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Fluorescence microscopy is a method commonly used to examine individual differences between bacterial cells, yet many studies
still lack a quantitative analysis of fluorescence microscopy data. Here we introduce some simple tools that microbiologists can
use to analyze and compare their microscopy images. We show how image data can be converted to distribution data. These data
can be subjected to a cluster analysis that makes it possible to objectively compare microscopy images. The distribution data can
further be analyzed using distribution fitting. We illustrate our methods by scrutinizing two independently acquired data sets,
each containing microscopy images of a doubly labeled Bacillus subtilis strain. For the first data set, we examined the expression
of srfA and tapA, two genes which are expressed in surfactin-producing and matrix-producing cells, respectively. For the second
data set, we examined the expression of eps and tapA; these genes are expressed in matrix-producing cells. We show that srfA is
expressed by all cells in the population, a finding which contrasts with a previously reported bimodal distribution of srfA expres-
sion. In addition, we show that eps and tapA do not always have the same expression profiles, despite being expressed in the same
cell type: both operons are expressed in cell chains, while single cells mainly express eps. These findings exemplify that the quan-
tification and comparison of microscopy data can yield insights that otherwise would go unnoticed.

Bacterial cells can develop into distinct and discrete phenotypic
states, which are typically referred to as cell types (1–4). Even

when cells experience nearly identical environmental conditions,
differentiation is possible (i.e., probabilistic cell differentiation)
due to regulatory feedback loops that amplify inherent cellular
noise (5–8). In many cases, however, cell differentiation is trig-
gered by environmental changes (2, 9–12). Besides responding to
environmental conditions, cells can also modify their environ-
ment. For example, they can produce extracellular polysaccha-
rides, communication signals, and antimicrobials (13–15). The
feedback between cells and their environment drives colony de-
velopment (14, 16).

In Bacillus subtilis, cell behavior is often studied in the context
of colony development (17). B. subtilis cells can differentiate into a
number of cell types, and each of them is associated with a unique
set of phenotypes (1, 2, 18). The regulatory mechanisms underly-
ing cell differentiation are often studied using time-lapse fluores-
cence microscopy, in which gene expression is monitored using
fluorescent reporters (8, 18–21). Microscopy images can be ana-
lyzed using advanced image-analysis software, which allows the
detailed quantification of gene expression along time (22, 23). In
this way, Veening and colleagues (24) showed that the timing of
sporulation in B. subtilis depends on epigenetic inheritance. In a
similar way, Levine and colleagues (25) showed that positive-feed-
back loops affect the timing of sporulation as well.

Time-lapse microscopy is ideal for studying microcolonies,
consisting of colonies with up to a few hundred cells, but not for
studying macroscopic colonies, where cell numbers are much
higher (20, 26). For those experiments, alternative methods, such
as flow cytometry or colony thin sectioning, are used (27, 28). In
some cases, macroscopic colonies can still be subjected to micros-
copy, but only when images are taken at the colony edge, where
there is a monolayer of cells, or when the colonies are dissected
before microscopy (28–33). Studies that perform microscopy on
macroscopic colonies typically show qualitative results, such as

representative images with fluorescent overlays (e.g., see the work
of Fall et al. [29] and López et al. [32]). Even though these quali-
tative results are valuable, they are difficult to compare to quanti-
tative data, such as flow cytometry data. In addition, it is also
difficult to compare microscopy images between different studies
without any form of quantification. In this study, we introduce
some tools that will help microbiologists to quantify and compare
their microscopy data.

We illustrate our methods by scrutinizing two independent
data sets, which are introduced in the next section. For each data
set, we examined a doubly labeled B. subtilis strain by fluorescence
microscopy. The microscopy images are analyzed in two steps: (i)
data acquisition (step 1) and (ii) data analysis (step 2) (Fig. 1).
During data acquisition, microscopy images are segmented into
cells and background. Pixel data are extracted from the cells and
used for further data analysis. By focusing our analysis on data on
the fluorescence intensity of pixels as opposed to the segmentation
of each cell separately and evaluation of the total intensity per cell,
this analysis can be performed at a much higher rate than other
types of image analyses that require cell segmentation. Data anal-
ysis consists of multiple phases (Fig. 1). Pixel data are first con-
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verted to distribution data. Distribution data are subsequently
used for a cluster analysis that allows one to compare microscopy
images. In addition, distribution data are analyzed to examine
how gene expression is distributed. We give an extensive de-
scription of all the image-analysis steps and provide in the
supplemental material all information that is necessary to use
our methods (e.g., a user manual and programs). We hope to
stimulate microbiologists to use our methods to analyze their
own microscopy data.

MATERIALS AND METHODS
The challenge: gene expression analysis in Bacillus subtilis colonies. We
illustrate our methods by examining two doubly labeled Bacillus subtilis
strains with PsrfA-yfp-PtapA-cfp and Peps-yfp-PtapA-cfp labels. We were in-
terested in the gene expression patterns in two cell types: surfactin-pro-
ducing and matrix-producing cells. Surfactin-producing cells secrete sur-
factin, a lipopeptide that functions as a surfactant and facilitates colony

expansion under a number of growth conditions (34–37). In addition,
surfactin acts as a communication signal (32, 38) and antimicrobial (39).
Matrix-producing cells secrete two important matrix components: the
structural protein TasA and an extracellular polysaccharide (EPS) (35, 40,
41). TasA forms amyloid-like fibers that are anchored to the cell wall
through TapA, while EPS functions as glue that facilitates cell-to-cell ad-
herence (41–45). Matrix production is essential for biofilm formation and
responsible for the wrinkly morphology that is observed in B. subtilis
biofilms (35, 46). We examined the coexpression of genes that are essen-
tial for either one of these cell types. For the first data set, we examined the
coexpression of srfA and tapA (using PsrfA-yfp and PtapA-cfp), genes ex-
pressed in surfactin-producing and matrix-producing cells, respectively.
For the second data set, we studied the coexpression of the tapA and
epsA-epsO (epsA-O) operons (using Peps-yfp and PtapA-cfp), essential for
TasA and EPS production, respectively (41). Both operons are expressed
in matrix-producing cells and are in part controlled by the same regula-
tory proteins (17).

To obtain the first and second data sets, strains were cultured for 3 and

FIG 1 Overview of work flow. Schematic diagram of work flow consisting of two steps: data acquisition in MatLab (step 1) and data analysis in R (step 2). In the
first step, microscopy images are converted to tables containing the fluorescent values of pixels associated with cells. In the second step, data are analyzed by
converting pixel information (fluorescence intensity per pixel as a proxy for gene expression) (a), performing cluster analysis (b), and examining the gene
expression distributions (c).
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22 h, respectively, on a solid growth medium that induces sliding motility
(29). After those times, microscopy was performed (see the Materials and
Methods in the supplemental material for a detailed description). The
different durations of colony growth were necessary because surfactin is
mainly produced at the onset of colony growth, while matrix production
is upregulated later. For both data sets, only the colony edge, where there
was a monolayer of cells, was subjected to microscopy. The colony edge
was extracted by cutting a piece of the agar, which was subsequently
flipped onto a glass-bottomed well, sandwiching the cells between the
coverslip and an agar pad. This glass-bottomed well was placed on an
inverted microscope for subsequent examination.

Each data set was analyzed independently using the same methods,
summarized above, with two goals in mind. First, we wanted to compare
the microscopy images within each data set. Images were taken along the
colony edge, where the environmental conditions that cells encounter
might vary. We therefore wondered if cells would behave the same along
the colony edge or, instead, show differences in their gene expression.
Second, we wanted to examine how gene expression is distributed. Is there
a unimodal or a bimodal distribution, and how does the expression of one
gene depend on that of the other gene? To address these questions, we
used a pixel-based proxy of gene expression (see below for a description of
our proxy). In the first data set, one expects that gene expression is mu-
tually exclusive, because srfA and tapA are expressed in different cell types
(32). In the second data set, gene expression is expected to correlate,
because eps and tapA are expressed in the same cell type. Although the data
sets were primarily analyzed to illustrate our methods, the analyses re-
sulted in some interesting empirical insights that are discussed below.

RESULTS
Data acquisition: image segmentation. Microscopy images were
processed in two steps: (i) data acquisition (step 1) and (ii) data
analysis (step 2) (Fig. 1). In the first step, pixel data were extracted
from regions of the microscopy images that correspond to cells.
For this, the images were segmented, without delineating each
individual cell, into two regions: cells and background. There are
various programs available to perform image segmentation (e.g.,
MicrobeTracker and Schnitzcell [22, 23, 47, 48]). These programs
vary in their functionality. For image segmentation, we developed
our own Matlab program, which was specifically adjusted to our
needs (see the supplemental material). The program is quick and
can analyze tens to hundreds of microscopy images within a short
amount of time. It displays the fluorescent and phase-contrast
images in one window, and it saves all data to a format that can be
further analyzed with other software (for details, see the informa-
tion in the supplemental material). After segmentation, pixel in-
formation was saved to text files. In our case, two fluorescence
intensity values corresponding to the genes that were monitored
(for data set 1, cyan fluorescent protein [CFP] for tapA expression
and yellow fluorescent protein [YFP] for srfA expression; for data
set 2, CFP for tapA expression and YFP for epsA-O expression)
were saved per pixel. This pixel information formed the raw data
that were used for data analysis.

One major difference between our program and other image-
analysis software is that we use the fluorescence intensity of pixels
instead of fluorescence data at the cell level (i.e., the sum of fluo-
rescence intensities per cell) as a proxy for gene expression. A
major advantage of this pixel-based approach is that image anal-
ysis is much quicker; however, this is achieved at the expense of
accuracy. Our proxy for gene expression—the fluorescence inten-
sity of pixels— corresponds to the concentration of the transcript
product (assuming that there is no bottleneck in translation). The
concentration of the transcript product is determined by the gene

expression (i.e., transcription rate), cell size, and degradation of
the transcript product. Assuming that degradation of the tran-
script product is quick (mRNA is unstable), the transcription rate
and cell size influence the fluorescence intensity per pixel. Our
proxy of gene expression ignores cell-specific information (e.g.,
cell size) and therefore relies on two assumptions: (i) the tran-
script product is homogeneously distributed throughout the cell,
and (ii) the variation in gene expression is independent of the
variation in cell size. In contrast to our pixel-based proxy, a cell-
based proxy does account for the cell size and therefore does not
depend on the assumptions mentioned above.

The best method of image analysis (pixel based versus cell
based) depends on the research question that is addressed and the
type of data. When one examines small changes in gene expression
during cell cycles, the cell-based approach is favored over the pix-
el-based approach. However, when one addresses questions on
the occurrence of different cell types in a large number of imag-
es—as in this study—the less accurate, but quicker, pixel-based
approach can be favored (i.e., we are interested in differences in
the baseline levels of gene expression and not in small gene expres-
sion changes over a cell cycle). Independently of the approach that
is used, one should always be aware of its underlying assumptions.
When assumptions are violated, one could draw incorrect conclu-
sions. Here, we performed data analysis on our pixel-based image
data, yet the same analysis tools can be applied using cell-based
image data, as illustrated in Fig. S5 to S7 in the supplemental
material. For our microscopy data, the pixel-based and cell-based
image analyses yielded similar results (see Fig. S5 to S7 in the
supplemental material).

Data analysis: comparing microscopy images. After data ac-
quisition, we began data analysis by comparing the pixel informa-
tion from images within each data set. Images were compared
using a cluster analysis that resulted in the construction of a den-
drogram, a tree-like diagram that shows how images are related
(Fig. 1b). Cluster analysis was performed in three steps (Fig. 2).
First, we converted the pixel information that was stored after
segmentation to a workable data format (step 1 in Fig. 2). That is,
we converted pixel information to distribution data. This conver-
sion was necessary not only for comparing microscopy images but
also for characterizing how genes were expressed within each im-
age. The distribution of fluorescence intensity values was inter-
preted as the distribution of gene expression levels (see the sup-
plemental material for a description of cell-based analysis). Since
each pixel corresponds to two fluorescence intensities, one for
each gene, an image could be converted to a two-dimensional
distribution of fluorescence intensity levels. This distribution
showed how strongly the genes were expressed and, in addition,
how their expression covaried. The data were further simplified by
ignoring the covariance, thereby converting each image to two
distributions of gene expression (step 1 in Fig. 2), one associated
with each gene (in this way, one implicitly assumes that both genes
are expressed independently and therefore can be treated as such).

After converting the pixel data to distribution data, we com-
pared the images by comparing their associated distributions (step
2 in Fig. 2). The dissimilarity between two images was determined
by use of a distance metric, which measures the distance between
their associated fluorescence intensity distributions. By calculat-
ing the distance between each pairwise combination of images
using the same distance metric, one can construct a distance ma-
trix that summarizes the difference between all microscopy im-
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ages. The distance metric should be chosen such that the distance
matrix is symmetric, meaning that the difference between image A
and image B is equal to the difference between image B and image
A. Furthermore, the diagonal of the matrix should contain only
zeros, meaning that identical images do not differ (i.e., image A is
the same as image A, image B is the same as image B, etc.). There
are a number of distance metrics available to assess the distance
between two distributions. Any of these metrics reduces the dif-
ference between two continuous or discrete data distributions to a
single value. This process inevitably results in the loss of informa-
tion. Some distance metrics account more for the shape of the
distribution, whereas others account more for the location of the
distribution. In the supplemental material, we discuss five dis-
tance metrics: Euclidian distance, Jeffreys divergence, Jensen-
Shannon divergence, Earth mover’s distance, and the Cramér-von
Mises statistics. For our analysis, we used the Cramér-von Mises
statistics, which is based on the cumulative distribution function
and therefore accounts for both the location and the shape of the
distribution. This metric can be applied only to one-dimensional
data distributions. We therefore calculated the distance between
two images by comparing the fluorescence intensity distributions
of each gene reporter separately; the sum of both distance values is
used for the distance matrix.

The distance matrix can subsequently be converted to a den-
drogram using a clustering algorithm (step 3 in Fig. 2). There are
different clustering algorithms available (see the supplemental
material). We applied a commonly used clustering algorithm that
hierarchically clusters the images on the basis of their similarity

(i.e., the hierarchical clustering algorithm). Figure 2 gives an over-
view of the computational steps that are involved in the cluster
analysis. We performed the cluster analysis using R, a program-
ming language and working environment that is specifically de-
signed for statistical computing and plotting (http://www.r
-project.org). The R script that we used for cluster analysis is
included in the supplemental material with a user manual. Finally,
it is important to note that the outcome of the clustering analysis
strongly depends on both the distance metric and the clustering
algorithm (steps 2 and 3 in Fig. 2). We illustrate this in the sup-
plemental material by analyzing our data sets using five different
distance metrics and two clustering algorithms (see Fig. S2 to S4 in
the supplemental material).

Figure 3A shows the outcome of the cluster analysis for both
data sets (top, data set 1 [PtapA-cfp PsrfA-yfp]; bottom, data set 2
[PtapA-cfp Peps-yfp]). For the first data set, images were coarsely
divided into three phenotypic clusters (i.e., three sets of micros-
copy images that showed more or less the same fluorescence in-
tensity distributions). A fourth cluster corresponded to the unla-
beled wild-type strain, which was included as a control. For the
second data set, images were divided into two clusters. These clus-
ters were more distinct from each other than those observed in the
first data set (see the differences in the x axis). The third cluster in
the second data set corresponded to the unlabeled wild-type
strain. Each tip in the dendrogram corresponds to a single image.
To characterize the images, we showed the corresponding fluores-
cence intensity distribution for each image. The distributions are
shown as density bars, in which the highest pixel densities are

FIG 2 Cluster analysis to compare microscopy images. The construction of a dendrogram is divided into three steps. First, microscopy images are converted to
distributions of fluorescence intensity (step 1 arrow transition). We used a pixel-based measure of fluorescence intensity, but a cell-based measure can be used
as well. Then, the distributions associated with the images are compared and a distance matrix is calculated (step 2 arrow transition). The distance matrix
summarizes how different the microscopy images are from each other. Finally, a dendrogram is constructed from the distance matrix using a clustering algorithm
(step 3 arrow transition).
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colored black. We also characterized the clusters by showing, for
each cluster separately, the fluorescence intensity distributions for
the collective image data corresponding to a cluster (Fig. 3B).

Data analysis: characterizing the fluorescence intensity dis-

tributions. The fluorescence intensity distributions were further
examined by fitting probability distributions (e.g., the normal dis-
tribution) to the observed data (Fig. 1c). Since we use pixel fluo-
rescence intensity as a proxy for gene expression, we refer to these

FIG 3 Hierarchical clustering of microscopy images and the corresponding fluorescence intensity distributions. (A) The upper and lower dendrograms show the
results of the data analyses for the first (PtapA-cfp PsrfA-yfp) and second (PtapA-cfp Peps-yfp) data sets, respectively. For each dendrogram, the distance between
microscopy images is represented by the length of the branches; each tip corresponds to one image. Every image is characterized by two horizontal bars shown
next to the corresponding dendrogram tip. Each bar shows the fluorescence intensity distribution for one of the labeled genes, i.e., the pixel density distribution
over the range of log-transformed fluorescence intensities (the range is the same within each data set but not between data sets). High pixel densities are shown
in black, and low pixel densities are shown in white. The blue vertical line and the two red vertical lines correspond to the mean fluorescence intensity level based
on fitting of either a normal distribution or two normal distributions (with each red line corresponding to the mean of one of the two normal distributions) to
the image data, respectively. (B) The distribution of fluorescence intensity (gray) is shown for each phenotypic cluster. A phenotypic cluster is a collection of
images that are shown to be closely related according to the dendrogram. For each phenotypic cluster, a normal distribution (blue) and two normal distributions
(red lines; the dotted lines show the separate normal distributions) are fitted on the collective image data using a minimal log-likelihood procedure. Clusters 4
and 3 of the first and second data sets, respectively, represent microscopy images from the unlabeled control wild-type (WT) strain.
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distributions as gene expression distributions, although they are
actually an approximation thereof. By fitting the probability dis-
tributions, the gene expression distributions could be character-
ized by a few informative parameters. For example, when the gene
expression data are normally distributed, they can simply be de-
scribed by their mean and variance. In our case, we fitted a normal
distribution (i.e., a unimodal distribution) or two normal distri-
butions (i.e., a bimodal distribution) to our data using the maxi-
mum likelihood method to estimate the best-fitting statistical pa-
rameters. This was done for all images individually and for the
collective data distributions corresponding to the clusters identi-
fied in the previous section. The fitted probability distributions
were superimposed on the distribution data shown in Fig. 3B. The
best-fitting normal distributions are shown in blue, and the two
normal distributions are shown in red.

For the first data set, we observed only a bimodal distribution
in tapA expression in clusters 1 and 2 (i.e., a bimodality of CFP
fluorescence intensity distributions), although the bimodal distri-
bution in cluster 2 was less apparent, because only a few cells
expressed tapA. In both clusters, only a minority of cells expressed
tapA. Cluster 1 showed more cells expressing tapA than cluster 2,
and in cluster 3 there were no cells that expressed tapA (in cluster
4 there was no expression, because the strain was unlabeled). In
contrast to tapA, srfA did not show a bimodal distribution; in all
clusters, except for the unlabeled strain (cluster 4), cells expressed
srfA (i.e., the pixel fluorescence intensities of clusters 1 to 3 were
higher than the pixel fluorescence intensity of cluster 4, which
resulted from higher transcription rates). It is therefore not a
question of whether cells expressed srfA but, rather, how strongly
they did so. Interestingly, for srfA the probability distributions did
not always fit the data perfectly (e.g., cluster 1), which indicates
that the data are distributed according to a probability distribu-
tion different from the distributions tested here. For the second
data set, tapA was expressed by all cells in cluster 1 and by very few
cells in cluster 2. Interestingly, in cluster 1, tapA expression fol-
lowed a bimodal distribution. These results indicate that there are
(at least) three phenotypic states: cells that do not express tapA
(cluster 2), cells that weakly express tapA (the left part of the bi-
modal distribution of cluster 1), and cells that strongly express
tapA (the right part of the bimodal distribution of cluster 1). The
bimodal distribution of eps expression in cluster 1 was less appar-
ent. Furthermore, in contrast to tapA expression, all cells ex-
pressed eps in both cluster 1 and cluster 2. This indicates that tapA
expression and eps expression are not identical.

The distance metric that we used to construct the dendrograms
(Fig. 3A) ignores the covariance of genes, since the Cramér-von
Mises statistics can be applied only to one-dimensional distribu-
tions. The question of if and how genes are coexpressed therefore
remained: how does the expression of one gene depend on that of
the other? To examine this, we studied the two-dimensional dis-
tribution of pixel fluorescence intensities. We again used the pixel
fluorescence intensity as a proxy for gene expression. This distri-
bution can be used to determine if genes are expressed indepen-
dently and, if not, how the expression of a gene depends on that of
another other gene. Figure 4 shows the two-dimensional distribu-
tion for the first (left) and second (right) data sets. For each com-
bination, we plotted the observed (green histogram bars) and ex-
pected (red grid surface) distribution of pixel values. The expected
number of pixels was calculated by assuming that genes are ex-
pressed independently. For example, say that gene A has expres-

sion level x with a chance Px and gene B has expression level y with
a chance Py. If genes A and B are expressed independently, then the
chance of having expression x and y, Pxy, is equal to Px · Py.

In most studies, one uses only the observed gene expression
distribution to conclude whether and how genes are coexpressed.
For example, for the first data set, one did not observe many cells
that express both tapA and srfA (see the green histogram bars in
Fig. 4). Therefore, one would conclude that the expression of tapA
and srfA is mutually exclusive. However, if cells are unlikely to
express tapA and they are unlikely to express srfA, then they are
even less likely to express both. Not observing cells that expressed
both tapA and srfA might therefore be a sampling error.

A more accurate method to examine the coexpression of genes
is by comparing the observed distribution of the fluorescence in-
tensity level with the expected distribution. The difference be-
tween the two distributions was mapped and is shown below the
two-dimensional distributions in the lower graphs of Fig. 4 (see
also Fig. S8 in the supplemental material). In these graphs we show
results in green if more pixels than expected were observed (for a
given combination of gene expression values), in red if we ob-
served fewer pixels than expected, and in white if we observed as
many pixels as expected (results in gray indicate that we did not
observe any pixels). For both the first and second data sets, there
was a difference between the observed and expected distribu-
tions, which means that the expression of tapA and srfA and the
expression of tapA and eps are not independent of each other.
The interdependence in gene expression might result from the
discrete environmental conditions that cells experience or
from the regulatory control of gene expression. For the first
data set, cells that strongly expressed tapA (i.e., high CFP in-
tensity) and weakly expressed srfA (i.e., weak YFP intensity) or
vice versa were more abundant than the abundance expected by
chance. Thus, even though some cells weakly expressed both
tapA and srfA, the expression of tapA and srfA was indeed
largely mutually exclusive. For the second data set, high levels
of both tapA and eps expression were observed more often than
the frequency expected by chance. Thus, despite the differences
between the gene expression distributions of tapA and eps in
clusters 1 and 2 (Fig. 3), these results show that tapA expression
and eps expression are strongly correlated. The strength of this
correlation differed, however, between the clusters: it was
stronger for images from cluster 1 than those from cluster 2
(see Fig. S9 in the supplemental material).

Differential gene expression in Bacillus subtilis colonies. In
this section, we examine the actual phase-contrast and fluores-
cence images. Since we performed a cluster analysis, the represen-
tative images can simply be chosen by randomly selecting one
image from each cluster in the dendrogram. Since the images
within each cluster are more or less the same (i.e., they have similar
fluorescence intensity distributions), we are confident that the
representative images cover the variety of microscopy images
present in our data sets. In the previous section we used pixel
fluorescence intensities as a proxy for gene expression. In this
section we can compare these results with the actual microscopy
images.

Figure 5 shows representative images. In agreement with the
findings of the quantitative analysis (Fig. 3 and 4), the images from
clusters 1, 2, and 3 of the first data set are more similar to each
other than the images from clusters 1 and 2 of the second data set.
In the first data set, the fraction of tapA-expressing cells is the
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highest for cluster 1 and less high for cluster 2, and tapA-express-
ing cells are completely absent in cluster 3. This finding is also in
agreement with the results of the quantitative analysis presented in
the previous section. What is not immediately obvious from the
microscopy images is that tapA shows a bimodal distribution,
while srfA does not (compare Fig. 3 and 5). In addition, one can-
not immediately tell from the images if cells that express both tapA
and srfA are less or more common than expected by chance (com-
pare Fig. 4 and 5). Thus, the microscopy images and the quanti-
tative analysis complement each other. Microscopy images of the
second data set also show some expected results: the expression of
tapA and eps is stronger and more alike in cluster 1 than the ex-
pression of tapA and eps in cluster 2. Interestingly, the cell mor-
phology is different between clusters 1 and 2: cluster 1 contains
mostly chains of elongated cells, and cluster 2 contains mostly
single cells. If the colony had been dissected and analyzed by flow

cytometry, such details would have been lost. Thus, one can con-
clude that, even though, on average, there is a positive correlation
between tapA and eps expression, the expression of tapA and eps is
not identical and differs in space (i.e., images were taken at differ-
ent spatial positions at the colony edge).

DISCUSSION

In this study, we demonstrate how one can analyze and compare
fluorescence microscopy images. Our methods consist of two
steps. First, we selected our raw data from the microscopy images
through a process of image segmentation. For this purpose, we
developed simple image-analysis software that, like other software
(23, 47, 48), can segment microscopy images. In contrast to other
programs, our image-analysis software is based on a pixel-depen-
dent proxy of gene expression. This proxy is less accurate than a
cell-based measurement but can be executed faster (in the supple-

FIG 4 Coexpression of genes in (PtapA-cfp PsrfA-yfp) strains and (PtapA-cfp Peps-yfp) strains. (Top) Three-dimensional plots show the observed (green histogram)
and expected (red surface) distribution of the fluorescence intensity (the number of pixels that belong to each fluorescence intensity combination is log
transformed); (bottom) for each combination, the log-transformed ratio of the observed versus the expected number of pixels is shown. When the number of
pixels observed was more (or less) than expected, the fluorescent combination is colored green (or red). When there was no difference, the fluorescent
combination is colored white. When no pixels were observed, the fluorescent combination was colored gray. The blue ellipse shows the bivariate normal density
contour containing all unlabeled wild-type (WT) pixels. The corresponding blue dotted lines show the maximal fluorescence intensity measured in the unlabeled
wild type for each fluorescence channel.
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mental material, we compare the results obtained using the pixel-
based proxy with those obtained using a cell-based proxy). Sec-
ond, we performed data analysis by converting the raw pixel data
to distribution data. The distribution data that are associated with
each image can subsequently be used to compare images via a
cluster analysis. In addition, we used the distribution data to char-
acterize gene expression in the image clusters. To illustrate the
simplicity and additive value of our methods, we scrutinized two
data sets. For the first data set, microscopy images were taken from
the colony edge of a B. subtilis strain doubly labeled for the expres-
sion of tapA and srfA, genes expressed in matrix-producing and
surfactin-producing cells, respectively. For the second data set,
microscopy images were taken from the colony edge of a B. subtilis
strain doubly labeled for the expression of tapA and eps, both of
which are expressed in matrix-producing cells.

Although our primary goal was to introduce some simple

methods to compare microscopy images, our study also resulted
in some new insights that partly contradict the results from pre-
vious studies on surfactin-producing and matrix-producing cells.
For example, for the first data set, we show that srfA expression
does not show a bimodal distribution. Instead, all cells express
srfA. In contrast, tapA expression does show a bimodal distribu-
tion. Thus, all cells that express tapA also express srfA, yet the
expression of tapA and the expression of srfA are largely mutually
exclusive, because cells that strongly express tapA only weakly ex-
press srfA and cells that strongly express srfA do not or only weakly
express tapA. López and colleagues (32) studied tapA and srfA
expression using flow cytometry data and showed that both srfA
expression and tapA expression have a bimodal distribution. Fur-
thermore, they showed that none of the tapA-expressing cells ex-
press srfA and vice versa. Since surfactin acts as a communication
signal that triggers matrix production (38), the authors concluded

FIG 5 Representative microscopy images for each of the phenotypic clusters for cells expressing PtapA-cfp-PsrfA-yfp and PtapA-cfp-Peps-yfp. From left to right, the
phase-contrast, cyan fluorescent (falsely colored green), yellow fluorescent (falsely colored red), and overlay images are shown. For PtapA-cfp-PsrfA-yfp-expressing
cells, the first three phenotypic clusters are shown (clusters 1 to 3 in Fig. 3). For PtapA-cfp-Peps-yfp-expressing cells, the first two clusters are shown (clusters 1 and
2 in Fig. 3).
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that surfactin-producing cells induce matrix production in those
cells that do not express surfactin, a form of paracrine communi-
cation. However, under our conditions, all cells expressed srfA to
some extent, including those that expressed tapA. It is therefore
plausible that under our growth conditions srfA-expressing cells
can be triggered to produce matrix. Alternatively, there could be a
threshold level of srfA gene expression that is required for the
actual production of the surfactin molecule. The contrasting re-
sults are likely to be the consequence of different culturing condi-
tions and the times at which the samples were analyzed. Only a
time-lapse experiment could conclusively show if surfactin-pro-
ducing cells can and do differentiate to produce matrix.

For the second data set, we examined the expression of tapA
and eps. One typically assumes that both genes are coexpressed in
matrix-producing cells, because they are necessary for the produc-
tion of TasA and extracellular polysaccharides (41). Here we show
that even though there was a strong positive correlation, there
were some differences between tapA and eps expression. The dif-
ferences were most pronounced in cluster 2, where single cells
weakly expressed eps but did not express tapA (this was apparent
both from our pixel-based image analysis and from the fluores-
cence microscopy images). Interestingly, in many studies on ma-
trix-producing cells in B. subtilis (27, 49), tapA expression is used
to determine which cells produce matrix and which ones do not,
thereby implicitly assuming that tapA and eps are coexpressed.
tapA expression and eps expression are in part regulated by the
same proteins: SinR, AbrB, and RemA (50–56) (see Fig. S10 in the
supplemental material). SinR and AbrB repress the transcription
of both the tapA and eps operons, while RemA activates the tran-
scription of both operons. SinR negatively regulates the eps
operon by inhibiting the activation of RemA (56), thereby func-
tioning as an antiactivator. Once cells enter the stationary phase,
tapA and eps get derepressed, due to the Spo0A-mediated repres-
sion of both SinR and AbrB (57–60). Spo0A is a key regulatory
protein that controls biofilm formation and sporulation (1, 61,
62). Even though both the tapA and eps operons are repressed by
the same regulatory proteins, the repressive effects of SinR and
AbrB are not equivalent (54): SinR is more efficient in repressing
the eps operon, while AbrB is more efficient in repressing the tapA
operon. These differences might partly explain the differences be-
tween eps and tapA expression that we observed. In addition, tapA
expression is also regulated by SlrR, a regulatory protein that
forms a double negative-feedback loop with SinR; SinR respresses
slrR expression, while SlrR sequesters SinR by direct protein-pro-
tein binding (54, 63, 64). In contrast to tapA expression, eps ex-
pression is not directly regulated by SlrR (54). Upon starvation,
SinR-mediated repression of slrR is released, due to which SlrR
subsequently stimulates tapA expression. In addition to SlrR,
there is another regulator, LutR, that directly regulates tapA ex-
pression, while it only indirectly affects eps expression (65). Thus,
even though tapA expression and eps expression are in part regu-
lated by the same regulatory proteins, there are many small regu-
latory differences that could explain our results (see Fig. S10 in the
supplemental material). Future studies are necessary to see which
of the regulatory differences is responsible for the differences in
gene expression observed in this study.

The simplicity of our methods allows their broad applicability.
For example, instead of examining doubly labeled strains, one can
examine singly labeled strains. One can also compare microscopy
images of colonies that are grown under different culturing con-

ditions and for different time periods. In this way, one can study
the generality of certain cell behaviors or compare colony devel-
opment in different environments and at different times. Another
advantage of performing a quantitative analysis on microscopy
data is that they can be compared to quantitative data from other
sources, e.g., flow cytometry data. In those cases, one should be
aware of the types of data that are actually compared. For example,
we used a pixel-based proxy for gene expression, while in flow
cytometry, a cell-based measure is used. These are different types
of data, even though they both relate to gene expression. It is
therefore impossible to make a dendrogram that contains both
microscopy data and flow cytometry data. Instead, one can make
a dendrogram of each data type separately and examine if the
overall structure between samples is the same. In other words,
samples can be compared with respect to each other. All in all, we
hope that our study stimulates microbiologists to further analyze
their microscopy data and thereby acquire a better understanding
of bacterial behavior.
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Yazgan-Karataş A. 2014. In Bacillus subtilis LutR is part of the global
complex regulatory network governing the adaptation to the transition
from exponential growth to stationary phase. Microbiology 160:243–260.
http://dx.doi.org/10.1099/mic.0.064675-0.

Analysis and Comparison of Microscopy Images

February 2015 Volume 197 Number 4 jb.asm.org 709Journal of Bacteriology

http://dx.doi.org/10.1111/mmi.12235
http://dx.doi.org/10.1111/mmi.12235
http://dx.doi.org/10.1073/pnas.87.5.1801
http://dx.doi.org/10.1101/gad.7.1.139
http://dx.doi.org/10.1016/0014-5793(95)01432-2
http://dx.doi.org/10.1016/0014-5793(95)01432-2
http://dx.doi.org/10.1111/j.1365-2958.2007.06040.x
http://dx.doi.org/10.1111/j.1365-2958.2007.06040.x
http://dx.doi.org/10.1046/j.1365-2958.2001.02709.x
http://dx.doi.org/10.1128/JB.187.4.1357-1368.2005
http://dx.doi.org/10.1111/j.1365-2958.2010.07335.x
http://dx.doi.org/10.1101/gad.1915010
http://dx.doi.org/10.1099/mic.0.064675-0
http://jb.asm.org

	New Tools for Comparing Microscopy Images: Quantitative Analysis of Cell Types in Bacillus subtilis
	MATERIALS AND METHODS
	RESULTS
	Data acquisition: image segmentation.
	Data analysis: comparing microscopy images.
	Data analysis: characterizing the fluorescence intensity distributions.
	Differential gene expression in Bacillus subtilis colonies.


	DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES


