1993; Okere & 

Kaba, 2000; Pissonnier, Thiery, Fabre-Nys, Poindron, & Keverne, 1985). Much like that of 

the infant, mother learning requires unique neural circuitry to facilitate odor preferences, 
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approach responses, and nurturing behavior toward offspring (Brennan & Keverne, 1997; 

Insel & Young, 2001; Lévy, Gervais, Kindermann, Orgeur, & Piketty, 1990).

In just 3 short weeks, rat pups are transformed into independent organisms with the 

maturation and experience to survive on their own. These 3 weeks represent a time of 

transition from maternal dependence to independence that uniquely characterizes the 

dramatic reorganization and adaptation of learning required of the infant. In this review, we 

discuss the neural basis that enables pups to transition between readily learning preferences 

within the context of attachment to learning fear. One prominent characteristic of learning 

after postnatal day (PN) 10 is the amygdala’s dependence on stress-induced corticosterone 

(CORT) release. Indeed, the ontogeny of infant stress responsiveness and the hypothalamic–

pituitary–adrenal (HPA) system development were two major foci of Seymour Levine’s 

developmental work. As will be evident below, Levine’s contributions to developmental 

psychobiology have certainly been instrumental in helping us understand the 

neurobehavioral basis of infant attachment and the ontogeny of fear learning.

NEUROBIOLOGY OF INFANT RAT ODOR PREFERENCE LEARNING

During the infant sensitive period, PN1–9, pups display an enhanced capacity for preference 

learning. We have shown that learned odor preferences (conditioned via either positive or 

aversive stimuli paired with an unfamiliar odor) during this period are in part due to strong 

noradrenergic input to the olfactory bulb from the locus coeruleus (LC). Infant acquisition 

(learning) is disrupted if norepinephrine (NE) receptors are blocked in the bulb (Sullivan, 

Zyzak, Skierkowski, & Wilson, 1992) or if the LC is pharmacologically destroyed (Sullivan, 

Wilson, Lemon, & Gerhardt, 1994). Presentations of an odor with the activation of olfactory 

bulb NE β-receptors or stimulation of the LC during this period are sufficient to produce 

odor preference learning (Sullivan, Stackenwalt, Nasr, Lemon, & Wilson, 2000; Yuan, 

Harley, Darby-King, Neve, & McLean, 2003). Additionally, we have shown that NE is 

required for the maintenance of the prolonged mitral cell response characteristic of 

sensitive-period learning (Wilson, Sullivan, & Leon, 1987).

Unique properties of the LC appear to be responsible for infant preference learning. In 

effect, the LC of a sensitive-period pup is characterized by prolonged stimulus-evoked 

excitation, which prompts release of an enormous amount of NE (Nakamura, Kimura, & 

Sakaguchi, 1987). This is in contrast to the LC of an older pup, in which there is a much 

shorter evoked physiological response and thus smaller release of NE (Nakamura et al., 

1987). The dramatic reduction in NE release at the close of the sensitive period is associated 

with the functional emergence of LC α2 inhibitory autoreceptors and the downregulation of 

LC α1 excitatory autoreceptors (Nakamura et al., 1987; Pieribone, Nicholas, Dagerlind, & 

Hokfelt, 1994; Scheinin et al., 1994). To test whether these developmental changes in LC 

autoreceptors are important for ending pups’ rapid preference learning, we recreated 

neonatal levels of these LC autoreceptors’ activity in older pups to reproduce the large NE 

release of younger pups. Specifically, after stimulating the LC with intra-LC cholinergic 

infusion, combined with drugs that blocked the autoinhibition (α2 antagonists) and 

enhanced the autoexcitation (α1 agonists), we successfully reinstated pups’ rapid NE-

dependent odor preference learning (Moriceau & Sullivan, 2004b). These data suggest that 
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functional changes in the LC support termination of the rapid and robust preference learning 

period.

Though early-life learning is characterized by odor preference learning, infants during this 

developmental period also have a decreased capacity to learn aversions or fear. Specifically, 

during the sensitive period, neonatal rats readily learn an odor preference even when an 

unfamiliar odor has been paired with an aversive stimulus, such as .5 mA foot-shock or tail 

pinch (Camp & Rudy, 1988; Haroutunian & Campbell, 1979; Moriceau & Sullivan, 2006; 

Moriceau, Wilson, Levine, & Sullivan, 2006; Roth & Sullivan, 2005; Spear, 1978; Sullivan 

& Hall, 1988; Sullivan, Hofer, & Brake, 1986; Sullivan, Landers, Yeaman, & Wilson, 

2000). At the end of the sensitive period, similarly to older animals, pups readily learn to 

avoid unfamiliar odors paired with the same aversive stimuli (Blozovski & Cudennec, 1980; 

Camp & Rudy, 1988; Collier, Mast, Meyer, & Jacobs, 1979; Goldman & Tobach, 1967; 

Haroutunian & Campbell, 1979; Moriceau & Sullivan, 2006; Moriceau et al., 2006; 

Myslivecek, 1997; Stehouwer & Campbell, 1978; Sullivan, Landers, et al., 2000).

Shock-induced preference learning during the sensitive period is likely not due to the pups’ 

inability to feel pain since unconditioned responses to shock vary little between sensitive-

period pups and older pups (Barr, 1995; Collier & Bolles, 1980; Emerich, Scalzo, Enters, 

Spear, & Spear, 1985; Fitzgerald, 2005; Shair, Masmela, Brunelli, & Hofer, 1997; 

Stehouwer & Campbell, 1978; Sullivan, Landers, et al., 2000). Also, pups’ inability to learn 

aversions or fear is not limited to olfactory-cued fear conditioning, as other learning 

paradigms that produce learned fear in older animals (such as passive avoidance and 

inhibitory conditioning) do not readily do so in infant rats (Bialik, Pappas, & Roberts, 1984; 

Blozovski & Cudennec, 1980; Camp & Rudy, 1988; Collier & Mast, 1979; Myslivecek, 

1997).

Due to the known role of the amygdala in supporting learned fear in older animals (Cahill, 

Weinberger, Roozendaal, & McGaugh, 1999; Debiec & LeDoux, 2006; Fanselow & Gale, 

2003; Fanselow & LeDoux, 1999; Goosens & Maren, 2001; Maren, 2003; Sigurdsson, 

Doyere, Cain, & LeDoux, 2007), we have examined whether the amygdala mediates the 

developmental transition that permits pups’ emergence of avoidance and fear learning at 

PN10 (Sullivan, Landers, et al., 2000). Using markers that reflect neural activity (2-

deoxyglucose uptake and cfos immunohistochemistry), we have found that the amygdala 

only appears to be involved in odor-shock conditioning when this conditioning is able to 

support odor avoidance acquisition—that is, when the sensitive period has ended (Moriceau 

et al., 2006; Roth & Sullivan, 2005; Sullivan, Landers, et al., 2000; Sullivan & Wilson, 

1993, 2003).

As further evidence of its limited role in infant preference learning, amygdala lesions during 

the sensitive period do not prevent the ability of infants to learn a shock-induced conditioned 

odor preference (Moriceau et al., 2006; Sullivan & Wilson, 1993). In contrast, amygdala 

lesions in older pups prevent them from learning a conditioned odor aversion (Maren, 1999; 

Moriceau et al., 2006; Sullivan, Landers, et al., 2000). Finally, the reduced ability of 

sensitive-period pups to exhibit amygdala long-term depression (LTD) further suggests that 

the amygdala is not participating in infant learning (Thompson, Sullivan, & Wilson, 2008). 
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Altogether, these data suggest that the lack of amygdala participation in circuitry mediating 

sensitive-period learning is key to an infant’s increased capacity to learn a preference. While 

we first hypothesized that the immaturity of the amygdala (Berdel & Morys, 2000; Berdel, 

Morys, & Maciejewska, 1997; Bouwmeester, Wolterink, & van Ree, 2002; Cunningham, 

Bhattacharyya, & Benes, 2002; Morys, Berdel, Jagalska-Majewska, & Luczynska, 1999; 

Nair & Gonzalez-Lima, 1999) was responsible for its lack of participation, recent studies 

have since suggested that the amygdala is sufficiently mature to respond to stimuli during 

the sensitive period (Thompson et al., 2008). Rather, it is increasing CORT levels that play a 

crucial role in the emergence of fear learning and in the participation of the amygdala after 

the sensitive period (Barr et al., 2009; Moriceau & Sullivan, 2006; Moriceau et al., 2006; 

Shionoya, Moriceau, Bradstock, & Sullivan, 2007; Sullivan & Holman, 2010; Sullivan, 

Landers, et al., 2000).

CORTICOSTERONE, AMYGDALA ACTIVITY, AND THE ONTOGENY OF 

FEAR

Our interest in CORT was initiated by two areas of research. First, work showing that pups’ 

ontogenetic emergence of fear to predator odor (unlearned fear) occurs at the same age as 

learned fear (~PN10) and is controlled by the endogenous increase in CORT during 

development (Takahashi, 1994). Second, pups’sensitive period for odor preference/

attachment learning overlaps with an infant “stress hyporesponsive period” (SHRP, PN4–

14), during which pups’ CORT levels are lower than normal and remain either unaffected or 

are minimally increased by stressors (Grino, Paulmyer-Lacroix, Faudon, Renard, & 

Anglade, 1994; Levine, 2001; Rosenfeld, Suchecki, & Levine, 1992).

Interestingly, CORT response is functional at birth (Arai & Widmaier, 1991; Martin, Cake, 

Hartmann, & Cook, 1977; Widmaier, 1990) and the sensory stimulation provided by the 

mother during nursing and grooming seems to control the pups’ low CORT levels (Levine, 

1962; Stanton & Levine, 1990; Van Oers, De Kloet, Whelan, & Levine, 1998). Indeed, 

sensitive-period pups show increases in CORT in response to intense stressors such as 

prolonged maternal deprivation or cold, which can be returned to normal low levels with 

replacement of maternal sensory stimulation or maternal presence (Avishai-Eliner, Yi, 

Newth, & Baram, 1995; Levine, 2001; Walker, Scribner, Cascio, & Dallman, 1991). 

Additionally, functional CORT receptors are already present throughout the brain, including 

within the amygdala (Alexis, Kitraki, Spanou, Stylianopoulou, & Sekeris, 1990; Diorio, 

Viau, & Meaney, 1993; Kitraki, Alexis, Papalopoulou, & Stylianopoulou, 1996; Rosenfeld, 

van Eekelen, Levine, & de Kloet, 1993).

Studies utilizing presentations of predator odor have helped provide a causal link between 

CORT responsivity, amygdala activation, and the ontogeny of natural or unlearned fear. We 

and others have shown that during the SHRP, predator-odor presentations fail to elicit a 

CORT response unless it is a very prolonged presentation (Gould, Tanapat, & Cameron, 

1997; Moriceau, Roth, Okotoghaide, & Sullivan, 2004; Takahashi, 1994; Wiedenmayer & 

Barr, 2001; Wiedenmayer, Magarinos, McEwen, & Barr, 2005). Furthermore, these 

researchers showed that increasing neonatal CORT levels prior to presentation of the 

predator odor, however, will engage the amygdala and ultimately permit fear expression. 
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Alternatively, depletion of CORT in older pups blocks amygdala responsivity to the male 

odor presentations, and thus fear expression. Together, these data highlight the importance 

of CORT in the emergence of natural (unlearned) fear and suggest that changes in the 

developing CORT system facilitate the transition between sensitive-period preference 

learning and postsensitive-period fear conditioning.

To investigate this relationship, we gave sensitive-period pups either systemic or intra-

amygdala CORT injections prior to odor-shock conditioning. We found that either of these 

approaches enabled sensitive-period pups to learn an odor aversion. As summarized in Table 

1, neural assessment of their brains by 2-deoxyglucose uptake indicated that the learning had 

evoked significant activity within the amygdala (Sullivan, Landers, et al., 2000). In turn, we 

can extend the age at which odor-shock conditioning produces an odor preference and 

prevent amygdala activity by eliminating endogenous CORT in older pups, through either 

removal of its source, the adrenal glands, or administration of the CORT receptor antagonist, 

RU 38486 (Moriceau & Sullivan, 2004a, 2006). Preventing the increase of CORT by 

adrenalectomy has also been shown to delay the emergence of learned fear with aversive 

conditioning (Bialik et al., 1984; Collier et al., 1979). This developmental effect is in sharp 

contrast to CORT effects on learning in adults, where it only modifies how well a behavior 

is learned (Corodimas, LeDoux, Gold, & Schulkin, 1994; Pugh, Tremblay, Fleshner, & 

Rudy, 1997; Roozendaal, Carmi, & McGaugh, 1996).

Based upon the data discussed above, low CORT levels and the consequent lack of 

significant amygdala activity during the sensitive period appear to prevent pups from 

learning aversions or avoidances to odors associated with the mother. Levine and his 

colleagues have demonstrated that sensory stimulation from the mother is responsible for 

maintaining low CORT levels during the SHRP (Levine, 2001). For example, removal of 

maternal sensory stimulation during the SHRP, such as that occurring when pups are 

separated from the mother for a prolonged period of time (24 hr), produces significant 

elevations in CORT levels (Levine, 2001). Aberrant maternal care in the rat will produce 

similar effects (Gilles, Schultz, & Baram, 1996). Furthermore, maternal presence in older 

pups (>PN12) can blunt CORT release to stressful and painful stimuli (Stanton & Levine, 

1990; Stanton, Wallstrom, & Levine, 1987; Suchecki, Rosenfeld, & Levine, 1993). 

Likewise, our own data illustrated in Figure 1 replicate the remarkable ability of the mother 

to suppress CORT levels even during stress in PN14 and PN21 pups. The sensory cues 

capable of blunting the stress-induced CORT release appear to be olfactory and 

somatosensory (Barr et al., 2009; Moriceau & Sullivan, 2006; Shionoya et al., 2007; Stanton 

& Levine, 1990; Suchecki et al., 1993; Wiedenmayer, Magarinos, McEwen, & Barr, 2003). 

The decrease in CORT levels due to social sensory cues has since been referred to as “social 

buffering” (Hennessy, Kaiser, & Sachser, 2009; Kikusui, Winslow, & Mori, 2006), and has 

been shown to exist in humans and other animals (DeVries, Glasper, & Detillion, 2003; 

Kirschbaum, Klauer, Filipp, & Hellhammer, 1995; Thorsteinsson & James, 1999).

The finding that maternal presence blunts CORT release to stressful and painful stimuli in 

older pups (Stanton & Levine, 1990; Stanton et al., 1987; Suchecki et al., 1993), prompted 

us to examine whether maternal presence in older pups (PN10–15) is capable of suppressing 

amygdala activity and blocking fear learning. We found that indeed maternal presence 
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blocked fear learning (aversion) in response to odor-shock conditioning, as well as 

prevented significant amygdala activation and permitted significant olfactory bulb activation 

(Moriceau & Sullivan, 2006). Furthermore, systemic or intra-amygdala CORT infusions 

allowed the pups to learn odor aversions in the presence of the mother (Moriceau & 

Sullivan, 2006). As depicted in Table 1, our results indicate that maternal presence in PN10–

15 pups reengages the attachment circuitry during learning, effectively preventing them 

from acquiring an odor aversion or fear. The ability of maternal presence to reengage the 

attachment circuitry appears to end at PN15, as PN16 pups still learn an odor aversion even 

in the presence of the mother (Upton & Sullivan, 2010). Based upon these data, we now 

define PN10–15 as a “conditional sensitive period,” in which odor preference learning and 

attenuated fear learning can be reestablished if the mother is present.

To summarize, the brain of the developing infant rat is optimized to facilitate attachment 

during a developmental period when pups are confined to the nest (until PN9), with circuitry 

providing remarkable constraints on aversion and fear learning. The ecological significance 

of this may relate to the possible occurrence of rough handling by the mother during normal 

mother–infant interactions (i.e., stepping on pups while entering/leaving the nest and rough 

pup retrieval). From an evolutionary perspective, it would be maladaptive for pups to learn 

to avoid the maternal odor in a situation where the mother is required for milk and warmth, 

suggesting that this attenuated avoidance learning ensures that pups continue to only 

approach/follow the caregiver (Hofer & Sullivan, 2001). During the conditional sensitive 

period (PN10–15), when pups are still dependent on the mother but can begin expanding 

their environment beyond the nest, they readily demonstrate avoidance and fear learning to 

aversive stimuli in the absence of the mother. However, the attachment circuitry and 

restraint on fear learning can be reengaged during this transitional period if the mother is 

present. This suggests that older pups have a more sophisticated learning system that enables 

them to respond appropriately to learning situations dependent on whether the mother is 

present or not. The data summarized here make it clear that the ontogeny of pups’ CORTand 

amygdala responsivity play a pivotal role in the dramatic reorganization and adaptation of 

learning necessary for the developing rat.

CONCLUDING REMARKS

Seymour Levine, one of the first to study the role of early experiences in shaping stress 

responses, has left a lasting legacy regarding the profound influence of the mother on the 

development of the stress system in numerous species (Levine, 1957, 1967; Lyons, Martel, 

Levine, Risch, & Schatzberg, 1999; Morgado et al., 2008; Schmidt et al., 2006; Stanton et 

al., 1987). The data outlined in this review indicate that functional changes in infant learning 

are modified by a unique interaction between the developing CORT system, the amygdala, 

and the learning context that depends on whether the mother is present or absent.

While human children show remarkably similar behavior within the realm of attachment 

(proximity seeking, tolerance of pain), it is unclear if the rat attachment circuitry outlined 

here exists in human infants. Bowlby’s (1965) use of the animal literature in the construction 

of his attachment theory would argue the likely evolutionary conservation of attachment 
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circuitry. Following this, it is likely the case that the human infant’s brain is similarly 

organized to ensure rapid, robust attachment to his or her caregiver.

The importance of a healthy and secure attachment in humans is illustrated by the fact that 

securely attached children have an increased probability of maturing into mentally healthy 

adults compared to insecurely attached children (Dozier, Peloso, Lewis, Laurenceau, & 

Levine, 2008; Gunnar & Quevedo, 2008). Conversely, children in abusive attachment 

relationships have a greater probability of experiencing adult mental problems (Glaser, 

2000; Grossman et al., 2003; Sanchez et al., 2001; Teicher et al., 2003). Presumably, this 

reflects an altered trajectory of brain development, and it is clear that the brains’ HPA axis 

and amygdala are particularly vulnerable to early environmental influences (Dent, Smith, & 

Levine, 2001; Eghbal-Ahmadi, Avishai-Eliner, Hatalski, & Baram, 1999; Francis, Caldji, 

Champagne, Plotsky, & Meaney, 1999; Swiergiel, Takahashi, & Kalin, 1993). Based upon 

the data reviewed here, developmental insults to these systems would certainly have the 

capacity to disrupt early learning processes responsible for securing attachment, thus 

increasing the risk for poor mental outcomes.
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FIGURE 1. 
Ontogeny of CORT levels. CORT levels in response to .5 mA foot-shock were measured in 

PN8, PN14, or PN21 pups with or without maternal presence to assess the ontogeny of 

social buffering. Immediately following 11 shock presentations with an interval of 4 min 

(between 12 and 2 pm), pups were anesthetized with pentobarbital and blood was taken from 

the hearts’ ventricle. Shock elicits a significant increase in CORT in PN14 and PN21 pups, 

but fails to do so in neonatal pups (PN8). Maternal presence in PN14 and PN21 pups 

prevents the CORT response to shock (Moriceau & Sullivan, 2006; Moriceau et al., 2006). 

The mother was anesthetized by urethane to prevent her from interfering with the shock 

administration, as well as to control for maternal behavior and milk letdown. The pups were, 

however, free to contact the mother. Stress =foot-shock; PN =postnatal day.

Moriceau et al. Page 15

Dev Psychobiol. Author manuscript; available in PMC 2015 February 19.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript

Moriceau et al. Page 16

Table 1

Odor-Shock Conditioning in Rat Pups

Measure

Sensitive period (PN1–9) Conditional sensitive period (PN10–15)

Saline
CORT increase (systemic or 
intra-amygdala CORT) Saline

CORT reduction (maternal presence, 
adrenalectomy, amygdala CORT receptor 
blocker)

Behavior Preference Aversion Aversion Preference

Corticosterone level Low High High Low

2-DG uptake

 Olfactory bulb Increase No change No change Increase

 Anterior piriform cortex Increase No change No change Increase

 Posterior piriform cortex No change Increase Increase No change

 Amygdala No change Increase Increase No change

Note. The table summarizes our understanding of the brain regions supporting sensitive period (PN1–9) odor preference learning and conditional 
sensitive period (PN10–15) odor aversion learning. Learned odor preferences during the sensitive period are associated with increased neural 
activity, as measured by 2-deoxyglucose uptake within the olfactory bulb and anterior piriform “olfactory” cortex. There is no significant activity 
within the amygdala or posterior piriform cortex. In contrast, when CORTis high endogenously (PN12) or via treatment (PN8), learned odor 
aversions are associated with significant activity within the amygdala and posterior piriform cortex. Maternal presence during odor-shock 
conditioning in PN12 pups decreases CORT levels, increases neural activity within the olfactory bulb and anterior piriform “olfactory” cortex, 
inhibits posterior piriform cortex and amygdala responsivity, and permits odor preference learning. Note, this is the same neural circuitry 
responsible for PN8 preference learning (Moriceau & Sullivan, 2006; Moriceau et al., 2006; Raineki, Shionoya, Sander, & Sullivan, 2009; 
Sullivan, Landers, et al., 2000). PN = postnatal day.
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